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ABSTRACT
Brain computer interfaces (BCIs) are systems that allow a
user to control a computer program using only the power
of thought. The study of Brain Computer Interfaces com-
bines several different subjects including: Neurology, ma-
chine learning, electrical engineering, and human computer
interaction. This paper provides an overview of how neural
activity is measured, classified, and used to control systems.
It will also discuss how BCI systems are being applied in the
world today.

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Social Issues—Assistive
technologies for persons with disabilities; H.5.1 [Information
Interfaces and Presentation (e.g., HCI)]: Multimedia
Information Systems—Artificial, augmented, and virtual re-
alities

1. INTRODUCTION
Since the invention of the mouse over fifty years ago [10],

and the introduction of graphical user interfaces almost forty
years ago [10], the way in which we could interact with
computers has not substantially changed. The windows,
icons, menus, and pointers (WIMP) design paradigm has
been dominant since the 1980s [10]. BCIs offer a wholly
new way of interacting with computers. BCI systems have
been applied to the WIMP design paradigms, providing a
new and novel way to control a pointer. Something not
fully explored are the completely new ways of interacting
with computers that BCIs could be used for. Though the
earliest BCIs adapted existing design paradigms, recently
wholly new interactions are being developed for BCI sys-
tems. BCIs can react to thoughts that no other device can
leverage. These possibilities have not been fully explored.
This paper will cover the work that has been done in this
developing field.

This paper will provide an overview of many different sci-
ences come together to make brain computer interfaces pos-
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sible. Section 2 covers the neurological concepts that a BCI
system is based on. Section 3 will discuss how a system
learns to classify brain activity so a BCI system can accu-
rately respond to a user’s thoughts. Finally Section 4 will
discuss current uses of BCIs.

2. EVENT-RELATED POTENTIALS, ELEC-
TROENCEPHALOGRAPHY, AND P300

The study of the brain has developed ways to classify and
record brain activity. BCIs have adapted these methods so
to understand BCIs a little must be known about these con-
cepts. This section will cover how brain activity is recorded
with EEG, then it will cover how brain waves are broken
into more easily understandable parts.

2.1 Electroencephalography (EEG)
This section will discuss how brain activity is retrieved and

recorded as described in [13]. The brain is made of billions
of neurons. These neurons are electrically charged from ions
being pumped across their membranes by enzymes. Neurons
are signaled by their neighbor neurons, releasing ions into
the surrounding space. The neurons’ response to this signal
is to release more ions. Ions of like charge repel each other,
this causes ions to be forced away from the neuron that
originally fired and signal other neurons. As neurons in an
area are all activated ions move out of an area in a wave.
This effect is known as volume conduction. When this wave
reaches the scalp the electron charges are now in an easily
accessible location.

Scalp electrodes record the voltage of neural activity. The
electrodes are attached to the area of the scalp with a con-
ductive gel or paste. When the volume conduction wave
reaches the scalp, ions push on electrons in the metal of
the electrodes. This pushing force is the voltage of the sig-
nal. The differences in voltage between any two electrodes
is measured by a voltmeter. The recording of this electrical
activity along the scalp is known as electroencephalography,
more commonly referred to as EEG

Electrodes are either attached to individual wires or into
nets or caps (see Figure 1). The caps or nets are used for
systems that require a lot of electrodes. Studies suggest that
only about half of the contribution to each electrode come
from a source within 3 centimeters of the electrode [1]. This
means that very little extra information can be gained by
having a lot of electrodes. As a result BCI systems normally
use a low number of electrodes.

EEG is a non-invasive way to record brain activity [12].
Non-invasive procedures are critical for large scale BCI projects



Figure 1: A user with an EEG cap on. Taken from
[13]

because of the limited number of people who undergo the
brain surgery required for other recording methods [12].

