
Implementation of Kd-Trees on the GPU to Achieve Real
Time Graphics Processing

Will W. Martin
mart2122@morris.umn.edu

ABSTRACT
This paper examines the parallelization of ray tracing algo-
rithms with the goal of running the whole process on the
graphics processing unit (GPU) rather than the central pro-
cessing unit (CPU). The motivation behind this endeavour
is to utilize the massively parallel nature of the GPU. This
parallelism allows the construction of 3-dimensional images
to take place in real time. To achieve this we focus on
how to create and process multi-dimensional tree structures
(kd-trees) to model image data. Kd-trees organize multi-
dimensional data in a searchable data structure, lending it-
self to the efficient creation of lighting effects.

Categories and Subject Descriptors
I.3.7 [Three-Dimensional Graphics and Realism]: Ray-
tracing; E.1 [DATA STRUCTURES]: Trees; B.2.4 [High-
Speed Arithmetic]: Cost/performance

General Terms
Algorithms, Design, Performance

Keywords
Kd-trees, Surface Area Heuristic, Axis Aligned Bounding
Box, Ray tracing, GPU, graphics

1. INTRODUCTION
Ray tracing is a technique used to generate high qual-

ity graphics. The ray tracing technique excels at accurately
rendering realistic shadows, reflections, and refractions by
attempting to model physical light rays in reverse. See Fig-
ure 1.

Rays of light are shot from the vantage point of the ob-
server through a 2-dimensional frame buffer into the scene,
reflecting and refracting upon contact with objects in the
scene until the rays reach a light source. Each pixel in the
frame buffer is then shaded according to which objects the

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference Morris, MN.

frame
buffer

P

FIGURE 14.1 Viewing a point in
a scene through a pixel.

© 2001 by Prentice Hall / Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458
from Computer Graphics Using OpenGL, 2e, by F. S. Hill

Observer

Figure 1: Viewing a single point in a 3-dimensional
scene through a pixel by shooting a ray out into the
3-dimensional space. Figure based on [2]

Figure 2: Left (from [1]): Nvidia rendering example
using a ray tracing algorithm demonstrating shad-
ows and reflections. Right (from [4]): a 3D scene
using ray tracing demonstrating refraction through
semi transparent surfaces as well as reflection off of
solid shiny surfaces.

rays interact with. The frame buffer is the 2-dimensional pic-
ture that is actually rendered. The ray in Figure 1 intersects
with a tree at point p. Examples of images created through
the use of ray tracing can be seen in Figures 2 and 11.

The main drawback to ray tracing is the time required to
carry out the necessary computation to propagate light rays
through the entire image. This process often takes minutes
to hours to render a single frame [13]. This has made ray
tracing infeasible as a dynamic image rendering technique
for generating real time graphics; as a result most ray tracing
is done off-line. To achieve real time ray tracing, the image
needs to be organized in a data structure that a ray tracing
algorithm can traverse quickly. The current data structure
of choice is the kd-tree [7, 8, 9, 12, 13, 14]. The basics of
the kd-tree as well as their utility is covered in Section 2.

[5, 3]

[8, 6]

[9, 8][7, 2]

[2, 7]

[4, 9][1, 3]

x=5

x<5, y=7 x>5, y=6

x<5, y<7 x<5, y>7 x>5, y<6 x>5, y>6

Figure 3: A simplified kd-tree. The nodes have only
2 dimensional data (2 search keys). The root’s chil-
dren are sorted based on their x values, while their
children are sorted on y and so on. A graphical rep-
resentation of this tree can be seen in Figure 4.

Section 3 covers the practicality of running kd-tree gener-
ation techniques on the graphics processing unit (GPU) to
generate real time graphics as well as provides a comparison
between GPU and central processing unit (CPU) algorithms.

2. THE KD-TREE DATA STRUCTURE
The kd-tree is commonly used in graphics processing in

the applications of ray tracing and other graphics techniques
such as photon mapping [5] and point cloud modeling [14].

2.1 What is a Kd-Tree?
A kd-tree is a binary search tree that represents k-dimen-

sional spatial data. Each coordinate value is a search key
much like a single search key in a binary tree. Kd-trees that
contain 3-dimensional data such as a 3-dimensional image
will have 3 search keys, x, y, and z. Each leaf node in a
kd-tree constructed for ray tracing also contains a list of
graphics primitives, usually triangles. These triangles are
the building blocks of the scene. Every object in the scene
is made up of a multitude of small triangles. The kd-tree
cycles through each available dimension, or search key, in the
data being modeled, layer by layer in a regular pattern. All
nodes on the same level are sorted by the same search key as
illustrated in Figures 3 and 8. In Figure 3 a 2-dimensional
tree has been constructed, instead of using polygons, points
are used. The root node is chosen and all other nodes are
sorted on x and brought down to the next level of the tree.
Root nodes for both left and right sub trees are chosen and
all nodes belonging to that sub tree are sorted upon y and
brought down to the next level. This level would sort on x
again if there was more data.

