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ABSTRACT
This paper will go through the relatively short history of
evolvable hardware. From there we will discuss present day
applications of evolvable hardware and how well these solu-
tions compare to traditionally obtained solutions. Then we
will talk about the future of the technology and steps being
taken to overcome the limitations of this new field. An im-
plementation of evolvable hardware on a field programmable
gate array (FPGA) using a generic evolutionary algorithm
to step through iterations until a solution is obtained will
also be discussed to give the reader a clearer understanding
of what implementations do behind the scenes.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.6.3 [Simulation
AND Modelling ]: Applications

General Terms
Field Programmable Gate Array, Evolvable Hardware, Evo-
lutionary Algorithm

Keywords
Multiplexer, Configurable Logic Block, Wires Under Test,
Programmable Interconnect Point

1. BACKGROUND
Moore’s law stated in 1965 that “The number of transis-

tors that can be placed inexpensively on an integrated circuit
doubles approximately every two years.” [8] This prediction
has held up for the past 45 years. Many speculate how
long this growth can be sustained. In addition to increasing
transistor density several other solutions to the problem of
computing power have been approached. A promising ap-
proach in recent years has been that of evolvable hardware.
The term evolvable hardware (EHW) in its modern use was
coined by Hugo de Garis in 1992 to describe work he was
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doing in using genetic algorithms to evolve neural networks
[10]. At the time, EHW was not seen as having much ap-
plication outside of the research field. Evolvable hardware
began to be seen as a serious vehicle for solution develop-
ment in 1996 when Adrian Thompson at the University of
Sussex, England published an evolved tone discriminator, a
device capable of distinguishing between frequencies, using
fewer than 40 logic gates in a field programmable gate array
(FPGA, a reprogrammable circuit with a grid of logic gates)
[13]. This accomplishment renewed interest in FPGAs as an
implementation of evolvable hardware and may be seen as
the cause for the paradigm shift of FPGAs right before the
turn of the century [11].

2. INTRODUCTION

2.1 Evolvable Hardware
Evolvable hardware is a field of design that uses evolu-

tionary algorithms to train circuits to meet a design speci-
fication. Evolvable hardware pulls from other fields such as
artificial intelligence, reconfigurable hardware, and mathe-
matical optimization to design a pool of candidates and,
through evolution, refine the candidate circuits to satisfy
the design specification.

2.1.1 Applications
Evolvable hardware is often implemented with field pro-

grammable gate arrays (FPGAs). Since FPGAs make up
a very large part of current day evolvable hardware, most
of this paper will focus on implementing evolutionary algo-
rithms on FPGAs. FPGAs are, simply put, reprogrammable
integrated circuits. They are a likely medium for EHW be-
cause they are affordable, well documented, and easy to pro-
gram for.

2.1.2 Benefits of EHW
As discussed earlier, evolvable hardware is an approach

to solve problems without increasing the number of transis-
tors on a circuit and instead tries to evolve a set (or field)
of programmable logic gates. In addition to not relying
on the sustained exponential growth in affordable transis-
tor density, evolvable hardware explores exploits of evolved
circuits not thought of by humans. Another benefit of using
evolvable hardware to solve a problem is adaptability. Since
new fitting solutions can be derived on the fly, the system
can maintain integrity in a changing environment [1]. Also,
evolved circuits are in many cases more compact and energy



efficient than human created circuits. This phenomenon can
be explained through a combination of natural compression
and evolved ”shortcuts” humans did not think to use.

2.2 Evolutionary Algorithms
Evolutionary algorithms are often used to evolve a cir-

cuit on evolvable hardware to obtain a circuit that meets
or exceeds the required fitness. Evolvable hardware imple-
ments evolutionary algorithms on a piece of hardware. The
characteristics available to the engineer are translated into
genes which are evolved and refined until a working solu-
tion is found and implemented on physical hardware. For
example, the genes of a system trying to evolve a robotic
hand that excels at gripping may have genes for number of
the fingers, the number of joints, and the position of joints
in the hand. Evolutionary algorithms are a subset of evo-
lutionary computation which tries to evolve a population
based on mechanisms seen in biological evolution, namely:
reproduction, mutation, cloning, and selection.