EEG is also very well adapted to investigate brain func-
tion as it has excellent temporal resolution [5]. Temporal
resolution refers to the amount of data that can be collected
per second or in the case of EEG per millisecond. Temporal
resolution is important in determining which ERP compo-
nents have been fired.The spatial resolution of EEG is how
easily the source of a signal can be determined. Again the
source of brain activity is very important in determining
what component has been fired. Spatial resolution is one
of EEG’s largest limitations. The meninges, cerebrospinal
fluid, and skull, which are all not very conductive, “smear”
the EEG image so that the source of a signal from the brain
is obscured. Some of this spatial resolution can be made up
by increasing the number of sensors, which helps pinpoint
where a signal originated [5]. Current BCI systems are not
able to effectively use more spatial resolution so the number
of electrodes that systems use remain small.

2.2 Event-Related Potentials (ERP)
Event-related potentials are any measured response from

the brain resulting from a thought or a perception; the brain
is constantly firing ERPs [14]. ERPs are integral for a com-
puter to be able to interpret an analog brain wave. The
ERPs that have been measured and had their causes discov-
ered are known as components.

Components are correlated to various stimuli and their
meaning to the user. The majority of components are named
using a letter and then a number. The letter indicates
whether the voltage deflection is positive or negative. The

number indicates the time, in milliseconds, that it takes for
the component to occur after stimulus; this is called latency
[14]. For example the P300 wave has a positive voltage and
occurs about 300 milliseconds after stimuli. One challenge of
trying to categorize components is that many of them have
a variable latency [14, 5].

2.3 The P300 Component
The P300 component is generated in the parietal lobe

when a person is attempting to accomplish some task and
sees something related to the task [15, 5]. For example in [4]
subjects looked at a screen with 12 “options” on it. Subjects
would focus on the option that they were told was relevant,
and when that option flashed a P300 event was recorded
[15].

P300 events are a strong candidate for BCI design for
several reasons. First they are involuntary which means that
subjects will need little training on how to activate the P300
to control a BCI, and people with sections of their brain
injured will most likely still be able to use the system [15,
12]. The P300 doesn’t vary much from users so that means
that BCI designs can be simplified and be used by a greater
number of people [15]. Up until now subjects using BCIs
were required to remain sitting or lying down to avoid muscle
movements that pollute the EEG signal [7]. Recent research
has suggested, however, that P300 based systems may be
usable for users who are standing or even walking around
[7]. This means that P300-based BCI systems could be used
in settings where other systems would not be reliable.

3. ANALYSIS OF BRAIN ACTIVITY
Due to the complexity of ERP components, BCI systems

up to this point have focused on recognizing at most only
a few components [12]. Machine learning techniques are
used to recognize the components of the brain wave activ-
ity. These classification algorithms take in various pieces of
information, or features, from the EEG signal as a list; this
list is called the feature vector [6]. Possible features include
the amplitude of the EEG signals and time-frequency infor-
mation [6]. From this information the classifier will output
if the given feature vector represents the component the BCI
system is based on or not. Before the machine learning tech-
niques can effectively classify feature vectors it needs to be
“trained”. For BCI systems, training will involve stimulating
the user’s brain so that the component that the system is
looking for is fired.

A major design consideration for a BCI system is what
classification algorithm to use. Features that a successful
algorithm must have are [6]:

• Ability to handle noise in the input data

• Ability to handle a large feature vector

• Ability to deal with a wide range of values

• Ability to train quickly on a small training set

Many different techniques have been employed to recognize
components. The next few sections will outline a few of
these techniques.



3.1 Linear Classifiers
Linear classifiers are one of the most popular algorithms

used for BCI systems [6]. In general linear classifiers use lin-
ear functions to draw lines between classes of brain waves.
Figure 2 shows an example of this happening. The circles
are one class and the squares are another, the line sepa-
rates these two classes which allows the system to classify
new data based on which side of the line it is on. The two
primary types of linear classifiers used by BCIs are linear
discriminant analysis and support vector machines [6].

3.1.1 Linear Discriminant Analysis
Linear discriminant analysis identifies different compo-

nents by using hyperplanes to separate feature vectors [6].
Essentially linear discriminant analysis draws a line between
the points that represent each class. This line is established
by giving the system example brain activity where the ERP
component it represents is known. During training linear
discriminant analysis moves the line so that the line is always
between feature vectors of different classes. Once training
is complete, the hope is that this line will be able to cor-
rectly separate new data. If more than two classes exist
linear discriminant analysis can be used to create multiple
hyperplanes to separate the different classes [6].