A graphical representation of Figure 3 can be seen in Fig-
ure 4. Each non-leaf node corresponds to a split plane. A
split plane divides the area of the dimensional space along a
line running parallel with the axis to which the level of the
tree belongs, as illustrated in Figure 4. Our ability to split
the data in sections graphically will be useful during tree
traversal while shooting a ray though a scene. This idea will
be covered more in Section 2.2.1.

2.2 Kd-Tree Tools
In order to understand how to parallelize the construction

process we must first describe the tools used in the construc-
tion of a basic kd-tree. This section discusses the tools used

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

[5, 3]

[2, 7]

[4, 9]

[1, 3]

[7, 2]

[9, 8]

[8, 6]

Figure 4: A graphical representation of the 2 dimen-
sional tree shown in Figure 3. The split planes cor-
responding to each parent node divide up the search
space.

z

y

x l

Figure 5: Two 3-dimensional objects surrounded by
axis aligned bounding boxes. Based on [3]

by Shiue et. al [10] to achieve real time kd-tree construction
on the GPU. Axis aligned bounding boxes and construction
heuristics will be covered, as they allow us to generate an
efficient kd-tree optimized for ray tracing.

2.2.1 Axis-aligned bounding box
An axis-aligned bounding box (AABB) is a k-dimensional

box enclosing graphical elements within the kd-tree. The
bounding box can be used to estimate the physical space
taken up by an object or collection of objects. They are axis
aligned, meaning that their bounding surfaces are parallel
to the axes, making many computations performed on these
bounding boxes simpler. AABBs can be used to simplify
determining if a ray or line will intersect an object. An
example of this is given in Figure 5 using two 3-dimensional
bounding boxes. The main utility of bounding boxes can be
demonstrated by looking at line l. We wish to know which
objects, if any, this line intersects. This line will intersect
the front and rear faces of the right hand AABB, therefore
we know we need to check to see what the line intersects
inside the right hand AABB. However, because we know
that this line will never intersect the AABB on the left,
we never need to check the contents of that AABB, saving
computation time. AABBs can also be used hierarchically,
where AABBs contain other AABBs as well as geometric
primitives as demonstrated in Figure 6.

The split planes in a 3-dimensional kd-tree’s graphical
representation create AABBs. Each splitting plane can be

Figure 6: AABB hierarchy based on [3], showing
how AABBs can enclose other AABBs in a hierar-
chical manor.

Figure 7: This graph (taken from [6]) demonstrates
the relationship between the number of intersect-
ing rays with bounding boxs and the surface area of
those bounding boxs using a ray tracing algorithm.
This clearly shows a linear relationship between the
two.

thought of as a side of an AABB. When we search through
the data in a kd-tree, if the tree is balanced, the search space
is roughly cut in half with every comparison. Graphically
the image is cut into sections, allowing us to rule out sec-
tions, in much the same way bounding boxes do. How much
of the image is cut out by any one comparison is dictated
by how the nodes are distributed throughout the tree.

2.2.2 Surface Area Heuristic
The surface area heuristic (SAH) can be used to better

organize graphical data in a tree structure. The SAH helps
evenly distribute the split planes across the image to make
each comparison in the search tree divide search space as
effectively as possible from a graphical perspective as well
as a data structure perspective. This is based on the idea
that the number of rays likely to intersect a convex object is
roughly proportional to its surface area, a claim supported
by a number of tests done by MacDonald and Booth [6].
They used a ray tracing algorithm to traverse the tree and
collected data on which AABBs were hit by a ray. The
results can be seen in Figure 7, which shows a strong lin-
ear relationship between the number of rays that intersected

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

Figure 8: A representation of a three dimensional
kd-tree. The graphical representation can be seen
in Figure 9

.

yx

z

82

4

Figure 9: A graphical representation of the kd-tree
shown in Figure 8. The yellow and green (front) are
the right hand sub trees, the blue and red (rear) are
the left hand sub trees.

with a bounding box vs. the bounding box’s surface area.
The SAH gives every kd-tree a cost. The calculation of a

tree’s cost is based upon the ideas behind bounding boxes.
If we start out with the kd-tree shown in Figure 8 we will get
the graphical representation shown in Figure 9. Assume the
scene in Figure 9 is isolated in a 10× 10× 10 bounding box.
We can see that the root node’s children give us bounding
boxes of sizes 4 × 10 × 10 (red and blue) and 6 × 10 × 10
(yellow and green). Their children in turn provide more split
planes, each generating smaller bounding boxes. We will use
the surface area of these bounding boxes to calculate the cost
of the node that defines these bounding boxes.

The surface area of an AABB, like any rectangular prism
with side lengths l,m, n, can be calculated:

SA = 2ln + 2lm + 2mn
= 2 ((l + m)n + lm)

(1)

We can drop the factor of two in this equation because
this equation is always divided by itself to form a ratio as in
Equation 2.

