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What Are Verbose Queries?

“Explain some methods of reducing verbose queries into
keyword-focused queries”

Long natural language search queries

“Wh-” queries: “What are some methods of reducing
verbose queries?”

“terms” are single words (“reduce”) or a small group of
connected words (“University of Minnesota”)



Methods of
Reducing
Verbose
Queries

Martha
Enderby

Why Is Reduction Important?

Many words in verbose queries are not useful

Perfect reduction can improve search
performance by 30% [2]

Around 10% of search queries are verbose [1]
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Reduction Methods

Weighting

Explain some methods of reducing verbose queries into

keyword-focused queries

Elimination

Explain some methods of reducing verbose queries into

keyword-focused queries
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Collections and Training

Text REtrieval Conference (TREC): An ongoing series of
workshops about information retrieval.

TREC documents consist of a title, summary, and document

Wt10g - web archive, 1.7M documents

Robust2004 - workshop, 500K documents

Gov2 - web archive, 25.2M documents

TREC123 - TREC proceedings, 150 documents

Training: teaching a program to evolve based on data, in this
case the search performance a sub-query
All methods discussed here were trained with RankSVM, a
pairwise learning-to-rank algorithm.
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Dependency Parsing (2010)

Weighting

Developed by Jae-Hyun Park and W. Bruce Croft from the
Center for Intelligent Information Retrieval

Based on dependencies between words

Utilize dependency parsing trees
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Parse Trees

Figure: from [3]

dobj = direct object
amod = modifying adjective
prep of = the preposition “of”
nn = noun
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Ranking Terms

Data comes from parse trees, term ranking yields labels.
Ranking equation for a term t:

E (t) =
1

Nm
·
∑
cεCm

(ϕ (c , t)− ϕ (c))

m = number of terms in a query, excluding t
Cm = all possible combinations of m terms
c = a combination in Cm

Nm = number of terms in Cm

ϕ(c) = search performance of c
ϕ(c , t) = search performance of c and t together
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Query Quality Predictors (2009)

Elimination

Developed by Giridhar Kumaran and Vitor R. Carvalho
from Microsoft

Depend on the collection of documents

Attempts to find the single best subquery

Query quality predictors (QQPs) are measurable heuristic
properties of a query

QQPs can be pre-retrieval or post-retrieval

QQPs are also called “features”
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Some Query Quality Predictors

Query Quality Predictors
QQP Name Description
Mutual
Information

Dependency between terms.
High MI indicates closely-
related terms.

Sub-Query
Length

Number of terms in a
sub-query. Optimally
between 3 and 6.

Inverse
Document
Frequency

Relative rarity of a term
within a collection. High
IDF indicates a term is rare
enough to be worth searching
for.
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More Query Quality Predictors

Query Quality Predictors
QQP Name Description
Query Clarity Post-retrieval divergence be-

tween returned documents
and the collection as a whole.
High QC indicates specificity.

Simplified Clarity
Score

Less-expensive version of
query clarity.

Similarity
Collection/Query

Similarity of query to
collection. High SCQ
indicates high similarity.
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Query Quality Predictor Comparisons

Most Important QQPs by Collection
Rank TREC123 Robust2004

1 Clarity Clarity

2 IDFmax/IDFmin MI

3 Total IDF SCQ

Query Clarity and Simplified Clarity Score were the most
useful QQPs

Other QQPs varied in usefulness
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Subset Distribution (2010)

Elimination

Developed by Xiaobing Xue, Samuel Huston and W. Bruce
Croft from the Center for Intelligent Information Retrieval

Average performance of all sub-queries between 3-6 terms

Also uses heuristic features

Uses retrieval models, which predict what a user will find
relevant
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Features

Independency Features: look at a single word.

Example: single-word frequency

Local Dependency Features: look at the relationships
between query words
Example: An arc in a dependency parsing tree

Global Dependency Features: look at all the words in a
sub-query
Example: Query length
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Retrieval Models

Query Likelihood Model (QL): The probability that a
document contains a given query.

Sequential Dependency Model (DM): The probability that
two adjacent terms in a query are related.

This method was trained using these models on both the
original verbose query and on generated sub-queries. “Sub-”
indicates that the model was used on sub-queries.
Models used: QL, DM, SubQL, SubDM, QL+SubQL,
DM+SubQL
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CRF-perf

A conditional random field (CRF) labels and segments data.

Used to generate P(y|x) where x is a sequence of words and y
a sequence of labels. Here, y can be 0 or 1.
CRF-perf is a type of CRF intended to optimize performance.
It can be used without knowledge of the “gold standard”
sub-query.
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CRF-perf Equation

PM(y |x) =
exp(

∑K
k=1 λk fk(x, y))m(Qs ,M)

Zm(x)

ZM(x) =
∑
y

exp(
K∑

k=1

λk fk(x, y))m(Qs ,M)

Qs = a sub-query
x = set of words in Qs

y = set of labels for x
M = a retrieval method such as subQL
m(Qs ,M) = the search performance of Qs using M
K = the number of features Qs has
fk = a specific feature
λk = the weight of fk
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Retrieval Method Comparisons

Most Useful Retrieval Methods by Collection
Rank Robust2004 Wt10g Gov2

1 DM+SubQL DM+SubQL DM+SubQL

2 SubDM DM SubDM

3 DM SubDM DM

Combining DM on the original query with QL on the
subquery works best

The Sequential Dependency Model is extremely useful for
improving query quality
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Results Summary

Improvement Over Unreduced Verbose Queries
Method Robust2004 Wt10g Gov2 TREC123

Dependency
Parsing

8.9% 9.3%

Query
Quality
Predictors

10.0% 6.8%

Subset
Distribution

11.7% 19.1% 13.6%
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Conclusions

Subset Distribution is the strongest of the three

None of these methods yield perfect reductions
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