
Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Implementation of Kd-Trees on the GPU to
Achieve Real Time Graphics Processing

Will W. Martin

December 3 2011

University Of Minnesota
Computer Science Senior Seminar

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Ray Tracing

Figure: Taken from [3]

What Does Ray Tracing Do?

Creates high quality graphics

Renders reflections,
refraction, shading

Takes minutes to hours to
render single frame on CPU

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Table of Contents

1 Introduction

2 Bounding Boxes

3 Kd-trees

4 Heuristics for Ray Tracing

5 GPU kd-tree construction algorithm

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

What is Ray Tracing

How Does Ray Tracing Work?

Creating a 3-dimensional scene.

Shooting “light” rays through the scene.

frame
buffer

P

FIGURE 14.1 Viewing a point in
a scene through a pixel.

© 2001 by Prentice Hall / Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458
from Computer Graphics Using OpenGL, 2e, by F. S. Hill

Observer

Figure: Taken from [1]

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

z

y

x l

Figure: Based on [2]

Axes Aligned Bounding Boxes
(AABBs)

A rectangular prism
surrounding an object

All faces are axis aligned

Encloses primitives and
other AABBs

Used to simplify intersection
calculations

Look very similar to
graphical representations of
kd-trees

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

2-D Kd-Tree

Tree Structure

Binary tree sorted on k dimensions.

Data sorted on x.

x y

1 3
2 7
4 9
5 3
7 2
8 6
9 8

[5, 3]x=5

x<5 x>5
[8, 6] [9, 8]

[7, 2]

[2, 7]

[4, 9]

[1, 3]

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

2-D Kd-Tree

Tree Structure

Binary tree sorted on k dimensions.

Data sorted on x then y.

x y

1 3
2 7
4 9
5 3
7 2
8 6
9 8

[5, 3]

[8, 6]

[9, 8][7, 2]

[2, 7]

[4, 9][1, 3]

x=5

x<5, y=7 x>5, y=6

x<5, y<7 x<5, y>7 x>5, y<6 x>5, y>6

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Kd-Tree

Tree Structure

Binary tree sorted on k dimensions.

Data sorted on x.

x y z

2 1 5
3 2 5
3 5 3
4 6 2
6 4 9
6 8 8
8 9 3

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4 x>4

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Kd-Tree

Tree Structure

Binary tree sorted on k dimensions.

Data sorted on y.

x y z

2 1 5
3 2 5
3 5 3
4 6 2
6 4 9
6 8 8
8 9 3

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4,
y=2

x>4,
y=8

x<4, y<2 x<4, y>2 x>4, y<8 x>4, y>8

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Tree (Graphical)

Split Planes

Assume this kd-tree fits in a 10 × 10 × 10 volume.

Each non-leaf node crates a split plane

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4,
y=2

x>4,
y=8

x<4, y<2 x<4, y>2 x>4, y<8 x>4, y>8

yx

z

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Tree (Graphical)

Split Planes

Assume this kd-tree fits in a 10 × 10 × 10 area.

The root node splits on x=4

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4,
y=2

x>4,
y=8

x<4, y<2 x<4, y>2 x>4, y<8 x>4, y>8

yx

z

4

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Tree (Graphical)

Split Planes

Assume this kd-tree fits in a 10 × 10 × 10 area.

The right child splits on y=2

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4,
y=2

x>4,
y=8

x<4, y<2 x<4, y>2 x>4, y<8 x>4, y>8

yx

z

4

2

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

3-D Tree (Graphical)

Split Planes

Assume this kd-tree fits in a 10 × 10 × 10 area.

The left child splits on y=8

[4, 6, 2]

[6, 8, 8]

[8, 9, 3][6, 4, 9]

[3, 2, 5]

[3, 5, 3][2, 1, 5]

x=4

x<4,
y=2

x>4,
y=8

x<4, y<2 x<4, y>2 x>4, y<8 x>4, y>8

yx

z

4

2 8

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Kd-trees constructed for ray tracing

Specialized kd-trees

All non-leaf nodes are used for sorting.

Kd-trees for ray tracing store all graphics data in leaf nodes.