C̄ = k

(
SAself

SAroot

)
(2)

The average cost of each node can be calculated using

SA(4,6,2) = ((10 + 10)10 + 10× 10) = 300
SA(3,2,5) = ((4 + 10)10 + 4× 10) = 180
SA(6,8,8) = ((6 + 10)10 + 4× 10) = 220
SA(2,1,5) = ((4 + 2)10 + 4× 2) = 88
SA(3,5,3) = ((4 + 8)10 + 4× 8) = 152
SA(6,4,9) = ((6 + 8)10 + 6× 8) = 188
SA(8,9,3) = ((6 + 2)10 + 6× 2) = 92

Table 1: Calculations of surface area for each node
in Figure 8

C̄(4,6,2) = 2

(
300

300

)
C̄(3,2,5) = 2

(
180

300

)
C̄(6,8,8) = 2

(
220

300

)
C̄(2,1,5) = 0

(
88

300

)
C̄(3,5,3) = 0

(
152

300

)
C̄(6,4,9) = 0

(
188

300

)
C̄(8,9,3) = 0

(
92

300

)

Table 2: The above table shows the average cost of
each node in Figure 8 based upon the surface areas
calculated in Table 1.

Equation 2 where SAroot is the surface area of the root node,
SAself is the surface area of the AABB containing the current
node, and k is the number of children that belong to the
current node.

Note that each leaf node has a cost of zero because k will
be zero for these nodes. The root node will have a cost of k
because we make it its own parent node, making the ratio of
the surface areas equal to one. To calculate the cost of the
entire tree we sum up the costs of each node in N , where N
is the set of all nodes:

∑
iεN

C̄(i) (3)

The surface area calculations of each node in Figure 8 are
shown in Table 1. The costs are then calculated in Table 2
using those surface areas. Summing up the costs for each
node calculated in Table 2 we find the cost for the entire
tree:

∑
iεN

C̄(i) = 2×
(

1 +
18

30
+

22

30

)
(4)

+ 0×
(

88

300
+

152

300
+

188

300
+

92

300

)
= 4.67

The SAH strives to produce a kd tree with the smallest
cost. This ensures that the probability of a ray traversing
the tree will have close to an equal chance of traversing either
child of any sub tree, thus utilizing the whole tree effectively.
The cost calculation of a tree is theoretically run in O(n)
where n is the number of nodes in the tree. The calculation
must be carried out for each splitting plane candidate. Each
node has a variety of places it can be split. Each one of

these split possibilities are called splitting plane candidates.
Running the SAH on each of them allows us to pick the
splitting plane candidate with the lowest cost. With this in
mind, we can set up the following construction algorithm for
kd-trees:

1. Calculate the SAH costs for all splitting plane candi-
dates using Equation 3.

2. Split the tree on the lowest cost candidate.

3. Distribute the remaining graphical elements to the proper
sides of the new sub tree.

4. Recursively traverse both sub-trees.

Algorithms that create kd-trees for the purposes of ray
tracing only put graphical data in the leaf nodes. This
changes our simplified model of the SAH slightly. In Equa-
tion 2 we simply used the number of children k as the cost
of the node, but now we must differentiate between leaf and
non-leaf nodes. Instead of multiplying the surface area ratio
by k we will multiply it by KT or KI depending on whether
the node will add the cost of traversing to a child node, or
the cost of checking the a leaf node for intersections, re-
spectively. This changes Equation 3 to Equation 5 with two
summations, one over I which is a list of all non-leaf or in-
ternal nodes and the other over L which is a list of all leaf
nodes. iparent is the parent of node i and likewise jparent
is the parent of node j. This equation was also used by
Wald [12], and MacDonald and Booth [6].

∑
iεI

SA(i)

SA(iparent)
KT +

∑
jεL

SA(j)

SA(jparent)
KI (5)

An approximation of this equation is provided by Wald [12]
and used by Zhou et al. [14], given in Equation 6.

SAH[x] = Cts +
CL[x]SAL[x]

SAparent
+

CR[x]SAR[x]

SAparent
(6)

Here Cts is a constant that represents the cost of travers-
ing a node, CL and CR are the costs of the left child and
right child respectively, for a split plane at position x, SAL
and SAR are the surface areas of the left child and right child
respectively given a split plane at position x, and SAparent

is the surface area of the node being split.
To avoid having to build the entire left and right sub-trees

to find the total cost of split planes we have not begun to
consider yet, we can approximate CL and CR by the number
of graphical elements that will reside within the left and right
nodes being created. This assumes that the left and right
child of the node being split are both leaf nodes and makes
Equation 6 a greedy approximation, overestimating the cost
of any given split [14].