3.1.2 Support Vector Machines
Support vector machines (SVM) are also commonly used

as linear classifiers by BCI systems. The goal of a support
vector machine is similar to that of linear discriminant anal-
ysis, that of trying to place a hyperplane which separates
the classes [6]. For any given separation problem there could
be multiple hyperplanes that separate the classes. Support
vector machines try to find the optimal hyperplane [8]. The
optimal hyperplane is the one that maximizes the margins
around it [6, 8]. The margins are the distance between the
hyperplane and the nearest training points [6]. This margin
gives the system some protection from data with a lot of
noise or variation when the system is being used. A support
vector machine can also be adapted to separate classes in
non-linear ways [6, 8].

An SVM has a kernel which defines what class of function
it creates the optimal hyperplane from. This is known as the
“Kernel trick” [6]. Considering that MLPs are much easier
to implement and are very well suited to a BCI classification
problem SVMs are less popular [6].

3.2 Neural Networks
Neural networks, along with linear classifiers make up the

majority of classifiers used in BCI systems [6]. Two neural
network architectures are primarily used in BCI systems:
the perceptron and the multilayer perceptron (MLP) [6].
Other architectures have been used for BCIs but not very of-
ten so they are not discussed here in any detail. For example
the gaussian classifier, which was designed specifically with
BCIs in mind, outperforms MLPs but is more difficult to
implement and because of this gaussian classifiers are rarely
used [6].

Neural networks are made up of a set of artificial neurons
known as McCulloch and Pitts neurons [8]. McCulloch and
Pitts neurons are composed of three parts, a set of weighted
inputs, an adder, and an activation function (see Figure 3).
The weighted inputs are just the information the neuron
is receiving (electrode voltage data, or values from other

Figure 2: An SVM places the optimal hyperplane
(the solid line) between the margins to separate the
two classes.

Figure 3: A graphical representation of a McCulloch
and Pitts neuron.



neurons) multiplied by a weight. These weights are what
are going to be adjusted in the training phase. The adder
simply sums up the weighted inputs and sends the sum along
to the activation function. The activation function decides
whether the neuron fires or not. The activation function
is often just a threshold function which means that if the
sum from the adder is above some value the neuron will fire.
When a neuron fires it sends a value to either other neurons
or as output. The most basic threshold function sends out
a 1 if the neuron fires and a 0 if it does not. Depending on
the application, the activation function can be adapted to
send out different types of outputs [8].

3.2.1 Perceptron
The simplest neural network architecture is called a per-

ceptron. A perceptron consists of a single McCulloch and
Pitts neuron. Perceptrons are mathematically equivalent to
linear discriminant analysis, so it has sometimes been used
instead [6].

3.2.2 Multilayer Perceptron
The most popular neural network architecture is the mul-

tilayer perceptron [6]. MLPs are composed of several layers:
an input layer, one or two “hidden” layers of neurons, and
an output layer [6, 8]. The weighted inputs in an MLP lead
to the first hidden layer. The first hidden layer’s outputs are
multiplied by a weight and become the input to the next hid-
den layer. Once the data has moved through every hidden
layer it moves to the output layer. By modifying the number
of hidden layers, the number of neurons in each layer, and
the activation function, an MLP can classify a feature vector
into any number of classes [6]. MLPs can classify problems
too complex for linear classification. Such a problem is illus-
trated in Figure 4. As you can see there is no straight line
that can completely separate the two classes. An MLP can
produce complex, non-linear functions which can be used to
separate the classes.

3.2.3 Training
During the calibration of a BCI using a neural network as

its classifier, the neural network’s weights are being trained.
Every feature vector that is sent to the network is already
known to be either the component the system is based on
or some other ERP. After the network outputs which class
it thinks the feature vector belongs to, the network begins
training.

δok Error for an output layer neuron
δhk Error for a hidden layer neuron
η The training rate
wjk The input weights for output layer neurons
vij The input weights for hidden layer neurons
aj The output from an output layer neuron

ahiddenj The output from a hidden layer neuron
xi The inputs

The table above shows the variables that are used in the
training algorithm.

