
Are Distributed Peer-to-Peer Overlay Networks
Worth The Effort?

Jacob Thebault-Spieker
Computer Science Department
University of Minnesota, Morris

600 E. 4th St.
Morris, MN 56267

theba004@morris.umn.edu

ABSTRACT
Distributed peer-to-peer overlay networks are not dependent
on any one point of failure, can be “overlayed” on top of a
traditional network (allowing a subset of machines to form
their own network within the larger network), and do not
require their own specific infrastructure. There are a num-
ber of distinct types of distributed peer-to-peer overlay net-
works, including structured, unstructured, and hybrid over-
lay networks. We will discuss the similarities and differences
between these types of overlay networks, as well as discuss
the benefits and downsides to overlay networks as a whole.
Further, we will show how distributed peer-to-peer overlay
networks can be applied, given the benefits they provide.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
overlay networks, DHT, peer-to-peer

Keywords
Peer-to-peer, overlay networks, distributed systems, struc-
tured, unstructured, overlay

1. INTRODUCTION
Distributed peer-to-peer (dP2P) overlay networks can be

used for many different things, but ultimately they provide
a way of interacting with certain machines on the Inter-
net, while excluding others. Often times, these networks are
specifically intended to be exclusive, although this is not a
necessary factor. These networks are most commonly used
for file sharing, although can be used for anything a normal
networked computer would be used for.

The basic use for dP2P overlay networks is a simple, dis-
tributed key-value store (that is, a peer looks up a key, and
receives the value attached to the key). In this usage case,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
Computer Science Department Senior Seminar Conference ’10 Morris,
Minnesota USA.

the value may be a simple message to pass to a destination
node, or it may return the IP address and file system path
for a requested file. In a simple message passing context, the
message can be considered equivalent to a standard packet
in traditional networking. Therefore, the dP2P overlay net-
work may be used for anything that a traditional network
would be used for. Commonly, dP2P systems are used for
filesharing networks (as we have indicated elsewhere), but
may be used for wide-area distributed file stores like PAST
[1], or OceanStore [3].

However, because of the generic nature of key-value lookup,
file storage and sharing is not the only use for dP2P net-
works. Millar et al.[6] demonstrate a peer-to-peer overlay
network to allow quick deployment of a mobile ad-hoc emer-
gency response network. In particular, the algorithm, re-
ferred to as Common Group Aliasing (or CGA) is used in
conjunction with Bamboo, a structured dP2P overlay net-
work based on Pastry (see Section 6.1 for discussion of Pas-
try). Millar et al. developed this system in an attempt
to deal with extreme emergency cases (the authors specifi-
cally reference the EU-FP7 PEACE project as a source for
these types of emergency situations). Traditionally, when
emergency responders needed use of a network, they would
be required to provide their own infrastructure at the site.
Overlay networks, in particular dP2P overlay networks are
uniquely suited to this type of need, given that they inher-
ently are not dependent on any infrastructure outside of the
requirements of the individual peers, and allow more time
to be spent on responding to the emergency.

Proper discussion of distributed peer-to-peer overlay net-
works requires specific distinctions to be made between dis-
tributed and traditional networks, peer-to-peer and tradi-
tional client-server systems, and overlay networks and phys-
ical, individual networks. In order to do this, we will first
discuss the differences between a physical network and an
overlay network in Section 2. From there, in Section 3 we
will define what a distributed peer-to-peer overlay network
is and how it differs from other types of overlay networks.

We will then discuss the three primary types of distributed
peer-to-peer overlay networks (unstructured, hybrid, and
structured) and provide examples of these types of networks.
This will provide enough context to be able to discuss spe-
cific types of dP2P overlay networks, and some of the bene-
fits and downsides of dP2P overlay networks when compared
to more traditional networking architectures. This will be
done in Sections 4, 5, and 6 respectively. We will then fin-
ish up in Section 7 with an analysis of research being done
on distributed peer-to-peer overlay networks, and potential
future research areas.



2. BACKGROUND
In order to understand overlay networks, we must first

make the distinction between the network and the overlay.
The physical network consists of the network as it exists in
a physical sense, including things such as: large backbones
of fiber optics, routers, servers, and home user connections.
The physical network, on a global scale, makes up the In-
ternet, and allows computers from anywhere in the world to
interact with one another. Prior to the Internet, comput-
ers could be networked together, but those networks were
self-contained, and it was impossible for those computers to
interact with machines in a separate network (at a different
university, for instance). Overlay networks are used as solu-
tions for anything from emergency response systems to ap-
plications for smartphones. Ultimately, an overlay network
can be used for almost any network requirement, unless the
solution needs a physical disconnect between it’s network
and that of the rest of the world.