2.2.3 Empty space minimizing and split median
Another method of determining splitting planes employed

by Zhou et al. [14] used a combination of median splitting
and empty space minimizing. Empty space minimizing is a
technique that looks at all graphical data within a node to
be split. If a node has no graphical data from an edge to
a predetermined threshold Ce as seen in Figure 10(a), the

Algorithm 1 Kd-Tree Construction

procedure BUILDTREE(triangles:list)
begin

// initialization stage
nodelist ← new list
activelist ← new list
smalllist ← new list
nextlist ← new list
Create rootnode
activelist.add(rootnode)
for each input triangle t in parallel

Compute AABB for triangle t

// large node stage
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSLARGENODES(activelist, smalllist, nextlist)
Swap nextlist and activelist

// small node stage
PREPROCESSSMALLNODES(smalllist)
activelist ← smalllist
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSSMALLNODES(activelist, nextlist)
Swap nextlist and activelist

// kd-tree output stage
PREORDERTRAVERSAL(nodelist)

end

�������������������

����

��������

����������

��������

����	�� 	��

��
�������
���

Figure 2: Two cases of large node split. (a) cut off empty space;
(b) spatial median split.

The SAH cost function is defined as:

SAH(x) = Cts +
CL(x)AL(x)

A
+

CR(x)AR(x)

A
,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x, and CR(x) is
the cost of the right child given the same split. AL(x) and AR(x)
are the surface areas of the left and right child respectively. A is the
surface area of the node. Note that CL(x) and CR(x) can only be
evaluated after the entire sub-tree has been built. Instead of seeking
a globally optimal solution, existing algorithms use a locally greedy
approximation by assuming the children are leaf nodes. In this case
CL(x) and CR(x) equal the number of elements contained in the
left and right child respectively.

Algorithm Overview The algorithm takes a triangle soup as in-
put and follows the construction pipeline as shown in Algorithm 1.
After an initialization step, the algorithm builds the tree in a BFS
manner, for both large nodes and small nodes. Finally, all nodes of
the tree are reorganized and stored. The pipeline consists of a set of
stream processing steps together with minimal coordination work.
The streaming steps are done on the GPU while coordination work
is done on the CPU at negligible costs.

Algorithm 2 Large Node Stage

procedure PROCESSLARGENODES(
in activelist:list;
out smalllist, nextlist:list)

begin

// group triangles into chunks
for each node i in activelist in parallel

Group all triangles in node i into fixed size chunks, store
chunks in chunklist

// compute per-node bounding box
for each chunk k in chunklist in parallel

Compute the bounding box of all triangles in k, using stan-
dard reduction

Perform segmented reduction on per-chunk reduction result to
compute per-node bounding box

// split large nodes
for each node i in activelist in parallel

for each side j of node i
if i contains more than Ce empty space on

side j then
Cut off i’s empty space on side j

Split node i at spatial median of the longest axis
for each created child node ch

nextlist.add(ch)

// sort and clip triangles to child nodes
for each chunk k in chunklist in parallel

i ← k.node()
for each triangle t in k in parallel

if t is contained in both children of i then
t0 ← t
t1 ← t
Sort t0 and t1 into two child nodes
Clip t0 and t1 to their respective owner node

else
Sort t into the child node containing it

// count triangle numbers for child nodes
for each chunk k in chunklist in parallel

i ← k.node()
Count triangle numbers in i’s children, using reduction

Perform segmented reduction on per-chunk result to compute
per-child-node triangle number

// small node filtering
for each node ch in nextlist in parallel

if ch is small node then
smalllist.add(ch)
nextlist.delete(ch)

end

In the initialization stage, global memory is allocated for tree con-
struction and the root node is created. Additionally, a streaming
step is performed to compute the AABB (axis aligned bounding
box) for each input triangle. In our current implementation, the
user-specified threshold for large/small node is set as T = 64.

3.1 Large Node Stage

As mentioned, the SAH evaluation in the conventional greedy op-
timization algorithm assumes that the current split produces two
leaf nodes. For large nodes, this assumption is almost always un-
true. The resulting estimation is far from accurate. Our splitting
scheme for large nodes is a combination of spatial median splitting
and “empty space maximizing”, which is highly effective for the
upper levels of the tree as noted in [Havran 2001]. Specifically, if

Real-Time KD-Tree Construction on Graphics Hardware • 126:3

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Figure 10: (Taken from [14]) (a) cut off empty space;
(b) spatial median split.

node will be split to separate the empty space into its own
node.

Figure 10(b) illustrates a median split. This splitting tech-
nique takes the longest axis in the node and splits it in half.
The graphical data (triangle in this case) has to be clipped
or cut into multiple triangles to be filtered down through
the tree without overlapping the median split. Both these
techniques are useful because they require no explicit cost
calculations. Each node is split in an effort to minimize
white space within bounding boxes, or to split nodes in half
in a way that keeps them as square or cubic as possible.

3. GPU VS. CPU
Heavily computational tasks such as construction of a kd-

tree used in both static and dynamic off-line ray tracing
algorithms have typically been run on the central process-
ing unit (CPU) where the number of tasks that can be run
in parallel is restricted to how many cores the CPU has.
Static and dynamic on-line ray tracing algorithms have the
potential to be constructed on the graphics processing unit
(GPU), which is a highly parallel processing unit and can
support many more asynchronous tasks in parallel.