Reproduction is the passing of parent ”genes” to offspring
in the hopes that the offspring will inherit beneficial genes
from both parents. Mutation, much like biological muta-
tion, occurs when genes are randomly changed in hopes of
introducing new properties into the next iteration. Cloning
occurs when a (near-passing) set of genes is passed directly
onto the next generation in hopes of crossing with the right
mate to produce a candidate that passes the fitness function.
Finally, selection is defined as selecting more fit candidates
from the pool to pass on their genes to future generations.
These mechanisms are implemented in a software and hard-
ware environment. For this paper, it is enough to say that
genetic algorithms belong to the superset of evolutionary al-
gorithms and treat the evolvable hardware approach to solv-
ing problems as a set of evolutionary algorithm techniques
implemented on hardware.

3. EVOLVABLE HARDWARE
Before any actual calculations are made, the engineer de-

scribes a fitness function, a function that assigns each candi-
date a fitness value relating to how well that candidate meets
or exceeds the solution specification. If a member has a fit-
ness level greater than the target fitness level the hardware
considers the problem solved and returns the acceptable cir-
cuit (member) and quits iterating. It is important to note
that an algorithm generates a large group of individuals,
models evolution in iterations, runs each individual against
the fitness function, and continues this until an individual
is evolved with a set of genes that passes the fitness func-
tion. As stated earlier, fitness functions are not always easy
to describe. For example, a fitness function for an antenna
design may require the antenna to have a gain greater than
2 decibels or a fitness function for an integrated circuit may
require the circuit to run on an input voltage of 3.0 volts
[5]. There is difficulty not only in translating requirements
into logic, but also in the fact that there are generally many
properties that need to be assessed given only the informa-
tion in the genes. Through the process of selective breeding,
members pass on their beneficial genes as determined by the
fitness function.

3.1 Intrinsic and Extrinsic Evolution

Post-tone-discriminator research has split evolvable hard-
ware into two approaches: intrinsic and extrinsic evolution.
In the former, each candidate is implemented on physical
hardware, very often an FPGA [2]. In the latter, each can-
didate is simulated on reconfigurable circuits, often FPGAs.
The intrinsic approach has the benefit of being very accu-
rate with regards to adapting theoretical solution to actual
solution. That is, once a solution is found (a candidate has a
fitness greater than the desired fitness) there is almost noth-
ing that can change from the circuit’s implementation to the
real world implementation. Another benefit of this approach
is the ability to create self-evolvable hardware systems. Self
evolvable hardware systems are able to rework their circuits
in the field and do not rely on waiting for a final solution to
be found (or not found) before evolving. The main drawback
of intrinsic evolution is the significant overhead of having to
reconfigure the physical circuit for each generation [11].

Extrinsic evolution has, understandably, the opposite set
of benefits and drawbacks. Where intrinsic evolution takes a
large amount of time to rework the physical circuit, extrinsic
systems simply implement an evaluation and simulates the
new circuit. The main drawbacks of extrinsic evolution are
that the simulated circuit is not as easily mapped to a real
world circuit and often is not as efficient as a solution from
intrinsic evolution [2]. In a simulated environment compo-
nents are linked with simulated interconnects. In the real
world the interconnects have a size and location. Without
physically implementing the circuit one may wind up with a
solution that can not physically be implemented or a solu-
tion that needs to be adapted to fit the physical limitations
of the implementation [11] [3]. In practice extrinsic evolu-
tion is more common to obtain a working or near-working
solution which needs to be tweaked. This takes out the com-
plexity of needing to build a physical candidate every time.
Although extrinsic evolution is utilized more often, intrinsic
evolution has its uses. One area where intrinsic evolution
occurs is the construction of a circuit on an FPGA by con-
structing virtual components in the logic gates [7].

4. FPGA IMPLEMENTATION OF EHW
At the core of all evolvable hardware is code that passes

down the positive traits of past iterations. There are other
tactics besides the passing of beneficial traits, but trait-
passing is at the heart of evolving a circuit to match a fit-
ness function. What follows is a walk through of a hypo-
thetical implementation of a genetic algorithm on an FPGA
that uses tactics such as cloning and mutation in addition to
trait-passing to evolve a circuit to meet a desired fitness. It
is difficult to describe in specific terms how an FPGA works
because there are several manufacturers who each have their
own design of FPGAs [9]. We will, however, explore as much
as possible while still not becoming application-specific in
our descriptions.

4.1 Field Programmable Gate Arrays
In general, an FPGA contains a grid (or field) of config-

urable logic blocks (CLBs) which can be either single logic
operations (AND, NOR, etc) or groups of logic blocks that
perform higher level functions (adder, multiplier, etc) de-
pending on the sophistication of the FPGA. Each CLB is
connected to the grid via a switch matrix that allows or
disallows a connection to be made via a programmable in-



terconnect point (PIP). The system is fed input which runs
through the logic blocks in a manner determined by the state
of the PIPs and gives an output which is evaluated with the
fitness function.

