
Methods to improve the accuracy of recommender
systems

Martin Powers
University of Minnesota - Morris

600 East 4th Street
Morris, Minnesota

power182@morris.umn.edu

ABSTRACT
With commercial recommender systems becoming more and
more popular, new ways to improve their accuracy and ease
of implementation are being evaluated. These methods aim
at creating more scalable and accurate systems by exam-
ining trends and finding patterns within the data. Two
methods that have been developed achieve these goals by
using item-based algorithms instead of user-based ones and
by adding a temporal dynamic. Item-based systems can pro-
duce similar results to user-based systems while the number
of users increases by comparing item similarities which are
fairly constant. Temporal dynamics are important to exam-
ine because user preference changes over time and so does
their average rating of an item.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms

Keywords
collaborative filtering, recommender systems

1. INTRODUCTION
In the age of E-commerce, more products are being released
to the public than any one person has time to experience.
With this vast number of options to process, people rely
on recommendations on which movies they should watch
and books they should read [4]. These software systems are
called Recommender Systems and can now replace the need
to know someone who has seen a movie you’re interested in;
recommender systems often give more accurate predictions
when a large dataset is used. This computation goes mostly
unnoticed by users while browsing E-commerce websites but
has become some company’s central way of making money.
Because it can be extremely beneficial to both a company

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

and its users, there has been a great deal of research to im-
prove the efficiency and scalability of recommender systems
[4]. Out of the many areas where recommender systems are
being improved, this paper will focus on two: item-based
algorithms and the temporal model. Item-based algorithms
focus on the similarities between items rather than users
and can show improvements over other methods in certain
cases. A recommender system that uses a temporal model is
one that takes into account how a user’s or item’s properties
change over time. By analyzing user and item trends while
tracking temporal dynamics, it is possible to make improve-
ments to a recommender system.

In this paper, we will look at the fundamental aspects of rec-
ommender systems and explore some of the new advances.
Starting in 2, we will take a look at what a user-based rec-
ommender system looks like. From there we will look at two
new methods to see how they differ from common systems.
Item-based systems are explored in 3 and a temporal aware
model is shown in 4.

2. BACKGROUND
Recommender Systems make suggestions to users based on
information the system has available to it such as item prop-
erties or user preference patterns. The majority of recom-
mender systems used today are based on information that
users provide to the system. These types of recommender
systems are called Collaborative Filters and rely on a large
number of users rating a set of items. These ratings could
be collected from users explicitly, like having them give a
movie a star rating, or behind the scenes, like counting how
many times a song is played. Users are more inclined to
input their ratings into a system where there is a noticable
reward such as accurate suggestions [2]. It is easy to see why
this type is the most successful and common recommender
systems as they help both the user find things they like and
the owner of the implementation get more business.

2.1 Collaborative filter method
The basic elements needed in a collaborative filter is a list
of m users U = {u1, u2, · · · , um} and a list of n items I =
{i1, i2, · · · , in}; these are commonly very large lists. Each
user ui, has a list of items Iui that they have rated in some
way, and using these ratings and the ratings of other users we
can find users with similar taste or items that have similar
likeness. The idea behind these suggestions is that if two
users rate an item or items similarly, they might like the
other’s highly rated items. There are two methods through

which collaborative filters can suggest items to an active
user: Making a prediction or making a recommendation.

A prediction is described in [4] as “a numerical value, Pa,j ,
expressing the predictive likeliness of item ij /∈ Iua for the
active user ua.” The item must not exist within the list of
items already rated by the user. This method can be used
to predict how a user might like an item based on properties
the item shares with other items the user has rated. This is
used for items that are newly introduced and have no ratings
yet, hoping to find users that will like it based on little data.

The recommendation method is also known as the Top-N
recommendation and is a list of items that the user will
probably like based on comparing ratings with other users
or items with similar qualities to the active user or the items
the active user likes.

The collaborative process is diagramed in Figure 1, taken
from [4], where the process is shown in the three steps: build-
ing the user-item matrix from the data, running a filtering
algorithm, and finally the outputted information.

2.2 User-based algorithms
The most common collaborative filtering algorithms find
predictions for a user based on other users with similar taste.
Similar users are called neighbors and are determined by
comparing the items both of them have rated. The Pear-
son correlation algorithm is one of the methods to find how
similar two users are to each other by comparing the set of
items both users have rated:

userSim(u, n) =

∑
i∈Iu,n(rui − ru)(rni − rn)√∑

i∈Iu,n(rui − ru)2
√∑

i∈Iu,n(rni − rn)2

This algorithm will find how similar user u is to its neighbor,
user n based on all the items that both have rated, shown
as Iu,n. The rating user u has given item i is shown as rui.
The result will be within the range from -1, showing perfect
disagreement, and 1, being perfect agreement [5].