3.1 Benefits Provided by The Threading Abil-
ities of the GPU

The CPU is a robust blunt tool for doing computation-
ally expensive tasks. Today, instead of making a single
core CPU faster, more cores are placed on a single CPU,
allowing the CPU to run multiple processes at once. Most
retail computers at the time of this paper have 4 cores on
them. The graphics processors on computers, however, have
been designed to do computationally inexpensive tasks in
an extremely parallel manner, driven by the gaming indus-
try. The modern GPU has the ability to spin up 103 to 104

threads to achieve optimal performance [14].

3.2 Running Kd-Tree construction on the GPU
The main method used in [14] makes a root node for the

start of their kd-tree, and puts all triangles into the root
node. The AABB for each triangle is calculated in parallel
on the GPU, then the list of triangles within their AABB’s
are passed into the large node stage. We know that if we
were to employ the SAH we would want to use the approxi-
mation to speed up our node splitting. This approximation,
however, assumes that the children of the node being split
are both leaves. This assumption is usually always wrong for
nodes with large numbers of triangles such as the upper level
nodes. The large node stage uses the empty space minimiz-
ing heuristic when applicable. When a node does not meet
the criteria of the empty space minimizing heuristic, the

Scene
Off-line CPU builder GPU builder
Ttree Ttrace SAH Ttree Ttrace SAH

Fig.11(a) 0.085s 0.022s 79.0 0.012s 0.018s 67.9
Fig.11(b) 0.108s 0.109s 76.6 0.017s 0.108s 38.3
Fig.11(c) 0.487s 0.165s 68.6 0.039s 0.157s 59.7
Fig.11(d) 0.559s 0.226s 49.6 0.053s 0.207s 77.8
Fig.11(e) 1.226s 0.087s 74.4 0.077s 0.078s 94.6
Fig.11(f) 1.354s 0.027s 124.2 0.093s 0.025s 193.9

Table 3: Comparing the kd-tree construction time,
ray tracing time, and real SAH cost as calculated
with Equation 5 after tree construction of a off-line
CPU builder and the GPU builder. All images cre-
ated were 1024× 1024.

split median is used. Once a node is split the triangles are
distributed to the child nodes. These nodes are then split.
Any triangles that overlap are clipped and these new clipped
triangles are distributed to the children as well. The new set
of child nodes is then processed the same way in parallel on
the GPU until the number of triangles in a leaf node drops
below 64. Once the number of triangles in a node drops
below 64 they are considered small nodes. These nodes are
then processed on the GPU using the approximated SAH
in Equation 6. The splitting plane candidates used in the
approximation are restricted to the faces of the AABBs ini-
tially created in the main method for each triangle. The
triangles can then be sorted into the two new child nodes.
The triangles that overlap both nodes are brought down into
both children to cut down on memory reallocation instead
of creating two new smaller triangles. The method used
in [14] determines the optimal split plane in O(n) time and
the sorting of triangles into child nodes can be done in O(1)
time. [14]

The SAH and split median both strive to create cubic
nodes. The SAH strives to create a node with the smallest
surface area. A rectangular prism of area A has the smallest
surface area when its sides are of equal length. The split
median always cuts the node in half on the longest side en-
suring nodes don’t get too rectangular. The SAH, however,
is much more computationally expensive even with the ap-
proximation, taking into account all primitives in a given
node. This minimizes the chance of splitting a primitive in
half, however it is very time consuming for nodes containing
large amounts of graphical primitives.

3.3 Results
Figure 11 contains 6 images used in [14] to test the kd-tree

building technique described above. The results of this test
can be seen in Table 3. The GPU tree builder takes consid-
erably less time to create a kd-tree. The times it takes to
traverse the tree with the CPU built kd-trees closely resem-
ble those of the GPU built kd-trees. The SAH cost of both
trees were calculated using Equation 5 after the trees were
built. Using a combination of free space minimizing, split
median and our greedy approximation of an SAH results in
trees of acceptable cost.

K. Zhou et al. [14] also restricted the number of proces-
sors the GPU could utilize to see how the algorithm scales.
A graph of this data can be seen in Figure 12; The number
of triangles in the image directly correlates with the grace-
fulness the GPU algorithm’s ability to scale. The dragon
picture, Figure 2(f), scales by a factor of 6 while the toys
picture, Figure 2(a), only scales by a factor of 3. Note the

(a) Toys (b) Museum (c) Robots

(d) Kitchen (e) Fairy Forest (f) Dragon

Figure 4: Test scenes for kd-tree construction and ray tracing. (a)
11K triangles, 1 light; (b) 27K triangles, 2 lights, 2 bounces; (c)
71K triangles, 3 lights, 1 bounce; (d) 111K triangles, 6 lights, 8
bounces; (e) 178K triangles, 2 lights; (f) 252K triangles, 1 light.

