
Three approaches to recommender systems

Martin Powers

University of Minnesota - Morris
Morris, Minnesota 56267

power182@morris.umn.edu

December 4, 2010

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 1 / 27

Outline

1 Introduction

2 Background
What is a recommender system
Netflix Prize
Collaborative filtering process

3 Three methods
User-based algorithms
Item-based algorithm
Temporal model

4 Conclusion

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 2 / 27

Why we care about recommender systems

Without recommender systems we recieve suggestions from:

word of mouth

reading reviews

researching

trial and error

With recommender systems we:

seamlessly interact with the browsing tools we already use

more frequently find items we will enjoy

spend less time looking for items

spend less money trying out items

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 3 / 27

1 Introduction

2 Background
What is a recommender system
Netflix Prize
Collaborative filtering process

3 Three methods

4 Conclusion

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 4 / 27

What is an recommender system?

Recommender System: A system whose purpose is to take in information
and output suggestions to a user.

Billboard top 10

Oprah’s bookclub

Collaborative Filtering: Using a large number of different user’s
preferences to find recommendations for a specific user.

Netflix

Amazon

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 5 / 27

Netflix

Movie rental and streaming service that suggests movies to users based on
what movies they have rated.

Uses a recommender system called Cinematech to predict ratings.

Both Netflix and customers benefit from accurate recommendations.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 6 / 27

Netflix Prize

In 2006 Netflix released a enormous dataset containing over

100 million ratings given by

480,000 users on

17,770 movies

$1,000,000 prize to the team that improves Cinematech’s accuracy by 10%

Won in 2009 by “Bell-Kors Pragmatic Chaos” with a 10.05% improvement.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 7 / 27

Input

Users provide input through implicit and explicit means

Implicit:

Pageviews

What website they arrive at a page from

Frequency that an item is used

Explicit:

Product review

Rating

Purchasing an item

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 8 / 27

The collaborative filtering process

u1

u2

ua

um

.

.

.

.

i1 i2 ij in. . . .

Input (ratings table)
Active user

Item for which prediction
is sought

Prediction

Recommendation

CF-Algorithm

Pa,j (prediction on
item j for the active

user)

{Ti1, Ti2, ..., T iN} Top-N
list of items for the

active user

Output interface

3. ITEM-BASED COLLABORATIVE FILT-

ERING ALGORITHM

3.1 Item Similarity Computation

3.1.1 Cosine-based Similarity

3.1.2 Correlation-based Similarity

3.1.3 Adjusted Cosine Similarity

288

m users U = {u1, u2, · · · , um}
n items I = {i1, i2, · · · , in}

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 9 / 27

The collaborative filtering process

u1

u2

ua

um

.

.

.

.

i1 i2 ij in. . . .

Input (ratings table)
Active user

Item for which prediction
is sought

Prediction

Recommendation

CF-Algorithm

Pa,j (prediction on
item j for the active

user)

{Ti1, Ti2, ..., T iN} Top-N
list of items for the

active user

Output interface

3. ITEM-BASED COLLABORATIVE FILT-

ERING ALGORITHM

3.1 Item Similarity Computation

3.1.1 Cosine-based Similarity

3.1.2 Correlation-based Similarity

3.1.3 Adjusted Cosine Similarity

288

Prediction: A value that the user is expected to give an unrated item.
Recommendation: A list of items that the user is expected to like.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 9 / 27

1 Introduction

2 Background
What is a recommender system
Netflix Prize
Collaborative filtering process

3 Three methods
User-based algorithms

Finding neighbors
Prediction

Item-based algorithm
Challenges for user-based algorithms
Item Simularity
Prediction

Temporal model
What is a temporal model?
Trends in the Netflix data
Parts of a temporal model

4 Conclusion

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 10 / 27

Finding neighbors

To find a user’s neighbors we compare the active user with all other users
and find the ones with most similar taste.

We use the method userSim(u, n) to determine how close the user u and
its neighbor n are.

Different algorithms can be used in userSim(u, n), we use the pearson
correlation algorithm.

The result will be within the range from -1, showing perfect disagreement,
and 1, being perfect agreement.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 11 / 27

Pearson correlation algorithm

userSim(u, n) =

∑
i∈Iu,n(rui − ru)(rni − rn)

√∑
i∈Iu,n(rui − ru)2

√∑
i∈Iu,n(rni − rn)2

where:

Iu,n is all the items that both have rated

rui and rni are the ratings users u and n have given item i

ru and rn are the average rating for users u and n

Ranges between -1 and 1

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 12 / 27

Predicting a rating

We use userSim() to determine a predicted rating, Pu,i , for an item, i , that
the active user, u, hasn’t rated yet.

The prediciton algorithm we use is a weighted sum algorithm.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 13 / 27

Prediction algorithm

Pu,i = ru +

∑
n∈Nu

userSim(u, n) · (rni − rn)∑
n∈Nu

userSim(u, n)

This is calculated by finding the sum of all ratings for i given by u’s
neighbors, each weighted by how similar u is to each neighbor.