Training is based on the error of each node. These errors
are computed differently depending on whether the node is
in the output layer or in a hidden layer. The error for an
output layer weight k δok is based on the actual output of
the node yk and the expected or target output tk. The error

Figure 4: A classification problem that needs a non-
linear classifier. This could have been solved by an
MLP or an SVM with a nonlinear kernel.

function is shown below.

δok = (tk − yk)yk(1− yk)

The hidden layer errors δhk are based on the output of
the current hidden layer node aj and then the sum of all the
output layer weights wjk and the output layer error:

δhk = aj(1− aj)
∑
k

wjkδok

The weights can now be updated. If you trained a neu-
ral network based just on the error alone it would be very
unstable, overcompensating each time it misclassified a fea-
ture vector. To reduce this effect a training rate η normally
between 0.1 and 0.4 is used. The training rate is used when
updating both output layer weights wjk and hidden layer
weights vij. Output layer weights are updated using the
following function:

wjk ← wjk + ηδoka
hidden
j

where ahiddenj is the output from the hidden layer. To update
a hidden layer weight the following equation is used:

vij ← vij + ηδhjxi

where xi is the input to that particular node.

3.3 Other classifiers
Other classifiers have been used in BCI systems but it is

out of the scope of this paper to discuss them in detail.
Brain computer interfaces have used two Bayesian clas-

sifiers: Bayes quadratics, and Hidden Markov Models [6].
Bayesian classifiers produce nonlinear decision boundaries
and are better suited to classifying vectors which are similar
to members of different classes.

Another type of classifier is known as a nearest neighbor
classifier. Nearest neighbor classifiers attempt to measure
the distance from a feature vector to representative members



of different classes; the class that a feature vector is nearest
to is the class it is placed in. The two nearest neighbor
classifiers most commonly used in BCI systems are the k-
nearest neighbor technique, and the Mahalanobis distance
[6].

3.4 Applying Combinations of several classi-
fiers

One final idea for classification that has been used recently
with some success is applying several classifiers [6]. The
three combinations that have been tried so far are called
boosting, voting, and stacking.

Boosting uses several classifiers in cascade [6]. Each of the
classifiers focuses on the errors committed by the previous
classifier [6]. After training this can become a very powerful
classifier. It is, however, sensitive to mislabeled training
data, which could explain why it was unsuccessful in some
experiments [6].

Voting is a very simple technique that is easy to imple-
ment. In voting, several classifiers each assign a feature vec-
tor to a class. Whichever class was the most popular is the
one that the vector will be assigned to [6]. This is the most
popular method of combining classifiers in BCI research be-
cause of its simplicity and effectiveness [6].

Stacking involves several levels of classifiers. The first level
of classifiers are called level-0 classifiers. Level-0 classifiers
are given the feature vector to classify into a class [6]. The
output from the level-0 classifiers goes to the level-1 classifier
which is also called a meta-classifier [6]. The meta-classifier
combines the results from the level-0 classifiers and makes
the final decision as to what class the feature vector is as-
signed to. BCI research into stacking, so far, has used hid-
den Markov models as level-0 classifiers and a support vector
machine for the meta-classifier [6].

4. APPLICATIONS OF BCI SYSTEMS
Brain computer interfaces have been used for many dif-

ferent purposes. For example [7, 16, 9] all deal with BCIs
used as an interface for video games, while [11, 2, 3] use BCI
systems to help people with disabilities use computers. This
section will discuss these and other uses for brain computer
interfaces.

4.1 Assistive and Therapeutic Applications
BCIs were originally used in assistive technology appli-

cations [12] so the body of research in this area is much
larger than that of entertainment. Early BCI systems were
focused on supporting people who suffer from locked-in syn-
drome. Before BCIs these people had few chances at com-
munication, normally people would read off letters to the
patient who would signal when they wanted to select a let-
ter. Character by character people would spell out words.
This is obviously quite difficult, and it assumes that the pa-
tient has enough motor control to signal the selection of a
letter. The first BCIs computerized this process by flashing
letters up on a screen and when the patient’s P300 compo-
nent fires the letter on the screen is chosen [12]. This simple
method of communication has since been extended by many
researchers (e.g. [2, 11]). The method described in [2] at-
tempts to speed up locked-in patient’s communication. As
opposed to the early BCI designs, where individual letters
had to be painstakingly selected. The system in [2] collects

commonly used words and phrases and displays them along
with the alphabet for the user to select from.