4.2 Inheritance in Algorithms
For most of EHW, especially that on FPGAs, implementa-

tion code is an evolutionary algorithm. Generally speaking,
the hardware starts out by randomly generating a group of
circuits to act as the first generation. Each circuit is either
simulated (extrinsic) or constructed (intrinsic) and evalu-
ated with the fitness function. It is important to note here
that the members chosen are not always the most fit, but
more fit members are weighted heavier to pass on their genes
than less fit members, hence the parallel to real world evo-
lution. The processor of the FPGA weights each member
based on fitness of genes.

Two selected members will combine their complementing
genes in what is normally called a crossover. Aside from
direct crossovers which take genes solely from the parents,
there are also randomly occurring mutations - again, just like
real world evolution. Mutations serve the function of intro-
ducing new and possibly beneficial genes into the candidates’
gene pool. In this way, a gene that was erroneously elimi-
nated earlier can be introduced into the population again.
In an FPGA implementation adding or subtracting chromo-
somes is done by opening or closing PIPs [6]. Occasionally
cloning will take place. Cloning in this sense is when a mem-
ber, instead of mating with another member and producing
an offspring of mixed traits, passes its full set of traits to
the offspring, often only the case when a member has a very
high fitness value.

4.3 Generation Cycling
When the number of offspring reaches the number of par-

ents, a generation cycle occurs. Described in more detail in
section 5.2, generally speaking, a generation cycle is when
the offspring (group of just-generated candidates) become
the parents for a new generation. Generation cycling is pos-
sible because each generation is stateless. That is, once a
generation is generated it no longer requires the past gen-
eration so the past generation can be overwritten by a new
generation [1]. A general generation cycle is shown in Fig-
ure 1. Typically, a given problem requires a number of gen-
erations in the tens or hundreds until a suitable candidate
is discovered. The number of generations depends on many
factors including how difficult it is to exceed a fitness bar
given the requirements of the problem and the number of
parameters each candidate must evolve. For example, the
antenna design below took around 100 generations, with the
best candidate emerging around generation 60 with the fol-
lowing 40 generations failing to find a better solution [5].

5. DIFFICULTIES AND LIMITATIONS OF
FPGA BASED EHW

5.1 Defining Parameters
Often it is hard to describe a desired parameter and re-

strictions in mathematical terms. For example, it is difficult
to describe, in an algorithm, a 3-dimensional shape that
needs to consist of a single wire of unlimited length but one
that needs to fit inside a cubic foot box. Further complicat-
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Figure 1: The life cycle of an evolutionary algorithm
(here a genetic algorithm) that continually creates
new circuits to test against a fitness function. [11]

ing this is the representation of the output of an evolution-
ary algorithm. In the example just mentioned, the engineer
would need to take the building instructions outputted by
the FPGA and render them in 3-dimensional software to un-
derstand the candidate being proposed. An individual gene
in this example may be expressed as an angle of a bend
in the wire or of a length of straight line the wire requires
[5]. Yet in another example, genes may refer to the delay in
milliseconds the EHW waits to respond to input. Of course,
both of these are hypothetical genes in hypothetical systems
but they serve the purpose of showing how difficult it can
be to specify a gene or limitation for EHW.

5.2 Scalability
There are several challenges inherent to evolvable hard-

ware. Since one is evolving a random circuit in an unknown
direction, that could be viewed as a ”guided brute force”way
to solve a problem. Evolvable hardware (that implements
a genetic algorithm) relies on crossing genes of the fittest
chromosomes to create a child generation. If a chromosome
has 4 bits of genes it is easy to try all possible combina-
tions of children each generation. If a chromosome has 8
bits of genes one would naturally select the best traits from
each parent chromosome. If you encounter a problem where
the parent chromosome has 32 bits of genes there is not an
easy time/coverage trade-off you can make [13]. This can
be stated another way. Evolvable hardware implementing
genetic algorithms does not, by design, scale well. The more
complex a ”parent” is the harder it is to generate a repre-
sentative population of children. The way an evolutionary



algorithm works when applied to evolutionary hardware, the
parent generation generates offspring until there are as many
children as there are members in the parent generation. At
that time the generations cycle; the children become the par-
ent generation and the former parent generation are deleted
to make room for the next generation of offspring. One can
easily see that the number of offspring the algorithm gener-
ates is limited not by how many offspring make good candi-
dates but by how many members the hardware can support.
This can be expressed by the relationship Members Gener-
ated per generation = (1/2)(Member Capacity of Hardware)
When you add in the exponential growth of mutations and
cloning the coverage becomes unmanageable very quickly [7].
This weakness shows itself in the real world applications of
EHW by the fact that EHW cannot, normally, solve com-
plex problems in a timely manner, much like a systematic,
evolving brute force attempt.