To make sure that Pu,i is in the same scale as all other ratings, we
normalize the above by dividing it by the sum of u’s similarity with their
neighbors.

We add the average of u’s ratings to the total while also subtracting the
average of each neighbor’s ratings to compensate for each user’s rating
bias.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 14 / 27

1 Introduction

2 Background
What is a recommender system
Netflix Prize
Collaborative filtering process

3 Three methods
User-based algorithms

Finding neighbors
Prediction

Item-based algorithm
Challenges for user-based algorithms
Item Simularity
Prediction

Temporal model
What is a temporal model?
Trends in the Netflix data
Parts of a temporal model

4 Conclusion

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 15 / 27

Why item-based?

Two main challenges for user-based algorithms:

Scalability:

Growing number of users
Larger neighborhoods

Sparsity:

New users have rated no items
Low rating frequency of users

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 16 / 27

Item-based algorithms

Instead of comparing users based on their similarity we compare items

Items work better than users because

items are static

there are less items than users

To find if two items are similar we look at all users who have rated both
If the items have similar ratings from a user, we say that they are similar

We modify our user-based algorithm, pearson correlation, to work with
items

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 17 / 27

Pearsons correlation algorithm

itemSim(i , j) =

∑
u∈U(ru,i − ru)(ru,j − ru)√∑

u∈U(ru,i − ru)2
√∑

u∈U(ru,j − ru)2

where

items i and j are two items being compared

U is a list containing all users who have rated both i and j

ru,i and ru,j are a user’s ratings for items i and j

ru is user u’s average rating

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 18 / 27

Item-based prediction

To predict what a user, u, will rate an item, i , we look at what the user
has rated items similar to i .
If u rates similar items highly, then it is likey they will rate i highly as well.

To find this rating, we can again use a weighted sum algorithm

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 19 / 27

Item-based prediction algorithm

Pu,i =

∑

N∈ similar rated items

itemSim(i ,N) · ru,N
∑

N∈ similar rated items

itemSim(i ,N)

where

u and i are the active user and the item we’re predicting the rating for

N is an item similar to i

ru,N is the rating u gave to item N

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 20 / 27

1 Introduction

2 Background
What is a recommender system
Netflix Prize
Collaborative filtering process

3 Three methods
User-based algorithms

Finding neighbors
Prediction

Item-based algorithm
Challenges for user-based algorithms
Item Simularity
Prediction

Temporal model
What is a temporal model?
Trends in the Netflix data
Parts of a temporal model

4 Conclusion

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 21 / 27

What is a temporal model?

Temporal model: A prediction algorithm that takes into account the time
that a user rated items and adjusts its prediction accordingly.

Reasons to use a temporal model:

users change how they rate items over time

item’s ratings change over time

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 22 / 27

Temporal trends in the Netflix data

User ratings jump in early 2004
(1500 days)

Item ratings increase with age

“3 stars” input, may now indicate dissatisfaction by the same “3
stars” feedback. Similarly, it is known that user feedback is in-
fluenced by anchoring, where current ratings should be taken as
relative to other ratings given at the same short period. Finally, in
many instances systems cannot separate different household mem-
bers accessing the same account, even though each member has a
different taste and deserves a separate model. This creates a de
facto multifaceted meta-user associated with the account. A way to
get some distinction between different persons is by assuming that
time-adjacent accesses are being done by the same member (some-
times on behalf of other members), which can be naturally captured
by a temporal model that assumes a drifting nature of a customer.

All these patterns and the likes should have made temporal mod-
eling a predominant factor in building recommender systems. Non-
etheless, with very few exceptions (to be mentioned in Sec. 7), the
recommenders literature does not address temporal changes in user
behavior. Perhaps, because user behavior is composed of many
different concept drifts, all acting in a different timeframe and dif-
ferent directions, thus making common methodologies for dealing
with concept drift and temporal data less successful at this setup.
We are showing that capturing time drifting patterns in user behav-
ior is essential to improving accuracy of recommenders. This also
gives us hope that the insights from successful time modeling for
recommenders will be useful in other data mining applications.

Our test bed is a large movie rating dataset released by Netflix as
the basis of a well publicized competition [4]. This dataset com-
bines several merits for the task at hand. First, it is not a syn-
thetic dataset, but contains user-movie ratings by real paying Net-
flix subscribers. In addition, its relatively large size – above 100
million date-stamped ratings – makes it a better proxy for real life
large scale datasets, while putting a premium on computational ef-
ficiency. Finally, unlike some other dominant datasets, time effects
are natural and are not introduced artificially. Two interesting (if
not surprising) temporal effects that emerge within this dataset are
shown in Fig. 1. One effect is an abrupt shift of rating scale that
happened in early 2004. At that time, the mean rating value jumped
from around 3.4 stars to above 3.6 stars. Another significant effect
is that ratings given to movies tend to increase with the movie age.
That is, older movies receive higher ratings than newer ones. In
Sec. 6 we will return to these phenomena and use our temporal
modeling to shed some light on their origins.