Scene
Off-line CPU builder Our GPU builder
Ttree Ttrace SAH Ttree Ttrace SAH

Fig. 4(a) 0.085s 0.022s 79.0 0.012s 0.018s 67.9

Fig. 4(b) 0.108s 0.109s 76.6 0.017s 0.108s 38.3

Fig. 4(c) 0.487s 0.165s 68.6 0.039s 0.157s 59.7

Fig. 4(d) 0.559s 0.226s 49.6 0.053s 0.207s 77.8

Fig. 4(e) 1.226s 0.087s 74.4 0.077s 0.078s 94.6

Fig. 4(f) 1.354s 0.027s 124.2 0.093s 0.025s 193.9

Table 2: Comparing kd-tree construction time Ttree, ray tracing
time Ttrace and SAH costs between an offline CPU builder and our
GPU builder. All rendering times are for 1024× 1024 images.

lel are GPU code; others are CPU code. We also need to specify
the number of thread blocks and threads per block for the parallel
primitives and the code fragments marked by in parallel. In our
current implementation, we use 256 threads for each block. The
block number is computed by dividing the total number of parallel
threads by the number of threads per block.

During kd-tree construction, we store all data as dynamic lists in
linear device memory allocated via CUDA. List size is doubled
whenever more memory is required. This allows us to avoid high
overhead in CUDA memory management after an initial run, at the
cost of more memory consumption. For structures with many fields
such as nodes and triangles, we use structure of arrays (SoA) in-
stead of array of structures (AoS) for optimal GPU cache perfor-
mance.

From its description, the reader may have noticed that our algo-
rithm also frequently calls certain parallel primitives such as reduce
and scan. Many of these primitives have been efficiently imple-
mented and exposed in CUDPP [Harris et al. 2007]. Most con-
ditional program flows in the pseudo code are handled using list
splitting, which is also a standard GPU primitive with optimized
implementation [Sengupta et al. 2007]. The conditional programs
in Algorithm 3 (lines 12 ∼ 15) will be serialized and result in
performance penalty, but the chunk structure used to perform most
computations in the per-chunk standard reduction in Algorithm 2
avoid these conditional program flows. Compared to per-chunk
standard reductions, the segmented reduction in Algorithm 3 does
not consume any significant processing time, and its performance
issues can thus be safely ignored.

#procs Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f)

16 0.037s 0.057s 0.197s 0.260s 0.463s 0.564s

32 0.022s 0.034s 0.107s 0.139s 0.242s 0.292s

48 0.018s 0.026s 0.077s 0.098s 0.169s 0.202s

64 0.016s 0.022s 0.063s 0.079s 0.133s 0.157s

80 0.015s 0.020s 0.055s 0.068s 0.113s 0.132s

96 0.014s 0.019s 0.049s 0.060s 0.100s 0.116s

112 0.013s 0.018s 0.046s 0.056s 0.091s 0.105s

128 0.012s 0.017s 0.039s 0.053s 0.077s 0.093s

speedup 3.08 3.35 5.05 4.90 6.01 6.06

Table 3: Scalability of our kd-tree construction algorithm on a
GeForce 8800 ULTRA graphics card. The bottom row shows the
speedup going from 16 to 128 processors. Note that our algorithm
scales better with large scenes. However, the scalability is still sub-
linear mainly because the total running time contains a constant
portion due to the overheard of CUDA API.

Figure 5: The tree construction time decreases quickly with the in-
crease in the number of GPU processors before reaching a plateau.

3.5 Results and Discussion

The described algorithm has been tested on an Intel Xeon 3.7GHz
CPU with an NVIDIA GeForce 8800 ULTRA (768MB) graphics
card. Parameters (e.g., T and N) used during tree construction are
intentionally kept the same for all scenes.

We compare our GPU algorithm with an off-line CPU algorithm
which always uses the greedy SAH cost to calculate optimal split
planes and clips triangles into child nodes [Wald and Havran 2006].
Table 2 summarizes the comparison results for several publicly
available scenes as shown in Fig. 4. As shown, our kd-tree construc-
tion algorithm is 6 ∼ 15 times faster for all scenes. The quality of
the trees is assessed in two ways. First, we compute the SAH costs.
Second, we evaluate the practical effect of tree quality on render
time by using the constructed trees in a ray tracer as described in
Section 4. As shown in the table, our algorithm generates lower
SAH costs for Toys, Museum and Robots, but higher SAH costs
for Kitchen, Fairy Forest and Dragon. In all cases, our trees always
offer better rendering performance, which attests to the high qual-
ity of our trees in practical applications. Note that SAH cost is the
expected cost for a ray to traverse the entire tree, whereas actual kd-
tree traversal terminates at the first node of intersection. Therefore
there is no strict correlation between the SAH costs and the actual
ray trace time. SAH cost is only one way to measure the quality of
kd-trees. The most important metric is how well the resulting tree
accelerates ray traversals, which is the ultimate goal of an SAH tree
construction strategy.

