
Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Title
Object Oriented Programming Languages
Live Objects versus Dead Objects
The Java HotSpot Virtual Machine

Modern Considerations of Garbage Collection
in the

Java Hotspot Virtual Machine

Jeffrey D. Lindblom

December 3, 2011

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Title
Object Oriented Programming Languages
Live Objects versus Dead Objects
The Java HotSpot Virtual Machine

Object Oriented Programming Languages

Objects operate as containers of data

Objects refer to each other

Notable object oriented languages:

Java
C#
Ruby

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Title
Object Oriented Programming Languages
Live Objects versus Dead Objects
The Java HotSpot Virtual Machine

Live Objects versus Dead Objects

Object reachability with a program

Reachable objects are live
Unreachable objects are dead

The Garbage Problem

Memory is finite
Dead objects serve no purpose

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Title
Object Oriented Programming Languages
Live Objects versus Dead Objects
The Java HotSpot Virtual Machine

The Java HotSpot Virtual Machine

The Java Virtual Machine (JVM)

Runs the Java program

Manages the object memory space

Houses Garbage Collection

The HotSpotTM implementation is developed by Oracle,
formerly Sun

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

The Mark-and-Sweep Algorithm
The Stop-and-Copy Algorithm
Performance Considerations

The Mark-and-Sweep Algorithm

Transitive reachability

If reachable Object A references Object B
and Object B references Object C. Then
Object C is reachable.

The Mark Phase

Begins from root set
Traverses object references

The Sweep Phase

Traverses all objects
Unmarked objects collected

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

The Mark-and-Sweep Algorithm
The Stop-and-Copy Algorithm
Performance Considerations

The Stop-and-Copy Algorithm

Initialization

Object Copy

Role Switch

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

The Mark-and-Sweep Algorithm
The Stop-and-Copy Algorithm
Performance Considerations

Performance Considerations

Frequent collection may cause processing overhead

Infrequent collection may cause memory overhead

Stop-the-World pauses

Latency

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Generational Garbage Collection
The Young Generation
Minor Garbage Collection
The Old Generation
Major Garbage Collection

Generational Garbage Collection

Three object life-time scenarios:

Object dies soon after allocation

Objects dies long after allocation

Object never dies after allocation

Generation A set of similarly aged objects

Typically observed that most objects die young

Java HotSpot generational garbage collection consists of:

The Young Generation

The Old Generation

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Generational Garbage Collection
The Young Generation
Minor Garbage Collection
The Old Generation
Major Garbage Collection

The Young Generation

The Young Generation consists of three spaces:

Objects initially allocated to the Eden space

When Eden space fills, Minor Garbage Collection occurs

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Generational Garbage Collection
The Young Generation
Minor Garbage Collection
The Old Generation
Major Garbage Collection

Minor Garbage Collection

Uses Stop-and-Copy collection

Efficient on small quantities of live objects

Unaffected by large quantities of dead objects

Eden and one survivor spaces operate as From space

Surviving objects receive a count

Objects tenured to old generation when count meets threshold

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Generational Garbage Collection
The Young Generation
Minor Garbage Collection
The Old Generation
Major Garbage Collection

The Old Generation

Consists of just one space

Slowly aggregates over time

When space fills, Major Garbage Collection occurs

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Generational Garbage Collection
The Young Generation
Minor Garbage Collection
The Old Generation
Major Garbage Collection

Major Garbage Collection

By default uses Mark-Sweep-Compact algorithm

Requires less memory to operate

Defragments object space for allocation efficiency

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Parallel Processing
Parallel Young Generation Collection
Parallel Old Generation Collection
Real-time Applications

Parallel Processing

Thread

A spawned process that is scheduled and functions independently
of its parent.

Single-threaded HotSpot Garbage Collectors:

Serial Collector

Multi-threaded Generational HotSpot Garbage Collectors:

Throughput/Parallel Collector (Young Generation only)
Parallel Compacting Collector
Concurrent Mark-Sweep Collector

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Parallel Processing
Parallel Young Generation Collection
Parallel Old Generation Collection
Real-time Applications

Parallel Young Generation Collection

Uses parallel implementation of Stop-and-Copy

Figure: Single-threaded versus Multi-threaded

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Parallel Processing
Parallel Young Generation Collection
Parallel Old Generation Collection
Real-time Applications

Parallel Old Generation Collection

Parallel Compacting Collector

Uses parallel implementation of Mark-Sweep-Compact

Incurs lower Stop-the-World pause-times

Concurrent Mark-Sweep Collector

Uses concurrent implementation of Mark-and-Sweep

Incurs even lower Stop-the-World pause-times

Incurs high latency due to program CPU sharing

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Parallel Processing
Parallel Young Generation Collection
Parallel Old Generation Collection
Real-time Applications

Real-time Applications

Real-time applications operate within time-based deadlines:
E.g. military command-and-control operations, financial
trading systems, on-the-fly audio processing

Three criteria of severity:

Strict Missing a deadline compromises the entire application

Hard Missing a deadline compromises that deadline result

Soft Missing a deadline degrades that deadline result

Collectors must have very low Stop-the-World pause times

Only Java Hotspot collector to meet a real-time criteria is the
Garbage First Collector, which satisfies Soft real-time
processing.

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Conclusion
Questions?

Conclusion

No ideal garbage collector

Main optimization criteria to consider:

Low Stop-the-World pause times

Low latency

Processing power

Memory capacity

As computer architecture evolves, more leeway to delegate
processing and memory footprints to the underlying computer
system

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Conclusion
Questions?

Questions?

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine



Introduction
Basic Garbage Collection

Java Hotspot Garbage Collection
Modern Performance Challenges

Wrapping up

Conclusion
Questions?

D. F. Bacon, P. Cheng, and V. T. Rajan.

A unified theory of garbage collection.
2004.

K. Barabash and E. Petrank.

Tracing garbage collection on highly parallel platforms.
2010.

S. M. Blackburn, P. Cheng, and K. S. McKinley.

Myths and realities: the performance impact of garbage collection.
2004.

D. Detlefs, C. Flood, S. Heller, and T. Printezis.

Garbage-first garbage collection.
2004.

T. Kalibera, F. Pizlo, A. L. Hosking, and J. Vitek.

Scheduling real-time garbage collection on uniprocessors.
2011.

S. Microsystems.

Memory management in the java hotspotTMvirtual machine, 2006.

D. Vengerov.

Modeling, analysis and throughput optimization of a generational garbage collector.
2009.

B. Zorn.

Comparing mark-and sweep and stop-and-copy garbage collection.
1990.

Jeffrey D. Lindblom Garbage Collection in the Java HotSpot Virtual Machine


	Introduction
	Title
	Object Oriented Programming Languages
	Live Objects versus Dead Objects
	The Java HotSpot Virtual Machine

	Basic Garbage Collection
	The Mark-and-Sweep Algorithm
	The Stop-and-Copy Algorithm
	Performance Considerations

	Java Hotspot Garbage Collection
	Generational Garbage Collection
	The Young Generation
	Minor Garbage Collection
	The Old Generation
	Major Garbage Collection

	Modern Performance Challenges
	Parallel Processing
	Parallel Young Generation Collection
	Parallel Old Generation Collection
	Real-time Applications

	Wrapping up
	Conclusion
	Questions?