5.3 Interconnect Faults
In FPGAs there exists four basic types of interconnect

faults. Interconnect faults are very small hardware faults
involving a switchable data path being permanently stuck
open or stuck closed. Since FPGAs contain an extremely
large amount of interconnects, it is feasible for errors to oc-
cur. After listing the faults, we will discuss ways of de-
tecting and mitigating these faults. Line segment faults are
faults within an FPGA between programmable interconnect
points (defined previously). The faults come in two states;
open and closed. Line segment open faults are caused when
line segments lose their ability to establish the connection
between the pair of PIPs they join. Line segment open
faults can be viewed as shorts between the power supply
and ground, letting nothing flow between the pair of PIPs
[6]. Line segment closed faults are caused when line seg-
ments maintain a permanent connection between their pair
of PIPs, regardless of whether they are supposed to or not.

Programmable interconnect point faults are faults inside
of the PIPs themselves. As discussed previously, PIPs have
a series of connections inside them and are vulnerable to
faults. PIPs also have two types of faults: stuck-open faults
and stuck-closed faults. Stuck-open faults are a problem be-
cause a PIP will not be able to allow data through that point.
Stuck-closed faults have the opposite problem; they will pass
all information through that connection. The open/closed
nomenclature is easier to understand if one thinks of PIPs
as points in a circuit. Therefore, if a PIP is stuck-closed
this would correlate to a closed circuit which would allow
data to flow. Similarly, a stuck-open circuit would correlate
to an open circuit where data cannot get from one point to
another.

Faults in a system as large as an FPGA can easily be
routed around and go unnoticed, at the cost of errors and di-
minished ability. In 2005 a method for finding faults, called
Wires Under Test, was improved upon by the addition of
buffers in the form of routing the testing signals through
IMUX (input multiplexers, take several inputs choose the
best one to relay), transparent logic, flip-flops, and OMUX
(output multiplexers that choose which output to relay).
One might wonder why buffers are necessary. Before buffers
there were only unbuffered WUTs. Unbuffered WUTs had
the disadvantage of limiting the number of tests that can
be sent simultaneously to the number of I/O pins on the
FPGA. The introduction of buffered WUTs allowed for the

same coverage without the extensive amount of test config-
urations needed for unbuffered WUTs. This, when coupled
with programs that generate test configurations, made find-
ing faults in FPGAs cost and time effective. As an example,
the number of test configurations needed for the FPGA in [6]
went from sixty before interleaving (buffering) to just eight
after.

6. APPLICATIONS OF EVOLVABLE HARD-
WARE

6.1 Appeal of Evolvable Hardware
Evolvable hardware has seen a love-hate relationship with

the academic research community and is slowly being adopted
as a legitimate (and not novel) way of solving problems.
First, evolvable hardware had to be proven possible on con-
sumer hardware. It found a home in the FPGA community
where it was discovered that one could overlay a genetic al-
gorithm over an FPGA and obtain cheap, effective evolvable
hardware. Then, evolvable hardware had to jump the hur-
dle of having real-world applications. That was shown to
be possible to a large extend in 1996 by Adrian Thompson
with his sub-40 gate tone discriminator. Currently, evolv-
able hardware is being held back by scalability issues caused
by complexity growth. Scalability with regard to complexity
is essential for evolvable hardware to be considered in real
world applications (many of which are prohibitively complex
for evolvable hardware to be employed [13]).

6.2 Notable Real-World Uses of EHW
Despite the challenges, evolvable hardware has shown a

glimpse of the ingenious solutions it is capable of evolving on
par with, and surpassing human abilities in several notable
examples. One area in which EHW excels is antenna design.
Antennas are difficult to design because of the vast number
of variables one must factor into his or her equation when
trying to find an optimal design. For example, the angle
that the signal will be coming in on, the allowed length of
the antenna tines (or dish diameter), and the adjustment
needs of the antenna are just some of the things to consider
when trying to find an optimal antenna design.