126:6 • K. Zhou et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Figure 11: Test scenes (Taken from [14]) for kd-tree
construction and ray-tracing. (a) 11K triangles, 1
light; (b) 27K triangles, 2 lights; (c) 71K triangles,
3 lights; (d) 111K triangles, 6 lights; (e) 178K trian-
gles, 2 lights; (f) 252K triangles, 1 light.

(a) Toys (b) Museum (c) Robots

(d) Kitchen (e) Fairy Forest (f) Dragon

Figure 4: Test scenes for kd-tree construction and ray tracing. (a)
11K triangles, 1 light; (b) 27K triangles, 2 lights, 2 bounces; (c)
71K triangles, 3 lights, 1 bounce; (d) 111K triangles, 6 lights, 8
bounces; (e) 178K triangles, 2 lights; (f) 252K triangles, 1 light.

Scene
Off-line CPU builder Our GPU builder
Ttree Ttrace SAH Ttree Ttrace SAH

Fig. 4(a) 0.085s 0.022s 79.0 0.012s 0.018s 67.9

Fig. 4(b) 0.108s 0.109s 76.6 0.017s 0.108s 38.3

Fig. 4(c) 0.487s 0.165s 68.6 0.039s 0.157s 59.7

Fig. 4(d) 0.559s 0.226s 49.6 0.053s 0.207s 77.8

Fig. 4(e) 1.226s 0.087s 74.4 0.077s 0.078s 94.6

Fig. 4(f) 1.354s 0.027s 124.2 0.093s 0.025s 193.9

Table 2: Comparing kd-tree construction time Ttree, ray tracing
time Ttrace and SAH costs between an offline CPU builder and our
GPU builder. All rendering times are for 1024× 1024 images.

lel are GPU code; others are CPU code. We also need to specify
the number of thread blocks and threads per block for the parallel
primitives and the code fragments marked by in parallel. In our
current implementation, we use 256 threads for each block. The
block number is computed by dividing the total number of parallel
threads by the number of threads per block.

During kd-tree construction, we store all data as dynamic lists in
linear device memory allocated via CUDA. List size is doubled
whenever more memory is required. This allows us to avoid high
overhead in CUDA memory management after an initial run, at the
cost of more memory consumption. For structures with many fields
such as nodes and triangles, we use structure of arrays (SoA) in-
stead of array of structures (AoS) for optimal GPU cache perfor-
mance.

From its description, the reader may have noticed that our algo-
rithm also frequently calls certain parallel primitives such as reduce
and scan. Many of these primitives have been efficiently imple-
mented and exposed in CUDPP [Harris et al. 2007]. Most con-
ditional program flows in the pseudo code are handled using list
splitting, which is also a standard GPU primitive with optimized
implementation [Sengupta et al. 2007]. The conditional programs
in Algorithm 3 (lines 12 ∼ 15) will be serialized and result in
performance penalty, but the chunk structure used to perform most
computations in the per-chunk standard reduction in Algorithm 2
avoid these conditional program flows. Compared to per-chunk
standard reductions, the segmented reduction in Algorithm 3 does
not consume any significant processing time, and its performance
issues can thus be safely ignored.

#procs Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f)

16 0.037s 0.057s 0.197s 0.260s 0.463s 0.564s

32 0.022s 0.034s 0.107s 0.139s 0.242s 0.292s

48 0.018s 0.026s 0.077s 0.098s 0.169s 0.202s

64 0.016s 0.022s 0.063s 0.079s 0.133s 0.157s

80 0.015s 0.020s 0.055s 0.068s 0.113s 0.132s

96 0.014s 0.019s 0.049s 0.060s 0.100s 0.116s

112 0.013s 0.018s 0.046s 0.056s 0.091s 0.105s

128 0.012s 0.017s 0.039s 0.053s 0.077s 0.093s

speedup 3.08 3.35 5.05 4.90 6.01 6.06

Table 3: Scalability of our kd-tree construction algorithm on a
GeForce 8800 ULTRA graphics card. The bottom row shows the
speedup going from 16 to 128 processors. Note that our algorithm
scales better with large scenes. However, the scalability is still sub-
linear mainly because the total running time contains a constant
portion due to the overheard of CUDA API.

Figure 5: The tree construction time decreases quickly with the in-
crease in the number of GPU processors before reaching a plateau.

3.5 Results and Discussion

The described algorithm has been tested on an Intel Xeon 3.7GHz
CPU with an NVIDIA GeForce 8800 ULTRA (768MB) graphics
card. Parameters (e.g., T and N) used during tree construction are
intentionally kept the same for all scenes.