2.1 Definition of an Overlay Network
An overlay network can be thought of as the result of ap-

plying a filter to the entire Internet. That is, an overlay
network is a group of machines connected to the Internet
which all meet the criteria of the filter, and form a net-
work with the other Internet-connected machines that also
meet the criteria of the filter. This network would be an
overlay network, because it is “laid over” the Internet, cre-
ating a network which is a subset of the global Internet.
An overlay network takes advantage of the fact that the
infrastructure needed for the participating machines to in-
teract is already in place. For instance, the group of people
who frequent a website at regular intervals (or, more ac-
curately the machines they use to access the website) and
the web server(s) running that website form an overlay net-
work. Unfortunately, this definition includes every client-
server system (web server and browser, email server and
client, etc.). Additionally, defining an overlay network this
way means that a subset of Internet-connected machines in-
teracting with subset of machines smaller than the size of
the Internet is technically interacting via an overlay net-
work. Users may be participating (by doing something as
simple as surfing many websites at the same time) in mul-
tiple overlay networks at once. In this paper, we will focus
on a specific type of overlay network: peer-to-peer (P2P),
distributed overlay networks.

2.2 What are Distributed Peer-to-Peer Over-
lay Networks?

In distinguishing distributed, peer-to-peer overlay networks
from the very broad pool of overlay networks, there are two
crucial factors. First, in order for a system to be distributed,
it cannot have a single point of failure. In a traditional
client-server model (web server and browser, for instance),
if the server fails, the client is unable to access the informa-
tion provided by the server.

Second, within a peer-to-peer system, there is no central
node or set of nodes within the network, and each node is
given the designation“peer”. There are no servers, and there
are no clients in a peer-to-peer system, only peers interact-
ing with other peers. A distributed, peer-to-peer overlay
network will be referred to hereafter as a dP2P overlay net-
work.

A well known example of a dP2P overlay network is the
file-sharing service BitTorrent. [11] For a user to be able
to gain access to the BitTorrent network, the user must in-
stall BitTorrent specific software on their computer. This

software allows the user to join the BitTorrent network, and
provids them the means to understand and use the BitTor-
rent protocol. In order to share files using BitTorrent, one
peer must create a torrent file, which provides the informa-
tion about which files are being shared, as well as informa-
tion about the “tracker” (a server which coordinates distri-
bution of data between peers). BitTorrent operates across
the Internet, and the individual peers within BitTorrent only
interact with other BitTorrent peers (within the BitTorrent
network). The peers within the BitTorrent network are not
limited to participating only within the BitTorrent network,
but may also browse the web, check their email, etc. How-
ever, within the context of BitTorrent, the machine being
used to share files is a single peer within the BitTorrent net-
work, connecting to other peers and sharing data with these
peers and only these peers. A person visiting the GMail web-
site will not improperly receive the BitTorrent data unless
they are also a part of the BitTorrent network.

When a user (or peer) requests data from the BitTorrent
network, the software keeps track of the other peers within
the BitTorrent network, and downloads the data it requires
from the peers that have the data being requested. BitTor-
rent downloads sections of the total requested data (referred
to as data chunks), potentially from entirely different peers,
re-assembles this data, and provides the user with the full
requested file upon completion. The primary benefit that
BitTorrent provides over a standard client-server model of
sharing files is that many data chunks can be downloaded
at once, potentially providing better download speeds if the
data chunks are properly distributed among peers.

Software is the common method of joining and interacting
with the dP2P overlay network, as it manages the techni-
cal requirements of participating within a dP2P network,
and allows the user to focus on the purpose of the network.
Within BitTorrent, this means that the user doesn’t need
to know which peers have the data required, how to request
that data from the necessary peers, or how to re-assemble
the data chunks properly.

2.3 Why Distributed Peer-to-Peer Overlay Net-
works?

Distributed, peer-to-peer overlay networks have one pri-
mary benefit over centralized, client-server model overlay
networks: they are not dependent on a specific piece of
server infrastructure being in place. If the server providing
the requested data is unavailable, the user becomes unable
to obtain that data until a server hosting the data becomes
available. In a distributed, peer-to-peer overlay network,
peers may join and leave as they wish, and the network will
scale with them. There is no requirement for more infras-
tructure if a sudden influx of peers wish to join, and there
is no wasted infrastructure if the number of peers suddenly
drops.

There is, however, a reason that the majority of the In-
ternet fits the traditional client-server model of networking:
simplicity. Running a server, and allowing users to choose
to interact with it or not; is a much simpler concept than
coordinating all of the peers on a network, gracefully man-
aging large changes in the numbers of peers on the network,
and structuring the network in such a way that commu-
nication between peers is efficient. In the context of file
sharing, a traditional client-server model would need to act
as a central location responding to data requests, a com-
mon communication point, and a single point of interaction
in order to request data. This model is much simpler than
having no central data location (which then leads to issues of



data consistency/concurrency), choosing which of the peers
to download the data from (when every peer on the network
is a potential source), and knowing enough about the struc-
ture of the network to request this data efficiently (finding
the shortest path from peer A to peer B).

