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Ray Tracing

What Does Ray Tracing Do?

@ Creates high quality graphics

@ Renders reflections,
refraction, shading

@ Takes minutes to hours to
render single frame on CPU
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Figure: Taken from [3]
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What is Ray Tracing

How Does Ray Tracing Work?

@ Creating a 3-dimensional scene.

@ Shooting “light” rays through the scene.

buffer

Figure: Taken from [1]



Bounding Boxes

Axes Aligned Bounding Boxes

NG P? (AABBs)
’ / / @ A rectangular prism
/ : surrounding an object

@ All faces are axis aligned

@ Encloses primitives and
other AABBs

Y vl @ Used to simplify intersection
_ j calculations

— @ Look very similar to
graphical representations of
kd-trees

Figure: Based on [2]



Kd-trees
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2-D Kd-Tree

Tree Structure
@ Binary tree sorted on k dimensions.

@ Data sorted on x.
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2-D Kd-Tree

Tree Structure

@ Binary tree sorted on k dimensions.

@ Data sorted on x then y.
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3-D Kd-Tree

Tree Structure
@ Binary tree sorted on k dimensions.

@ Data sorted on x.
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3-D Kd-Tree

Tree Structure

@ Binary tree sorted on k dimensions.

@ Data sorted on y.

X y z

2 1 5

.

3 5 3 X< x>4,
S— e (32, 5] (6,8, 8] N
64 9 (21,5  [B531]649]  [1893]
x<4,y<2 x<4,y>2 x>4,y<8 x>4,y>8



Kd-trees

3-D Tree (Graphical)

@000

Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 volume.

@ Each non-leaf node crates a split plane
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Kd-trees

3-D Tree (Graphical)
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Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The root node splits on x=4
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3-D Tree (Graphical)
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Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The right child splits on y=2
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3-D Tree (Graphical)
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Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The left child splits on y=8
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Kd-trees constructed for ray tracing

Specialized kd-trees
@ All non-leaf nodes are used for sorting.
o Kd-trees for ray tracing store all graphics data in leaf nodes.

@ Heuristics are used to maximize the efficiency of kd-trees for
ray tracing




Heuristics for Ray Tracing

Heuristics

Heuristics

@ Experienced based technique for problem solving

@ Used to narrow search spaces when exhaustive searches are
impractical

v
Goals

@ Minimize surface area

@ A node split into 2 nodes of minimal surface area will be
balanced

@ Split nodes into cubes




Heuristics for Ray Tracing

Surface Area vs Intersections

Number of intersecting rays
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Experimental verification of surface area metric
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Figure: Taken from [4]

200

Surface Area vs. Ray Hits
o Left: (Taken from [4])
Shows number of
intersections to surface area
of bounding box

@ Strong linear relationship
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SAH Approximation

CL[x]SAL[X] n Cr[x]SAR[X]
SAparent SAparent

Used in [7]

Cts - Cost of traversing a node

C; and Cg - Cost of left and right child

SA; and SAg - Surface area of left and right child

SAparent - Total surface area of node being split

SAH[x] = Ces + (1)




Heuristics for Ray Tracing
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Empty Space Minimizing

larger Node Surface Area vs. Ray Hits

C

than €, o Left: (Taken from [8])
Cut off empty space | _ shows empty space being
cut off a node

@ Splits the node to cut off
empty space

@ Requires a piece of the node
larger than C, to be empty

Figure: Taken from [8]
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Median Split

Surface Area vs. Ray Hits
o Left: (Taken from [8])
T- shows a node being split

along its longest axis

@ Splits the node arbitrarily
along its longest axis

Figure: Taken from [8]
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Median Split

Surface Area vs. Ray Hits
o Left: (Taken from [8])
T- shows a node being split

along its longest axis

@ Splits the node arbitrarily
along its longest axis

Figure: Taken from [8]



GPU kd-tree construction algorithm
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Using heuristics effectively

Generate AABBs for all primitives
Put all graphics primitives in root node
Classify all nodes with over 64 primitives as large

Classify all nodes with 64 or less primitives as small




GPU kd-tree construction algorithm
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Small Nodes

@ Split candidates at all primitive’s AABBs
Run SAH approximation on all split candidates
Split on lowest cost candidate

Filter graphics primitives down to new children

Overlapping primitives are brought down to both new children

Large Nodes

@ If applicable use empty space minimizing
@ Else use median split
o Filter graphics primitives down to new children

@ Overlapping primitives are clipped




GPU kd-tree construction algorithm
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Results
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Results

Performance

Scene [6] [5] GPU builder

(a) | 10.5fps | 23.5fps 32.0fps
(b) n/a n/a 8.00fps
(c) n/a n/a 4.96fps
(d) n/a n/a 4 .84fps
(e) | 2.30fps | 5.84fps 6.40fps
(f) n/a n/a 8.85fps

@ [6] used AMD Opteron 2.6GHz CPU

@ [5] used Dual Intel Core2 Duo 3.0GHz CPU
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Conclusion

@ GPU builders are faster than CPU builders
@ GPU builders still need to get faster

@ GPU builders show promise
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