This similarity is used when determining a predicted rated,
Pu,i for an item i that user u hasn’t rated yet. This is
calculated by finding the sum of all ratings for i given by
u’s neighbors, each weighted by how similar u is to each
neighbor. This is divided by the sum of u’s similarity with
their neighbors so that the result will be within the same
scale as the ratings. This prediction is given by:

Pu,i =

∑
n∈Nu userSim(u, n) · rni∑

n∈Nu userSim(u, n)

where Nu is the set of u’s neighbors.

This algorithm works best when all users have the same rat-
ing distribution which can be seen by looking at the average
rating of of a user, ru. In a system that uses a 5 star rating
scale, one user might rate items conservatively and never
have a 5 star rating, using 4 stars as a sign of a great item.
Compared to another user who has many items rated as 5
stars, they both have a skewed scale in relation to each other.
Because most users use a unique rating scale, compensating
for this bias greatly improves prediction accuracy. To do
this, we subtract each neighbor’s average rating, rn, from

the rating they gave item i and add user u’s average rating,
ru to the total prediction:

Pu,i = ru +

∑
n∈Nu userSim(u, n) · (rni − rn)∑

n∈Nu userSim(u, n)

3. ITEM-BASED METHOD
Item-based collaborative filtering algorithms use properties
of the items instead of using user similarity as the means to
create recommendations and predictions. The properties of
items used by a recommender system change less often than
the number of users and their preferences. This consistency
helps improve how scalable the system is, which is important
as the number of users increases and each user provides more
ratings.

3.1 Challenges of user-based collaborative fil-
tering algorithms

There are two major challenges that the user-based method
faces: scalability and sparsity. When a user-based recom-
mender system needs to make a suggestion for a user, it
must first find the user’s neighborhood of users with similar
taste which requires making a fair number of comparisons
between how users have rated a set of items. With each user
having the ability to rate as many items as they want, this
number of comparisons grows quickly with each new user.

Also, some users also might not give any ratings or a very
small number of them and the system needs to be able to
work with these users as well. This sparsity is a problem for
new users who haven’t rated any items and expect results
from the system immediately, but get poor recommenda-
tions. Both these challenges are addressed by item-based
systems and are a major reason that large scale systems
might use them as an alternative or in addition to other
methods.

3.2 Item similarity computation
Item-based algorithms start by taking two items and finding
their similarities through a similarity algorithm. These algo-
rithms use the list of all items and find users who have rated
both items. With this list they can figure out how similar the
two items are. If a lot of users have given both items similar
ratings, it can be said that the items are alike, and the more
similar the ratings, the more similiar the items. This can
be done many different ways and three are explained here:
cosine-based, correlation-based, and adjusted cosine.

3.2.1 Cosine-based similarity
The two items i and j are represented as the vectors ~i and
~j in the m dimensional user-space to be able to calculate
their similarity. The similari]ty is measured by computing
the cosine of the angle between the two vectors. This is
formally shown as

itemSim(i, j) = cos(~i,~j) =
~i ·~j

||~i||2 ∗ ||~j||2

where “·” equals the dot product of two vectors.

u1

u2

ua

um

.

.

.

.

i1 i2 ij in. . . .

Input (ratings table)
Active user

Item for which prediction
is sought

Prediction

Recommendation

CF-Algorithm

Pa,j (prediction on
item j for the active

user)

{Ti1, Ti2, ..., T iN} Top-N
list of items for the

active user

Output interface

3. ITEM-BASED COLLABORATIVE FILT-

ERING ALGORITHM

3.1 Item Similarity Computation

3.1.1 Cosine-based Similarity

3.1.2 Correlation-based Similarity

3.1.3 Adjusted Cosine Similarity

288

Figure 1: Collaborative Filtering Process

3.2.2 Correlation-based similarity
This method computes the Pearson-r correlation, as seen
in Section 2.2, to measure the likeness between two items.
First, the users who have rated both i and j are found and
represented by U . Then the similarity is

itemSim(i, j) =

∑
u∈U (ru,i − ri)(ru,j − rj)√∑

u∈U (ru,i − ri)2
√∑

u∈U (ru,j − rj)2

where ru,i is the rating user u gave item i and ri is the
average rating of item i over all users in U .