These three differences motivate some of the primary re-
search topics within dP2P overlay networks, and will be
referred to as the “networking problems” for overlay net-
works. While these are areas of ongoing reserach, these
three attributes of dP2P overlay networks also provide ar-
eas of contention within the research community, and pro-
vide opportunities for differentiation between types of dP2P
overlay networks. The most common differences between
dP2P overlay networks focus on issues of data consistency
or network architecture. Data consistency, concurrency, and
maintaining the proper state among peers is a problem that
is inherent in distributed systems as a whole, whereas net-
work structure and architecture is more specific to P2P over-
lay networks in general. As such, the research community
seems to have started differentiating between types of dP2P
overlay networks based primarily on the mechanism for how
peers choose which other peers to interact with, and how
those interactions are optimized for efficiency.

There are also a number of research questions in dP2P
overlay networks that address security issues like authen-
tication, encryption, and security among the peers on the
network. Given the decentralized nature of dP2P overlay
networks, tasks such as authenticating the identity of a user
and using secure encryption techniques between peers be-
come more difficult. The standard client-server model of
authentication assumes a centralized understanding of users
(and their respective access rights/settings within the net-
work), but in removing this centralized aspect of the net-
work, the problem of requesting, verifying, and managing
the identity of a user becomes much more difficult. One way
of dealing with this issue is discussed in [17], wherein there
is a distributed set of authentication servers, and one dele-
gate. When a client needs to authenticate, the client inter-
acts with the delegate, which then interacts within the quo-
rum of servers that are necessary to authenticate the client.

Similarly, the task of encrypting a connection between
peers becomes much more difficult when there is no cen-
tral authority. This task entails authenticating all partici-
pating peers to one another, defining a common encryption
scheme, and performing the encryption in a way that is se-
cure. Within more traditional networking architectures, a
central authority that understands which peers can partici-
pate responds to requests for authentication (this is done in
a pair-wise way, both the client and the server authenticate
to one another, in order to verify the “identity” of both the
client and the server) and defines the encryption scheme. In
contrast, all peers in a dP2P network need to agree upon a
specific encryption technique to use. These will be referred
to as the“security problems”within overlay networks. Much
of the current research the area of dP2P overlay networks is
done on this set of security problems.

3. TYPES OF OVERLAY NETWOKS
There are three primary types of dP2P overlay networks:

structured dP2P overlay networks, unstructured dP2P over-
lay networks, and hybrid dP2P overlay networks. Structured
dP2P overlay networks are characterized by the fact that the
network as a whole has a mechanism by which the network
is structured. These will have a very specific architecture,
which is defined by the system. Conversely, unstructured
dP2P overlay networks do not have such a mechanism, and

instead take a more bottom-up approach, modifying the ar-
chitecture of the network as required by the scale of the net-
work. These types of overlay networks have no pre-defined
structure. In the area between these two extremes, there is
a third type of network, the hybrid dP2P overlay network.
The hybrid approach combines both approaches, and may
have some over-arching structure, but also has the capacity
to shift the structure should the situation require it. Hybrid
dP2P overlay networks are also referred to as centralized,
peer-to-peer networks, as the most common usage hybrid
networks have a central server that aids in structuring the
network [4].

All dP2P overlay networks are a group of nodes, and these
nodes can take on the role of distributor, router, or destina-
tion node. The distributor node is a node or machine that
is hosting some object, a router is a node that passes along
network traffic as it reaches the node, and the destination
node is the ultimate endpoint for the network traffic. Nodes
may take on one or more of these roles. That is, a node
can be both a router and a distributor if they data they are
hosting is not the data requested, but if the node is still
participating in routing data to other nodes in the network.

Additionally, all dP2P overlay networks must define spe-
cific behavior for how a node may join the network, how
the network will behave when a node unexpectedly leaves a
network, and what needs to occur if traffic does not success-
fully reach the destination node. In the following sections,
we will discuss the specifics of how each type of dP2P net-
work handles these three behaviors.