Heuristics are used to maximize the efficiency of kd-trees for
ray tracing

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Heuristics

Heuristics

Experienced based technique for problem solving

Used to narrow search spaces when exhaustive searches are
impractical

Goals

Minimize surface area

A node split into 2 nodes of minimal surface area will be
balanced

Split nodes into cubes

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Surface Area vs Intersections

Experimental veri�cation of surface area metric

Surface area

N
um

be
r o

f i
nt

er
se

ct
in

g
ra

ys

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

0 20 40 60 80 100 120 140 160 180 200

Figure: Taken from [4]

Surface Area vs. Ray Hits

Left: (Taken from [4])
Shows number of
intersections to surface area
of bounding box

Strong linear relationship

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

SAH Approximation

SAH[x] = Cts +
CL[x]SAL[x]

SAparent
+

CR [x]SAR [x]

SAparent
(1)

Terms

Used in [7]

Cts - Cost of traversing a node

CL and CR - Cost of left and right child

SAL and SAR - Surface area of left and right child

SAparent - Total surface area of node being split

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Empty Space Minimizing

Algorithm 1 Kd-Tree Construction

procedure BUILDTREE(triangles:list)
begin

// initialization stage
nodelist ← new list
activelist ← new list
smalllist ← new list
nextlist ← new list
Create rootnode
activelist.add(rootnode)
for each input triangle t in parallel

Compute AABB for triangle t

// large node stage
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSLARGENODES(activelist, smalllist, nextlist)
Swap nextlist and activelist

// small node stage
PREPROCESSSMALLNODES(smalllist)
activelist ← smalllist
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSSMALLNODES(activelist, nextlist)
Swap nextlist and activelist

// kd-tree output stage
PREORDERTRAVERSAL(nodelist)

end

Figure 2: Two cases of large node split. (a) cut off empty space;
(b) spatial median split.

The SAH cost function is defined as:

SAH(x) = Cts +
CL(x)AL(x)

A
+

CR(x)AR(x)

A
,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x, and CR(x) is
the cost of the right child given the same split. AL(x) and AR(x)
are the surface areas of the left and right child respectively. A is the
surface area of the node. Note that CL(x) and CR(x) can only be
evaluated after the entire sub-tree has been built. Instead of seeking
a globally optimal solution, existing algorithms use a locally greedy
approximation by assuming the children are leaf nodes. In this case
CL(x) and CR(x) equal the number of elements contained in the
left and right child respectively.

Algorithm Overview The algorithm takes a triangle soup as in-
put and follows the construction pipeline as shown in Algorithm 1.
After an initialization step, the algorithm builds the tree in a BFS
manner, for both large nodes and small nodes. Finally, all nodes of
the tree are reorganized and stored. The pipeline consists of a set of
stream processing steps together with minimal coordination work.
The streaming steps are done on the GPU while coordination work
is done on the CPU at negligible costs.

Algorithm 2 Large Node Stage

procedure PROCESSLARGENODES(
in activelist:list;
out smalllist, nextlist:list)

begin

// group triangles into chunks
for each node i in activelist in parallel

Group all triangles in node i into fixed size chunks, store
chunks in chunklist

// compute per-node bounding box
for each chunk k in chunklist in parallel

Compute the bounding box of all triangles in k, using stan-
dard reduction

Perform segmented reduction on per-chunk reduction result to
compute per-node bounding box

// split large nodes
for each node i in activelist in parallel

for each side j of node i
if i contains more than Ce empty space on

side j then
Cut off i’s empty space on side j

Split node i at spatial median of the longest axis
for each created child node ch

nextlist.add(ch)

// sort and clip triangles to child nodes
for each chunk k in chunklist in parallel

i ← k.node()
for each triangle t in k in parallel

if t is contained in both children of i then
t0 ← t
t1 ← t
Sort t0 and t1 into two child nodes
Clip t0 and t1 to their respective owner node

else
Sort t into the child node containing it

// count triangle numbers for child nodes
for each chunk k in chunklist in parallel

i ← k.node()
Count triangle numbers in i’s children, using reduction

Perform segmented reduction on per-chunk result to compute
per-child-node triangle number

// small node filtering
for each node ch in nextlist in parallel

if ch is small node then
smalllist.add(ch)
nextlist.delete(ch)

end

In the initialization stage, global memory is allocated for tree con-
struction and the root node is created. Additionally, a streaming
step is performed to compute the AABB (axis aligned bounding
box) for each input triangle. In our current implementation, the
user-specified threshold for large/small node is set as T = 64.