3.2.3 Adjusted cosine similarity
Unlike user-based algorithms, item-based comparisons are
made using many users, each of which have a different rat-
ing style. Some users, for example, might reserve the high-
est rating for only a few items and give all other items a
lower-than-average rating. To compensate for this, the co-
sine similarity is adjusted by subtracting a user’s average
rating from their rating of the two items being compared.
This is another form of the Pearson-r correlation agorithm,
adjusted to compensate for a user’s average rating instead
of an item’s. This is shown as

itemSim(i, j) =

∑
u∈U (ru,i − ru)(ru,j − ru)√∑

u∈U (ru,i − ru)2
√∑

u∈U (ru,j − ru)2

.

3.3 Prediction computation
Once a set of items similar to each other is generated, the
next step in an item-based system is to consider a user’s
recorded ratings and create a predicted rating for each un-
rated item. This can be done a number of ways, two of which
are thes weighted sum algorithm and a regression model.

3.3.1 Weighted sum
The weighted sum method computes the predicted score of
an item for a user by analyzing the other items that the
user has rated that are similar to the item being considered.
Each other rating is weighted according to its similarity to
the new item and then is scaled by the sum of all similarities
so it is within the same rating scale as other items. This is
shown as

Pu,i =

∑
n∈Ni itemSim(i, n) · run∑

n∈Ni itemSim(i, n)

where Ni is the set of items similar to i.

3.3.2 Regression
This method can work better than a weighted sum because
the two item’s vectors might be distant computationally but
have a high similarity to users. To avoid this error, a linear
regression model is created and used in place of the similar
items’ ratings in the weighted sum formula. This algorithm
requires a model to be derived from the items available and
can work better than a weighted sum prediction.

3.4 Experimental evaluation
3.4.1 Dataset

The MovieLens dataset was used for evaluation of the item-
based algorithm by randomly selecting enough users to have
100,000 ratings from the dataset only considering users that
have rated 20 or more movies [2]. The dataset was then
separated into two sets, a training and a test set. The per-
centage of data to be used as the training set is represented
by the variable x so that when x = 0.8, 80% of the data
was used for training and 20% was used for testing. The
dataset was converted into a user-item matrix A that had
943 rows and 1682 columns. Each row relates to one user
and each column relates to one movie rated by at least one
user. The sparsity level of the data sets was also considered
and defined as 1 − nonzero entries

total entries
. The sparsity level of the

MovieLens dataset is then 1− 100,000
943×1682

, which is 0.9369.

3.4.2 Evaluation metrics
The accuracy of the item-based algorithms was computed
using the Mean Absolute Error (MAE) between the pre-
dicted rating and the actual user rating. MAE is the mea-
sure of the deviation of recommendations, and the lower
the number is, the more accurate the recommendations are.
Each movie has a pair of ratings, (pi, qi) associated with it
that represent the predicted rating and the acutal rating.
MAE is calculated by taking each of these pairs and com-
puting the absolute error between them, |pi − qi|. Each of
these absolute errors are summed and then averaged:

MAE =

∑N
i=1 |pi − qi|

N

3.4.3 Experiment procedure
For the experiments, the data was first divided into training
and test sets. Using the training set, each of the three simi-
larity algorithm’s parameters were tuned by testing different
values for each. These tests were done by splitting the train-
ing set into its own training and test sets, so as to not derive

Item-item vs. User-user at Selected
Neighborhood Sizes (at x=0.8)

0.725

0.73

0.735

0.74

0.745

0.75

0.755

10 20 60 90 125 200

No. of neighbors

M
A

E

user-user item-item
item-item-regression nonpers

Item-item vs. User-user at Selected
Density Levels (at No. of Nbr = 30)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.2 0.5 0.8 0.9
Train/test ratio, x

M
A

E

user-user item-item
item-item-regression nonpers

4.4.1 Impact of themodel size on run-time and through-
put

4.5 Discussion

5. CONCLUSION

6. ACKNOWLEDGMENTS

293

Figure 2: Comparison between different prediciton algorithms

any extra accuracy improvement from the data. The algo-
rithms were then tested and the MAE was recorded. Each
algorithm was tested ten times on randomly chosen training
and test sets and the MAEs were averaged. To compare the
performance of the item-based algorithms, a user-based al-
gorithm was tested as well. This algorithm was a Pearson
nearest neighbor algorithm, based on the best published one
available.