4. UNSTRUCTURED DISTRIBUTED PEER-
TO-PEER OVERLAY NETWORKS

The first type of dP2P overlay networks we will discuss
are the unstructured dP2P overlay networks. These do not
have an overarching scheme for how peers fine one another,
nor for how data is routed between peers. Instead, when a
peer wishes to interact with another peer, they must first
find a peer to interact with. One well known example of an
unstructured dP2P overlay network was the original Kazaa
filesharing network. If a peer within the Kazaa network
wanted a file, the peer first had to find a second peer that
was hosting the file. The peer could then contact the second
peer, and begin the download of the requested data. When
scaled, popular files became very accessible because they
were being distributed so widely throughout the network.
However, items that were less popular either were unable
to be found, or became very difficult to come across. For
this reason, as unstructured dP2P overlay networks begin to
get large, their usefulness decreases. In some cases, a peer
searching for something would be unsuccessful, because the
set of peers hosting popular items significantly overshadowed
the set of peers hosting less popular items.

This type of dP2P overlay network, because of it’s un-
structured nature, cannot guarantee that traffic will reach
it’s destination. Nor can unstructured dP2P networks guar-
antee that the path the traffic takes will be optimal. Fur-
ther, unstructured dP2P overlay networks can incur high
bandwidth requirements, because of their need to broadcast
data [8].

Further, due to the lack of structure, there is no need to
define special join or leave behavior, as nodes can join and
leave as they wish without affecting the behavior of the rest
of the network. While this allows levels of flexibility between
on the network, the downsides of unstructured dP2P overlay
networks make other options more desirable.



5. HYBRID DISTRIBUTED PEER-TO-PEER
OVERLAY NETWORKS

As an attempt to deal with this issue, the concept of a hy-
brid dP2P overlay network came into fruition. Given that
unstructured dP2P overlay networks may cause searches to
fail in some cases, a simple solution is to provide a cen-
tralized mechanism to help a peer searching for something.
Within the Kazaa example, a centralized lookup index was
implemented to allow peers to first ask a server which other
peers may be hosting the requested data. The server would
then respond with a list of peers known to have hosted this
data at one point. Upon receiving this list, a peer would
then request the data from peers on the list, allowing the
peer to successfully retrieve the data requested, assuming
the state of the hosting peers had not changed since the
central index was updated.

This method of adding a degree of centralization to an un-
structured dP2P overlay network does come with potential
downsides, given that, as previously discussed, centraliza-
tion means a central point of failure. The benefit, however,
is that the centralization in this method does not make com-
munication between peers impossible if the central server
were to be unavailable. The central server provides a way to
augment the capabilities of an unstructured dP2P overlay
network, without requiring that the network be dependent
on the server.

Due to the lack of overall structure, there is no need to
define special join or leave behavior, as nodes can join and
leave as they wish without affecting the rest of the network.

There are slightly more complex hybrid architectures, that
attempt to deal with the point of failure problem, while also
spreading the load across multiple centralized servers. [15]
The two server architectures that are most similar to the two
extremes (unstructured dP2P overlay networks in Section
4, and structured dP2P overlay networks as described in
Section 6) are referred to as the“full replication architecture”
and the “hash architecture”.

5.1 Full Replication Architecture
The full replication architecture replicates the data that

would, in the simple single-server case, be stored on the
server to all of the servers being used for the hybrid network.
This architecture allows two primary benefits. First, when
a request is made, the server that the client interacts with
will be able to respond to all of the requests the client is
making. This allows the client to only interact with one
server, and helps cut down on network overhead. Second,
because each server maintains a complete copy of the lookup
index, if any one server goes down, others may be available
to service requests. [15]

However, this structure does mean that the “concept of
the world” that a single server would be able to maintain
needs to be replicated across all servers within the hybrid
network. One area where this may be an issue is track-
ing client connections. Consider two servers, Server A and
Server B, both are a part of the full replication architecture
in a hybrid network. Both Server A and Server B host the
same data, allowing users to interact with one or the other,
but not necessarily both. If Server A has a sudden influx of
users attempting to connect, the user connection statistics
must be replicated to Server B. This can lead to significant
amounts of network overhead between Server A and Server
B, and can Server B to need to process significant amounts
of incoming data in order to maintain a common state with
Server A. [15]

5.2 Hash Architechture
The hash architecture is similar to the full replication ar-

chitecture (see Section 5.1) but instead of each server main-
taining a fully copy of the lookup index, there are instead
indicators within the lookup index that map to the server
hosting the required information. A client may make a re-
quest, which gets routed to Server A. Upon receiving the
request, Server A will check it’s lookup index, and may find
that the requested data is hosted on a different server (Server
B). Server A will then request the information from Server
B, collect all the required information, and return all of this
to the client. [15]

This architecture also handles the problem of maintaining
state across servers (mentioned previously in Section 5.1)
in a tiered way. That is, as with looking up data, only a
subset of the servers need to be interacted with in order
to notify amounts of users requesting data. As with the
full replication architecture, this can cause a fair amount of
bandwidth usage between servers, but less so than the full
replication architecture. There are also ways of making this
exchange more efficient. [15]

6. STRUCTURED DISTRIBUTED PEER-TO-
PEER OVERLAY NETWORKS

In order for the nodes to minimize overhead and prop-
erly route traffic, structured dP2P overlay networks define a
structure or algorithm for how traffic is routed throughout
the network. Within a traditional network, the routing is
done by specialized hardware, and the client is told where
to direct the outgoing traffic by a specific network service
known as DHCP, which is run by the ISP (Internet Service
Provider) providing the client with a connection to the net-
work.