Researchers at the NASA Ames Research Center (NASA
ARC) had to address all of these limitations in 2004 when
they were tasked with designing an antenna to be placed
on NASA’s then upcoming Space Technologies 5 microsatel-
lites. The team chose to develop the antennas using evolv-
able hardware. The initial results of this evolution are shown
below in the original evolved antenna in Figure 2. A second
round of evolution, this time adding the restriction of ”no
branching” to the requirements yielded the antenna shown
in Figure 3. The result was a compact antenna design that
would not have been considered in traditional research. It
also took less time to evolve the antenna than it would have
taken to design the antenna the traditional way. The evolved
antenna took NASA approximately three person-months to
set up and develop the algorithms for whereas it was es-
timated that traditional design would have taken approxi-
mately five person-months to develop. Perhaps even more
impressive was the time it took the team to redesign the
antenna after learning that the prototype hardware the an-
tenna was set to be mounted on had changed. Instead of
redesigning and testing new antenna prototypes they were



Figure 2: Original evolved antenna

Figure 3: Later generation evolved antenna without
branching [5]

able to modify their algorithms and re-evolve a new antenna
in only four months [5]. Antenna technology has been cov-
ered extensively but it is near impossible to imagine a cover-
all equation that will guarantee the best antenna design. A
problem like this (manageable complexity and a clear goal)
is the perfect type of problem for evolutionary hardware.
Not surprisingly, the antennas look foreign and very simple.
But that is the general form of an EHW solution: something
simple, compact, and not yet thought of [13].

In other cases, the solution had already been thought of.
J.R. Kota shows in [12] that, incredibly, at least 15 inven-
tions obtained via evolvable hardware infringe on previously
held patents ranging from a high-current load circuit to an
electronic thermometer.

7. FUTURE PLANS

7.1 Standardization
There is a push to further categorize and standardize the

development of evolvable hardware systems. One can see

the distinction between extrinsic and intrinsic hardware as
a first step towards categorizing the developing field. It can
be seen in [4] that there are three requirements for a material
to be considered able to perform evolvable hardware tasks.
They are:

1. Material needs to be configurable by applying electric-
ity (or any energy)

2. Material needs to affect an incident signal.

3. Material needs to be able to reset to its original con-
figuration.

Any medium hoping to eclipse FPGAs as the go-to imple-
mentation for consumer grade evolvable hardware will likely
need to complete all three of the above requirements.

7.2 How limitations are being dealt with
FPGAs are a cheap and stable way to implement evolv-

able hardware. One reason they may eventually become out-
dated is if someone finds a way around the inherent problem
of scalability of evolvable hardware on a different material.
However, that is not to say FPGAs have reached their limit
by any means. More likely than not, the complexity scal-
ing issues lie in the evolvable hardware roots than in the
medium. Steps are being taken to alter evolvable hardware
models and the genetic algorithms to remove the complex-
ity bottle neck. For example, models have been proposed
that change the way evolvable hardware passes on its genes.
Instead of parents having a single crossover with a fixed
number of genes, children of varying genes are sometimes
born [13].

7.3 Unstable Environments
Intrinsic evolvable hardware lends itself well to systems

that must maintain integrity and stability in a changing
and uncertain environment. Systems in areas where it is
not possible to replace or repair an instrument are areas be-
ing looked into for evolvable hardware. Two examples of
hypothetical systems are sensors and space probes. Sensors
are often used in places that are not easy to commute to,
whether that be in a volcano or an underground oil line, so a
system that could handle errors and correct itself would be
beneficial. Likewise, space probes can run into unexpected
radiation and temperature shifts that may harm or alter
electrical components. Intrinsic evolvable hardware could
be made that sees abnormalities in test inputs (which are
run against already known test outputs) and evolve the sys-
tem to maintain integrity after simple malfunctions [7].

8. CONCLUSION
In this research, we have gone through the short history

of evolvable hardware and shown an implementation on a
major medium known as a field programmable gate array.
Although EHW is young, it has been able to bridge the gap
from novelty to real world solutions on many occasions [11].
There are, however, several hurdles currently being worked
on which need to be overcame before EHW can provide so-
lutions to general problems. As it stands, EHW has pro-
vided many compact and elegant solutions to application-
specific problems. Future efforts, hopefully, will prove EHW
as a tool used by researchers and end users to solve complex
problems.
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