3.1 Large Node Stage

As mentioned, the SAH evaluation in the conventional greedy op-
timization algorithm assumes that the current split produces two
leaf nodes. For large nodes, this assumption is almost always un-
true. The resulting estimation is far from accurate. Our splitting
scheme for large nodes is a combination of spatial median splitting
and “empty space maximizing”, which is highly effective for the
upper levels of the tree as noted in [Havran 2001]. Specifically, if

Real-Time KD-Tree Construction on Graphics Hardware • 126:3

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Figure: Taken from [8]

Surface Area vs. Ray Hits

Left: (Taken from [8])
shows empty space being
cut off a node

Splits the node to cut off
empty space

Requires a piece of the node
larger than Ce to be empty

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Median Split

Algorithm 1 Kd-Tree Construction

procedure BUILDTREE(triangles:list)
begin

// initialization stage
nodelist ← new list
activelist ← new list
smalllist ← new list
nextlist ← new list
Create rootnode
activelist.add(rootnode)
for each input triangle t in parallel

Compute AABB for triangle t

// large node stage
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSLARGENODES(activelist, smalllist, nextlist)
Swap nextlist and activelist

// small node stage
PREPROCESSSMALLNODES(smalllist)
activelist ← smalllist
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSSMALLNODES(activelist, nextlist)
Swap nextlist and activelist

// kd-tree output stage
PREORDERTRAVERSAL(nodelist)

end

�������������������

����

��������

����������

��������

����	�� 	��

��
�������
���

Figure 2: Two cases of large node split. (a) cut off empty space;
(b) spatial median split.

The SAH cost function is defined as:

SAH(x) = Cts +
CL(x)AL(x)

A
+

CR(x)AR(x)

A
,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x, and CR(x) is
the cost of the right child given the same split. AL(x) and AR(x)
are the surface areas of the left and right child respectively. A is the
surface area of the node. Note that CL(x) and CR(x) can only be
evaluated after the entire sub-tree has been built. Instead of seeking
a globally optimal solution, existing algorithms use a locally greedy
approximation by assuming the children are leaf nodes. In this case
CL(x) and CR(x) equal the number of elements contained in the
left and right child respectively.

Algorithm Overview The algorithm takes a triangle soup as in-
put and follows the construction pipeline as shown in Algorithm 1.
After an initialization step, the algorithm builds the tree in a BFS
manner, for both large nodes and small nodes. Finally, all nodes of
the tree are reorganized and stored. The pipeline consists of a set of
stream processing steps together with minimal coordination work.
The streaming steps are done on the GPU while coordination work
is done on the CPU at negligible costs.

Algorithm 2 Large Node Stage

procedure PROCESSLARGENODES(
in activelist:list;
out smalllist, nextlist:list)

begin

// group triangles into chunks
for each node i in activelist in parallel

Group all triangles in node i into fixed size chunks, store
chunks in chunklist

// compute per-node bounding box
for each chunk k in chunklist in parallel

Compute the bounding box of all triangles in k, using stan-
dard reduction

Perform segmented reduction on per-chunk reduction result to
compute per-node bounding box

// split large nodes
for each node i in activelist in parallel

for each side j of node i
if i contains more than Ce empty space on

side j then
Cut off i’s empty space on side j

Split node i at spatial median of the longest axis
for each created child node ch

nextlist.add(ch)

// sort and clip triangles to child nodes
for each chunk k in chunklist in parallel

i ← k.node()
for each triangle t in k in parallel

if t is contained in both children of i then
t0 ← t
t1 ← t
Sort t0 and t1 into two child nodes
Clip t0 and t1 to their respective owner node

else
Sort t into the child node containing it

// count triangle numbers for child nodes
for each chunk k in chunklist in parallel

i ← k.node()
Count triangle numbers in i’s children, using reduction

Perform segmented reduction on per-chunk result to compute
per-child-node triangle number

// small node filtering
for each node ch in nextlist in parallel

if ch is small node then
smalllist.add(ch)
nextlist.delete(ch)

end

In the initialization stage, global memory is allocated for tree con-
struction and the root node is created. Additionally, a streaming
step is performed to compute the AABB (axis aligned bounding
box) for each input triangle. In our current implementation, the
user-specified threshold for large/small node is set as T = 64.