Within this section we will discuss 3 primary structured
dP2P overlay networks, each using a slightly different algo-
rithm for maintaining structure within the network, adding
and removing nodes, and dealing with failed attempts to
route traffic to the destination node. All 3 of these use a
variation of a distributed key-value hash lookup, known as
a Distributed Hash Table (DHT) [12]. A simple example
of a key-value lookup is a dictionary, where the word be-
ing looked up is the key, and the value is the definition.
Structured dP2P overlay networks use a distributed key-
value lookup to obtain information on other nodes, and the
key is often a hashed “name” for the node. DHTs are used
to help define the structure of the overlay network, and the
individual DHT structures each require specific join/leave
behaviors.

6.1 Pastry
Pastry [8] is a structured dP2P overlay network developed

by Microsoft Research in Cambridge, UK, that was intended
as a backend for PAST (a distributed peer-to-peer file-store)
[1]. Pastry randomly assigns each node within the network
a 128-bit nodeId, the key in the DHT, while the value is
the return response (e.g. URL to a file being hosted, spe-
cific data requested or an XML response) when a request is
received by a given node node.

Each node in the Pastry network has what is referred to as
a state table. This state table is comprised of three sections,
the leaf set, the neighborhood set, and the routing table.
The leaf set and the neighborhood set may contain similar
elements. The leaf set is a binary search tree containing the
L nodes with most similar prefixes and is used for routing.
In contrast the neighborhood set is unordered, is not used



for routing, and instead maintains a list of M nodes that are
nearest to itself (based on physical network proximity).

The leaf set will tend to have unique nodeIds, but the
scheme for referring to neighbor nodes is defined by the sys-
tem being built on top of Pastry. Within PAST, this is the
SHA-1 [13] hashing algorithm. This allows the original node
to have a diverse set of neighbor node options when deciding
how to route the data received. When a node needs to send
data across the network, it requires two pieces of informa-
tion to do so: first, it needs a numeric key (the nodeId of the
destination node) to be able to make a decision about how
to route the information. Second, the node needs to know
what information to pass along, referred to as the message.
When a node in the Pastry network receives data, it will
pass the key and the message along to the neighbor with
the numerically closest nodeId to the key.

When a new node A attempts to join the Pastry network,
it is assumed that the new node will already have knowledge
of a nearby node B (one that is already a part of the Pas-
try network). Node A will then request that node B begin
routing a special “join” message, as well as the key for the
node A. Node B will then route the message to the node C
within its leaf set that has has the nodeId most similar to
node A. Node C will continue this process until the “join”
message reaches the node (Z) in the network that has the
most similar nodeId to node A. The destination node Z and
all nodes along the path to Z will then send their routing
tables to node A, which is attempting to join the network.
This gives node A a base routing table to work with, which
can then be modified as needed. Node A copies node B’s
neighbor list (and then derives the leaf set from there), as
node B is assumed to be physically near to node A.

Given the peer-to-peer nature of the system, it is common
for nodes to leave the network without warning. When this
occurs, it will not be noticed until node N makes an attempt
to route a message through node Z, which has already left.
When node N attempts to route information through node
Z, and node Z does not respond, then node N will contact the
next node (node M) in the row containing Z in N’s routing
table and request the nodeId for the node that corresponds
to node Z (in node N’s routing table). If node M is also
unavailable, node N will traverse the rest of the row, and
attempt the same process. In the event that none of the
nodes in the row are available, node N will move on to the
next row until the process can be completed. While it’s
possible for this process to fail to find an active node, this
is statistically unlikely.

The neighbor list also needs to be updated when a node
leaves the network. This is done by polling all nodes listed
in a given node’s (node A) neighbor list at a pre-determined
time interval. If a node does not respond, it will be removed
from node A’s neighbor list, and node A will request the
neighbor lists from all other nodes in it’s neighbor list, cal-
culate the approximate distance of the new potential neigh-
bors and add the nearest neighbors until its neighborhood
set is full.