Another way the a BCI has been used to support people
with severe physical disabilities is a system that allows peo-
ple to browse the web using their mind [11]. People with
these types of physical disabilities have trouble successfully
manipulating a mouse to select something as small as a hy-
perlink. The level of control that BCIs can currently offer
their users is also unsuited to allow successful navigation
of traditional browser interfaces. For these reasons [11] de-
veloped new interface design paradigms to allow for a BCI
system to surf the web. Previous work done by the authors
of [11] showed that BCI systems could fairly easily control
linear interfaces. Conventional web browsers, and the pages
they display, involve navigating two spatial dimensions. The
challenge in [11] is to adapt this structure to a single dimen-
sion. The design paradigm that was developed includes a
toolbar with common internet navigation operations (back,
forward, home, etc.). Two unique buttons that are very im-
portant to the usability of this system allow a user to move
back and forth over the links in a page. These buttons ef-
fectively serialize a two dimensional web page.

Physical therapy and rehabilitation are also being assisted
by BCI systems. There is an ERP component known as a
mu rhythm that has been shown to weaken with the decline
of physical ability [3]. Physical ability can increase by using
a mu based BCI system [3]. This opens the possibility that
training on a mu-based BCI system could help people regain
lost physical abilities [3]. For example

4.2 Entertainment
The use of BCIs for gaming and other types of entertain-

ment is a relatively new idea. Most of the work done in this
area tends to be about theoretical designs or testing new BCI
features [7, 9]. In [7] the authors developed a BCI system
that could be used while standing up and walking around.
This research was done explicitly so that non-disabled per-
sons could use BCIs for entertainment and virtual reality
purposes. [9] is a survey of the accomplishments of BCIs
in the entertainment field. Two main design ideas were put
forth for BCI researchers to look into: replacing more tradi-
tional input methods such as mice and keyboards or a con-
troller with a BCI, and using a BCI to make a traditional
game react to a person’s state of mind. For example if the
BCI could sense a user getting frustrated then the system
could automatically make the game less difficult. This type
of BCI system could be used to help an activity adapt to
better meet the users needs at any given moment [9].

[16] describes a game called NeuroWander that has an
integrated BCI. NeuroWander is based around the fairytale
of Hansel and Gretel. Players use the keyboard to move their
character around the game world. The BCI system evaluates
two values, “attention” and “meditation” [16]. As the user
meditates (relaxes their mind) bread crumbs appear, and if
the user concentrates pebbles appear. The bread crumbs
and pebbles lead the character through the woods. When
enough of these markers appear, the player is led to the
witches cottage where they can push the witch into the oven
and thereby win the game. The BCI system here was used to
enhance the traditional gameplay mechanics. As opposed to
just relying on the users motor movements pushing buttons
on the keyboard, the game can also respond to the players
state of mind.



5. CONCLUSION AND FUTURE WORK
In conclusion a BCI system takes a user’s brain activity

classifies that activity into a category which a computer can
then respond to. The classification has been done by mul-
tiple methods. This classification is done by machine learn-
ing algorithms. The most common being multilayer percep-
trons. Initially BCIs were used to give people with severe
physical disabilities ways to communicate and interact with
computers. Accessibility research continues to progress to-
day, getting more and more complex. Recently BCI research
has become more focused on able-bodied users. Specifically
the possibilities for BCIs to enhance entertainment are being
investigated.

Brain computer interfaces have many possible questions
that haven’t been answered yet. As was mentioned previ-
ously, many of the papers that have been published about
entertainment uses of BCIs were more theoretical rather
than implementing an actual system, so much more work
can be done in that area to test the ideas that have already
been suggested. Many of the classification techniques have
not been fully explored either. There are also, of course,
many environments where BCIs could be incorporated but
have not been. Overall, there are still many things that have
not been explored about BCIs.
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