The major contribution of this work is presenting a methodology
and specific techniques for modeling time drifting user preferences
in the context of recommender systems. The proposed approaches
are applied on the aforementioned extensively analyzed movie rat-
ings dataset, enabling us to firmly compare our methods with those
reported recently. We show that by incorporating temporal infor-
mation we achieve best results reported so far, indicating the sig-
nificance of uncovering temporal effects.

The rest of the paper is organized as follows. In the next section
we describe basic notions and notation. Then, in Sec. 3 our prin-
ciples for addressing time changing user preferences are evolved.
Those principles are then materialized, in quite different ways, within
two leading recommender techniques: factor modeling (Sec. 4) and
item-item neighborhhod modeling (Sec. 5). In Sec. 6 we describe
an exploratory study, followed by surveying related work in Sec. 7.

2. PRELIMINARIES
We are given ratings about m users (henceforth, interchangeable

with “customers”) and n items (henceforth, interchangeable with
“products”). We reserve special indexing letters for distinguishing
users from items: for users u, v, and for items i, j. We use t for
time (or, date). A rating rui(t) indicates the preference by user u
of item i at day t, where high values mean stronger preferences.

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

time (days)

Rating by date

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

movie age (days)

Rating by movie age

Figure 1: Two temporal effects emerging within the Netflix
movie rating dataset. Top: the average movie rating made a
sudden jump in early 2004 (1500 days since the first rating in
the dataset). Bottom: ratings tend to increase with the movie
age at the time of the rating. Here, movie age is measured by
the time span since its first rating event within the dataset. In
both charts each point averages 100,000 rating instances.

For example, values can be integers ranging from 1 (star) indicat-
ing no interest to 5 (stars) indicating a strong interest. User u rates
item i at most once, otherwise we take only the freshest rating, so
given u and i, the day of rating is unique. Sometimes, when the day
of rating is not relevant, we will use the short notation rui. We dis-
tinguish predicted ratings from known ones, by using the notation
r̂ui(t) for the predicted value of rui(t). Usually the vast major-
ity of ratings are unknown. The (u, i, t) triples for which rui(t) is
known are stored in the set K = {(u, i, t) | rui(t) is known}.

We evaluated our algorithms on a movie rating dataset of more
than 100 million date-stamped ratings performed by about half mil-
lion anonymous Netflix customers on 17,770 movies between Dec
31, 1999 and Dec 31, 2005 [4]. We are not aware of any publicly
available comparable dataset that is close to the scope and qual-
ity of this one. To maintain compatibility with results published
by others, we adopted some common standards. We evaluated our
methods on two comparable sets designed by Netflix: a hold-out
set (“Probe set”) and a test set (“Quiz set”), each of which contains
over 1.4 million ratings. Reported results are on the test set, while
experiments on the hold-out set show the same findings. In our
time-modeling context, it is important to note that the test instances
of each user come later in time than his/her training instances.
The quality of the results is measured by their root mean squared
error (RMSE):

√∑
(u,i)∈TestSet(rui − r̂ui)2/|TestSet|, a mea-

sure that puts more emphasis on large errors compared with the al-
ternative of mean absolute error. Achievable RMSE values on the
test set lie in a quite compressed range, as reported by many partici-

448

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 23 / 27

How to use the temporal dynamic

Things to take in account:

User bias changes over time

Item bias changes over time

User preference changes over time

Bias is the deviation from the average rating an item or user has.

We can localize each of these trends by sampling smaller spans of time.
Instead of looking at the entire dataset, we only look at ten weeks of data
at a time. We create bins that relate to a specific time span and create a
prediction model uses these bins.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 24 / 27

Parts of a temporal model

bui (t) = µ+ bu(t) + bi (t)

where:

µ is the average rating of items by all users

bu(t) is the bias for user u at time t

bi (t) is the bias for item i at time t

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 25 / 27

In conclusion

User-based algorithms work well and are easily implemented, but can be
improved upon by exploring different methods and finding trends in the
data. The two techniques explored here make use of these trends.

The item-based algorithm makes use of the fact that items are static.

The temporal model takes into account that users and movies are
affected by time.

When looking for ways to improve recommender systems it becomes
important to recognize attributes of a dataset so that improvements can
be made.

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 26 / 27

Questions?

Martin Powers (University of Minnesota - Morris)Three approaches to recommender systems December 4, 2010 27 / 27

	Introduction
	Background
	What is a recommender system
	Netflix Prize
	Collaborative filtering process

	Three methods
	User-based algorithms
	Item-based algorithm
	Temporal model

	Conclusion