6.2 Tapestry
In a similar way to Pastry, Tapestry [16] is also intended to

be a lower-level system that other systems are built on top
of. Tapestry draws it’s design from a method introduced
by Plaxton et al., [7] (referred to as the Plaxton method
here). Within Tapestry, each node is assigned a 160-bit
nodeId, and similarly to Pastry, maintains a list of the near-
est nodes to it (also referred to as neighbor nodes). How-
ever, in contrast to Pastry, Tapestry does not maintain a

S

A B

C

D

E

F
R

Old Location Path

New Location Path

Exiting Node

Figure 5: Updating location pointers for exiting nodes: Node is about to leave the Tapestry network, and

informs object server . republishes the affected object with new epoch, and in doing so uses last location

hop address to delete old location pointers.

rely on soft-state to remove it over time. While we expect the wide-area network to be dynamic, we expect

only a small portion of the network to be entering/exiting the overlay simultaneously. For this reason,

Tapestry is currently unsuitable for networks that are constantly changing, such as sensor networks.

4.2 Soft-state vs. Explicit Republishing

While the soft-state approach of republishing at regular intervals is an excellent simplifying solution to

keeping location pointers up-to-date, it implicitly highlights the tradeoff between bandwidth overhead of

republish operations and level of consistency of location pointers. A similar tradeoff exists for the use of soft-

state to maintain up-to-date node information. This section discusses these tradeoffs and our mechanisms

for supporting mobile objects using explicit republishing and delete operations.

For example, consider a large network of one million nodes, storing one trillion objects of roughly 4KB in

size (one million objects per node). Assuming 160 bit namespaces for objects, 120 bits for nodes, both orga-

nized as hexadecimal digits, an object republish operation results in one message (a ObjectID, NodeID

tuple) for each logical hop en route to the root node, for a total of 40 messages of 35 Bytes (160bits+120bits)

each. This works out per machine to be

. If we set the republish interval to one day, this amount of bandwidth, when amortized, is equal

to 129kb/s. On modern high-speed ethernet networks, we can expect a resulting location timeout period of

at least two days.

Clearly, the bandwidth overhead significantly limits the usefulness of our soft-state approach to state main-

tenance. As a result, we modify our approach to one including proactive explicit updates in addition to soft-

state republishing. We take this approach to state maintenance of both nodes and objects. To support our al-

gorithms, we modify object location mappings to a 3-tuple of: ObjectID, ServerID, LastHopID . For each

hop on a location path to some root node, each server keeps the preceding nodeID as the LastHopID. Ad-

ditionally, we introduce notion of epoch numbers as a primitive versioning mechanism for location pointer

updates. In the rest of this section, we describe how algorithms leveraging these mechanisms can explicitly

manage node and object state.

4.2.1 Explicitly Handling Node State

In a dynamic network, we expect nodes to disappear from the Tapestry due to both failures and intentional

disconnections. In either case, the routing infrastructure can quickly detect and promote secondary routes,

while location pointers cannot automatically recover.

12

Figure 1: When node B attempts to leave the net-
work, it notifies destination node S, which steps back
through the network to the last known location for
a given piece of information, node R, and updates
the neighbor lists accordingly. Taken from [16].

leaf set or neighborhood set, but instead maintains a list of
backpointers (the set of nodes for which the current node
is listed as a neighbor). Tapestry also assumes that the
set of nodes within the network are evenly distributed, and
recommends using the SHA-1 [13] hashing algorithm when
assigning nodeIds to ensure this.

Similarly to Pastry, Tapestry also routes data through it’s
peers, however, where Pastry does routing based on numeric
proximity to the target key, Tapestry routes based on which
of the neighbor nodes has a prefix that most closely matches
that of the nodeId of the destination node.

Tapestry and Pastry use similar techniques for adding or
removing nodes from the network. When a node attempts
to join the Tapestry network, it also finds a node on the
Tapestry network, which the authors refer to as the gateway
node. Unlike in Pastry, however, proximity has no bearing
on which node is chosen to be the gateway node in Tapestry.

When a new node N attempts to join the network, it will
already have a nodeId. It will then attempt to route a mes-
sage to it’s nodeId through the gateway node, which allows
node N to gain some insight into where it ought to be logi-
cally located on the network. Node N will then request the
neighbor map from the last node (node L) along the route to
N’s nodeId. This allows node N to have an initial neighbor
map. Node N then compares the distance between itself it’s
neighbors. Node N chooses the neighbor that is closest, and
modifies it’s neighbor map to reflect these changes. This
process continues until there are no better neighbor nodes
available than the ones node N is already aware of.

After this process, the backpointers from node L are tra-
versed, and those nodes are notified that node N has been
inserted. These nodes then update their own neighbor maps,
fully integrating node N into the network.