We compare our GPU algorithm with an off-line CPU algorithm
which always uses the greedy SAH cost to calculate optimal split
planes and clips triangles into child nodes [Wald and Havran 2006].
Table 2 summarizes the comparison results for several publicly
available scenes as shown in Fig. 4. As shown, our kd-tree construc-
tion algorithm is 6 ∼ 15 times faster for all scenes. The quality of
the trees is assessed in two ways. First, we compute the SAH costs.
Second, we evaluate the practical effect of tree quality on render
time by using the constructed trees in a ray tracer as described in
Section 4. As shown in the table, our algorithm generates lower
SAH costs for Toys, Museum and Robots, but higher SAH costs
for Kitchen, Fairy Forest and Dragon. In all cases, our trees always
offer better rendering performance, which attests to the high qual-
ity of our trees in practical applications. Note that SAH cost is the
expected cost for a ray to traverse the entire tree, whereas actual kd-
tree traversal terminates at the first node of intersection. Therefore
there is no strict correlation between the SAH costs and the actual
ray trace time. SAH cost is only one way to measure the quality of
kd-trees. The most important metric is how well the resulting tree
accelerates ray traversals, which is the ultimate goal of an SAH tree
construction strategy.

126:6 • K. Zhou et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Figure 12: Tree construction times(taken from [14])
(in ms) incrementing the number of processors avail-
able on the GPU

dragon was constructed with about 23 times as many trian-
gles as the toys picture.[14]

The capabilities of this algorithm can be seen in Table 4.
The two algorithms that the GPU builder was tested against
come from [11] and [9]; [11] used an AMD Opteron 2.6GHz
CPU and [9] used a Dual Intel Core2 Duo 3.0GHz CPU (4
cores). We can see the GPU builder outperforms both on-
line CPU kd-tree builder/ray tracers on both scenes. The
GPU builder shows promise in creating realistic looking graph-
ics on dynamic scenes.[14]

4. CONCLUSIONS
The whole process of ray tracing from generating the scene

to rendering an image can be run on the GPU. This allows
high quality 3-dimensional images to be created in real time
as seen in [14]. These techniques can be used in graphics,
not only in offline tasks like pixar animations, but online
tasks like video games and real time 3-dimensional image
rendering.

Scene Wald Shevtsvo GPU builder
Fig. 11(a) 10.5fps 23.5fps 32.0fps
Fig. 11(b) n/a n/a 8.00fps
Fig. 11(c) n/a n/a 4.96fps
Fig. 11(d) n/a n/a 4.84fps
Fig. 11(e) 2.30fps 5.84fps 6.40fps
Fig. 11(f) n/a n/a 8.85fps

Table 4: (Taken from [14]) The GPU builder com-
pared with other CPU on-line kd-tree builders and
ray-tracers.

5. REFERENCES
[1] R. Austinat. GPU ray tracing: New pictures reveal current

possibilities.
http://www.pcgameshardware.com/aid,661682/
GPU-ray-tracing-New-pictures-reveal-current-possibilities/
News/, Sept. 2008.

[2] F. S. Hill, Jr. Computer Graphics Using Open GL.
Macmillan Publishing Company, second edition.

[3] J. Goldsmith and J. Salmon. Automatic creation of object
hierarchies for ray tracing. Computer Graphics and
Applications, IEEE, 7(5):14 –20, May 1987.

[4] B. Grass. X3D class examples of ray tracing. https:
//www.movesinstitute.org/pipermail/x3d-courses/
attachments/20110428/0943b920/attachment-0004.jpg,
Apr. 2011.

[5] W. Jarosz, H. W. Jensen, and C. Donner. Advanced global
illumination using photon mapping. In ACM SIGGRAPH
2008 classes, SIGGRAPH ’08, pages 2:1–2:112, New York,
NY, USA, 2008. ACM.

[6] J. D. MacDonald and K. S. Booth. Heuristics for ray
tracing using space subdivision. The Visual Computer,
6:153–166, 1990. 10.1007/BF01911006.

[7] S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek.
Experiences with streaming construction of SAH kd-trees.
In Interactive Ray Tracing 2006, IEEE Symposium on,
pages 89 –94, Sept. 2006.

[8] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray
tracing algorithm. ACM Trans. Graph., 24:1176–1185, July
2005.

[9] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel
fast kd-tree construction for interactive ray tracing of
dynamic scenes. Computer Graphics Forum, 26(3):395–404,
2007.

[10] L.-J. Shiue, I. Jones, and J. Peters. A realtime GPU
subdivision kernel. ACM Trans. Graph., 24:1010–1015, July
2005.

[11] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM
Trans. Graph., 26, January 2007.

[12] I. Wald and V. Havran. On building fast kd-trees for ray
tracing, and on doing that in O(n log(n)). In Interactive
Ray Tracing 2006, IEEE Symposium on, pages 61 –69,
Sept. 2006.

[13] I. Wald, J. T. Purcell, J. Schmittler, C. Benthin, and
P. Slusallek. Realtime ray tracing and its use for interactive
global illumination. Eurographics State of the Art Reports,
2003.

[14] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph.,
27:126:1–126:11, December 2008.