3.4.4 Experimental results
The first thing tested was the accuracy of each of the three
similarity algorithms mentioned earlier. Each algorithm was
implemented to predict the similar items and then the weighted
sum algorithm was used to generate predictions. The results
showed that the adjusted cosine algorithm was the best per-
former and so it was used for the rest of the experiments.
The next test was to determine what amount of the data set
should be used for training and a value of 80% was found
to be the optimal choice for both the weighted sum and re-
gression methods. The neighborhood size, or the number
of similar items used in the prediction computation showed
that the weighted sum algorithm performance peaks at size
30 and the regression model diminishes in accuracy as the
size is increased. The neighborhood size was set at 30 for
best performance from both algorithms.

Comparing both prediction methods with the user-based al-
gorithm was done by letting one of the parameters vary while
setting the other at its optimal value. When varying x be-
tween 0.2 and 0.9 by 0.1 intervals, neighborhood size was set
as 30, then x was set at 0.8 when varying neighborhood size
between 10 and 200 at intervals of 10. Using these settings,
the weighted sum algorithm out performed the user-based
algorithm at all values of x (neighborhood size = 30) and all
values of neighborhood size (x = 0.8), as shown in Figure
2, taken from [4]. The regression based algorithm showed
better performance with low values of both x and neighbor-
hood size than both other algorithms but lost its lead as
parameters were increased. These results show that item-
based algorithms can produce more accurate results than
the standard user-based methods.

4. TEMPORAL DYNAMICS
When considering the methods that people use to rate things,
it is not clear that anyone uses a set method for their entire
interaction with a collaborative filter. A user could have a

skewed rating system that tends to be above the median and
then switch to rating closer to the minimum. This doesn’t
necessary mean that the items the user is rating have gotten
worse, but could show a trend in that user’s ratings. When
looking at the NetFlix dataset in Figure 3 from [3], there
is a clear trend that a movie’s ratings tend to increase with
the age of the movie. The more time between when the a
user rates a movie and when it was released, the higher the
average rating. This trend can help improve the accuracy
of recommender systems if they could take temporal change
into consideration.

4.1 Netflix prize and dataset
The Netflix Prize is a noteworthy competition that brought
a lot of attention and research to the collaborative filtering
field, both from academic and private interests. Netflix is a
movie rental service that lends movies to customers via the
mail and also has streaming services that allow customers
to watch movies in places with an internet connection. Net-
flix’s recommender system, Cinematch, was very successful
at suggesting new movies to users and this accuracy was a
main reason for customers to keep their subscriptions. In
October 2006, Netflix announced the Netflix Prize to im-
prove Cinematch’s accuracy, they releasied a large data set
to the public. With a $1,000,000 prize for the team that
could reduce the root mean squared error (RSME) that Cin-
ematch was capable of by 10 percent. Teams were given over
100 million ratings from 480,000 users on 17,770 movies. [1]

4.2 Parts of a temporal model
To incorporate into predictions, the time, t, at which a rating
is made is recorded along with the user, u, and the item, i.
A rating rui(t) indicates the preference by user u of item i
at day t and a predicted rating r̂ui(t) is the predicted rating
user u will give item i at time t. Each (u, i, t) triplet where
rui(t) is known is stored in the set K = {(u, i, t)|rui(t)is
known} and is used to give predicted ratings. To find r̂ui,
each user u is associated with a vector pu ∈ Rf and each
item i is associated with a vector qi ∈ Rf space. A rating is
predicted by the rule:

r̂ui = qTi pu

This rating does not do a good job at detecting effects that
does not involve user-item interaction and so do not allow
room for time to be included as a factor. To solve this a
baseline rating is made by adding the average rating of every

Figure 3: Movie rating by movie age

item and the deviations both the item and the user have from
the average. We denote µ to be the overall average ratings
of all items by all users and bu and bi to be the deviation
for the user and item respectively. This creates the baseline
for an unknown rating, bui to be:

bui = µ+ bu + bi

[3] explains this formula with an example:

Suppose that we want a baseline estimate for
the rating of the movie Titanic by user Joe. Now,
say that the average rating over all movies, µ, is
3.7 stars. Furthermore, Titanic is better than an
average movie, so it tends to be rated 0.5 stars
above the average. On the other hand, Joe is a
critical user, who tends to rate 0.3 stars lower
than the average. Thus, the baseline estimate
for Titanic’s rating by Joe would be 3.9 stars by
calculating 3.7 - 0.3 + 0.5.