Removing a node from the Tapestry network is much less
involved. Nodes periodically send messages to all of their
neighbor nodes, and expect a response back (in order to
ensure that all of a given node’s neighbors are still available).
When a node leaves, it will either be noticed through this
process, or it can notify all of it’s neighbor nodes using it’s
backpointers (as demonstrated in Figure 1).

6.3 Chord
While Pastry and Tapestry both structure themselves us-

ing a series of interconnected nodes (a series of connected
sub-graphs), Chord[9] instead structures its network as a
ring. Where Pastry and Tapestry nodes were given an nodeId,
Chord gives it’s nodes an identifier, which is derived by hash-
ing the IP address of the machine. The nodes are then ar-



Server

Chord Chord Chord

File System

Block Store Block Store Block Store

Client Server

Figure 1: Structure of an example Chord-based distributed

storage system.

machine is only occasionally available, they can offer to store

others’ data while they are up, in return for having their data

stored elsewhere when they are down. The data’s name can

serve as a key to identify the (live) Chord node responsible

for storing the data item at any given time. Many of the

same issues arise as in the Cooperative Mirroring applica-

tion, though the focus here is on availability rather than load

balance.

Distributed Indexes to support Gnutella- or Napster-like keyword

search. A key in this application could be derived from the

desired keywords, while values could be lists of machines

offering documents with those keywords.

Large-Scale Combinatorial Search, such as code breaking. In

this case keys are candidate solutions to the problem (such as

cryptographic keys); Chord maps these keys to the machines

responsible for testing them as solutions.

Figure 1 shows a possible three-layered software structure for a

cooperative mirror system. The highest layer would provide a file-

like interface to users, including user-friendly naming and authenti-

cation. This “file system” layer might implement named directories

and files, mapping operations on them to lower-level block opera-

tions. The next layer, a “block storage” layer, would implement

the block operations. It would take care of storage, caching, and

replication of blocks. The block storage layer would use Chord to

identify the node responsible for storing a block, and then talk to

the block storage server on that node to read or write the block.

4. The Base Chord Protocol
The Chord protocol specifies how to find the locations of keys,

how new nodes join the system, and how to recover from the failure

(or planned departure) of existing nodes. This section describes a

simplified version of the protocol that does not handle concurrent

joins or failures. Section 5 describes enhancements to the base pro-

tocol to handle concurrent joins and failures.

4.1 Overview
At its heart, Chord provides fast distributed computation of a

hash function mapping keys to nodes responsible for them. It uses

consistent hashing [11, 13], which has several good properties.

With high probability the hash function balances load (all nodes

receive roughly the same number of keys). Also with high prob-

ability, when an node joins (or leaves) the network, only an

fraction of the keys are moved to a different location—

this is clearly the minimum necessary to maintain a balanced load.

0

6

1

2

3

4

5

6

7

1

2

successor(2) = 3

successor(6) = 0

successor(1) = 1

Figure 2: An identifier circle consisting of the three nodes 0, 1,

and 3. In this example, key 1 is located at node 1, key 2 at node

3, and key 6 at node 0.

Chord improves the scalability of consistent hashing by avoid-

ing the requirement that every node know about every other node.

A Chord node needs only a small amount of “routing” informa-

tion about other nodes. Because this information is distributed, a

node resolves the hash function by communicating with a few other

nodes. In an -node network, each node maintains information

only about other nodes, and a lookup requires

messages.

Chord must update the routing information when a node joins or

leaves the network; a join or leave requires messages.

4.2 Consistent Hashing
The consistent hash function assigns each node and key an -bit

identifier using a base hash function such as SHA-1 [9]. A node’s

identifier is chosen by hashing the node’s IP address, while a key

identifier is produced by hashing the key. We will use the term

“key” to refer to both the original key and its image under the hash

function, as the meaning will be clear from context. Similarly, the

term “node” will refer to both the node and its identifier under the

hash function. The identifier length must be large enough to

make the probability of two nodes or keys hashing to the same iden-

tifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers

are ordered in an identifier circle modulo . Key is assigned to

the first node whose identifier is equal to or follows (the identifier

of) in the identifier space. This node is called the successor node

of key , denoted by successor . If identifiers are represented as

a circle of numbers from to , then is the

first node clockwise from .

Figure 2 shows an identifier circle with . The circle has

three nodes: 0, 1, and 3. The successor of identifier 1 is node 1, so

key 1 would be located at node 1. Similarly, key 2 would be located

at node 3, and key 6 at node 0.

Consistent hashing is designed to let nodes enter and leave the

network with minimal disruption. To maintain the consistent hash-

ing mapping when a node joins the network, certain keys previ-

ously assigned to ’s successor now become assigned to . When

node leaves the network, all of its assigned keys are reassigned

to ’s successor. No other changes in assignment of keys to nodes

need occur. In the example above, if a node were to join with iden-

tifier 7, it would capture the key with identifier 6 from the node

with identifier 0.

The following results are proven in the papers that introduced

consistent hashing [11, 13]:

THEOREM 1. For any set of nodes and keys, with high

probability:

1. Each node is responsible for at most keys

151

Figure 2: An identifier circle being shown for three
individual nodes, where the successor(X) function
returns the successor for node X. Taken from [9].

ranged numerically in what the authors refer to as an iden-
tifier circle, by using the node identifier modulo 2n where n
is the number of nodes in the network at that point in time.
Then, a key is assigned to the node where the identifier ei-
ther equals or is the next subsequent identifier of the key.
This can be seen in in Figure 2.

This structure for node organization means that nodes
can join or leave the network with minimal disruption, as a
node only has an understanding of itself, and it’s successor.
If node A attempts to join the network, keys previously as-
signed to the node that will become node A’s successor get
assigned to node A. Likewise, if node A leaves the network,
keys that were assigned to node A get assigned to node A’s
successor.

7. CURRENT RESEARCH
Unfortunately, the “security problems” mentioned in Sec-

tion 2.3 mean that while dP2P networks currently have the
capacity to operate in the same was a a traditional network
would, traditional networks have the advantage of a central-
ized security mechanism. There is a significant amount of
research being done into authentication schemes [2, 17], how
peers know whether or not they can trust the information
they are receiving [10, 14, 5], and other security and trust
issues within a distributed system.

8. CONCLUSION
In this paper, we have discussed three major types of dis-

tributed peer-to-peer overlay networks in detail. We have
described major differences between the three types of dP2P
overlay networks, and we have described specific systems
within each category. Much of the research being done in
dP2P overlay networks is happening in structured dP2P sys-
tems (see Section 6), and we believe these systems are more
practical than either unstructured dP2P systems (see Sec-
tion 4) or hybrid P2P systems (see Section 5). The unstruc-
tured category of dP2P does not guarantee that data will
be accessible, and the hybrid dP2P systems have individual
points of failure, which seems to go against the overall goal
of a P2P system.

9. REFERENCES
[1] P. Druschel and A. Rowstron. PAST: a large-scale,

persistent peer-to-peer storage utility. In Proc. HotOS
VIII, pages 75–80, 2001.

[2] W. K. Josephson, E. G. Sirer, and F. B. Schneider.
Peer-to-peer authentication with a distributed single
sign-on service. Peer-to-Peer Systems III, pages
250–258, 2005.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, C. Wells, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM
SIGARCH Computer Architecture News,
28(5):190–201, 2000.

[4] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In ICS ’02: Proceedings of the 16th
international conference on Supercomputing, pages
84–95, New York, NY, USA, 2002. ACM.

[5] S. Marti and H. Garcia-Molina. Taxonomy of trust:
Categorizing P2P reputation systems. Computer
Networks, 50(4):472–484, 2006.

[6] G. P. Millar, T. A. Ramrekha, and C. Politis. A
peer-to-peer overlay approach for emergency mobile
ad hoc network based multimedia communications. In
Proceedings of the 5th International ICST Mobile
Multimedia Communications Conference, pages 1–5,
2009.

[7] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. Theory of Computing
Systems, 32(3):241–280, 1999.

[8] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware 2001:
IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Germany, November
12-16, 2001. Proceedings, page 329, 2001.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the 2001 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 149–160, 2001.

[10] K. Watanabe, Y. Nakajima, T. Enokido, and
M. Takizawa. Ranking factors in peer-to-peer overlay
networks. ACM Trans. Auton. Adapt. Syst., 2,
September 2007.

[11] Wikipedia. BitTorrent (protocol) - Wikipedia, The
Free Encyclopedia. 2010. [Online; accessed
28-October-2010].

[12] Wikipedia. Distributed hash table — wikipedia, the
free encyclopedia, 2010. [Online; accessed
28-October-2010].

[13] Wikipedia. SHA-1 - Wikipedia, The Free Encyclopedia.
2010. [Online; accessed 28-October-2010].

[14] L. Xiong and L. Liu. A reputation-based trust model
for peer-to-peer e-commerce communities. In
E-Commerce, 2003. CEC 2003. IEEE International
Conference on, pages 275–284. IEEE, 2003.

[15] B. Yang, H. Garcia-Molina, et al. Comparing hybrid
peer-to-peer systems. In Proceedings of the
International Conference on Very Large Data Bases,
pages 561–570, 2001.

[16] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Computer, 74:11–20,
2001.

[17] L. Zhou, F. B. Schneider, and R. Van Renesse. Coca:
A secure distributed online certification authority.
ACM Trans. Comput. Syst., 20:329–368, November
2002.