Adding the predicted rating, r̂ui into the baseline predic-
tion, we get an equation that has the main effects isolated,
allowing them to be modified later to take time as a factor.
The combined equation is:

r̂ui = µ+ bu + bi + qTi pu

Separating each of these factors allows each to be treated
with a different temporal effect. User bias (bu) changes over
time, item bias (bi) changes over time, and user preference
(pu) also changes over time. Meanwhile, the item character-
istics, represented by the vector (qi), would not be expected
to change over time.

4.3 Baseline with temporal dynamics
The two parts of a baseline prediction that are affected by
time are the item and user bias, bi and bu. An item’s av-
erage rating might fluctuate depending on outside factors

such as a sequel being made or an actor’s change in pop-
ularity. A user might also change rating bias by setting a
lower or higher standard for how they determine a movie’s
quality. Making both these parameters as functions of time,
the baseline prediction becomes:

bui(t) = µ+ bu(t) + bi(t)

The function bui(t) represents the baseline estimate of user
u’s rating of item i at day t. When finding bi(t), it is im-
portant to note that within the context of a movie recom-
mender, movies do not change popularity on a daily basis
and so a less specific view can be used. The dataset was di-
vided into sections called bins that represent a time period.
Each time period should be large enough for a movie’s rat-
ing to be noticeably changed. Each time period will relate
to a single bin and have a single bias amount bi(t). For the
Netflix dataset, it was found that there is a wide range of
bin sizes that resulted in the same accuracy and so 30 bins
were used. These 30 bins span the entire dataset and each
relates to ten weeks of data. A day t is associated with an
integer Bin(t) depending on which time period it is in. Then
the temporal baseline is added to the baseline to form:

bi(t) = bi + bi,Bin(t)

Applying this technique to users is not as simple due to
the frequency that users rate items being low. A variety
of functions can be created to model a user’s rating with
temporal dynamics, ranging from simple to complex. These
different predictors are:

• static: no temporal effects: bui(t) = µ+ bu + bi

• mov : accounting only to movie-related temporal ef-
fects: bui(t) = µ+ bu + bi + bi,Bin(t)

• linear : linear modeling of user biases: bui(t) = µ +
bu + αu · devu(t) + bi + bi,Bin(t)

• spline: spline modeling of user biases: bui(t) = µ +

bu +
∑ku
l=1

e
−γ|t−tul |butl∑ku

l=1
e
−γ|t−tu

l
| + bi + bi,Bin(t)

• linear+: linear modeling of user biases and single day
effect: bui(t) = µ+bu +αu ·devu(t)+bu,t +bi +bi,Bin(t)

• spline+: spline modeling of user biases and single day

effect: bui(t) = µ+ bu +
∑ku
l=1

e
−γ|t−tul |butl∑ku

l=1
e
−γ|t−tu

l
| + bu,t + bi +

bi,Bin(t)

When compared with the static predictor, each algorithm
shows improvement in accuracy with the linear+ and spline+
showing the greatest decrease in error.

5. CONCLUSION
As recommender systems become used more, improvements
have been made on the standard approach to the point where
the accuracy of a system depends on the traits of its unique
dataset. A user-based system can be improved by imple-
menting new features dependant on a particular dataset,
but most recommenders have a peak performance and then
don’t improve too much. This calls for new ways to create
collaborative filtering techniques that improve performance
on a systematic level and not an implementation one. The
two techniques discussed here, item-based algorithms and
temporal aware models, show fairly large improvements on
the standard user-based methods and are important to the
future of recommender systems. Both of these systems are
developed by recognizing traits about data and then creat-
ing a way to use the traits to improve accuracy. When look-
ing for ways to improve recommender systems it becomes
important to recognize attributes of a dataset such as the
static nature of items and trends in user and item ratings.
Using these observations, new techniques such as item-based
algorithms and temporal dynamics may be developed.

6. REFERENCES
[1] R. M. Bell and Y. Koren. Lessons from the netflix prize

challenge. SIGKDD Explor. Newsl., 9:75–79, December
2007.

[2] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst., 22:5–53, January 2004.

[3] Y. Koren. Collaborative filtering with temporal
dynamics. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’09, pages 447–456, New York, NY,
USA, 2009. ACM.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages
285–295, New York, NY, USA, 2001. ACM.

[5] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
The adaptive web. chapter Collaborative filtering
recommender systems, pages 291–324. Springer-Verlag,
Berlin, Heidelberg, 2007.