3.1 Large Node Stage

As mentioned, the SAH evaluation in the conventional greedy op-
timization algorithm assumes that the current split produces two
leaf nodes. For large nodes, this assumption is almost always un-
true. The resulting estimation is far from accurate. Our splitting
scheme for large nodes is a combination of spatial median splitting
and “empty space maximizing”, which is highly effective for the
upper levels of the tree as noted in [Havran 2001]. Specifically, if

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Median Split

Figure: Taken from [8]

Surface Area vs. Ray Hits

Left: (Taken from [8])
shows a node being split
along its longest axis

Splits the node arbitrarily
along its longest axis

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Median Split

Algorithm 1 Kd-Tree Construction

procedure BUILDTREE(triangles:list)
begin

// initialization stage
nodelist ← new list
activelist ← new list
smalllist ← new list
nextlist ← new list
Create rootnode
activelist.add(rootnode)
for each input triangle t in parallel

Compute AABB for triangle t

// large node stage
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSLARGENODES(activelist, smalllist, nextlist)
Swap nextlist and activelist

// small node stage
PREPROCESSSMALLNODES(smalllist)
activelist ← smalllist
while not activelist.empty()

nodelist.append(activelist)
nextlist.clear()
PROCESSSMALLNODES(activelist, nextlist)
Swap nextlist and activelist

// kd-tree output stage
PREORDERTRAVERSAL(nodelist)

end

�������������������

����

��������

����������

��������

����	�� 	��

��
�������
���

Figure 2: Two cases of large node split. (a) cut off empty space;
(b) spatial median split.

The SAH cost function is defined as:

SAH(x) = Cts +
CL(x)AL(x)

A
+

CR(x)AR(x)

A
,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x, and CR(x) is
the cost of the right child given the same split. AL(x) and AR(x)
are the surface areas of the left and right child respectively. A is the
surface area of the node. Note that CL(x) and CR(x) can only be
evaluated after the entire sub-tree has been built. Instead of seeking
a globally optimal solution, existing algorithms use a locally greedy
approximation by assuming the children are leaf nodes. In this case
CL(x) and CR(x) equal the number of elements contained in the
left and right child respectively.

Algorithm Overview The algorithm takes a triangle soup as in-
put and follows the construction pipeline as shown in Algorithm 1.
After an initialization step, the algorithm builds the tree in a BFS
manner, for both large nodes and small nodes. Finally, all nodes of
the tree are reorganized and stored. The pipeline consists of a set of
stream processing steps together with minimal coordination work.
The streaming steps are done on the GPU while coordination work
is done on the CPU at negligible costs.

Algorithm 2 Large Node Stage

procedure PROCESSLARGENODES(
in activelist:list;
out smalllist, nextlist:list)

begin

// group triangles into chunks
for each node i in activelist in parallel

Group all triangles in node i into fixed size chunks, store
chunks in chunklist

// compute per-node bounding box
for each chunk k in chunklist in parallel

Compute the bounding box of all triangles in k, using stan-
dard reduction

Perform segmented reduction on per-chunk reduction result to
compute per-node bounding box

// split large nodes
for each node i in activelist in parallel

for each side j of node i
if i contains more than Ce empty space on

side j then
Cut off i’s empty space on side j

Split node i at spatial median of the longest axis
for each created child node ch

nextlist.add(ch)

// sort and clip triangles to child nodes
for each chunk k in chunklist in parallel

i ← k.node()
for each triangle t in k in parallel

if t is contained in both children of i then
t0 ← t
t1 ← t
Sort t0 and t1 into two child nodes
Clip t0 and t1 to their respective owner node

else
Sort t into the child node containing it

// count triangle numbers for child nodes
for each chunk k in chunklist in parallel

i ← k.node()
Count triangle numbers in i’s children, using reduction

Perform segmented reduction on per-chunk result to compute
per-child-node triangle number

// small node filtering
for each node ch in nextlist in parallel

if ch is small node then
smalllist.add(ch)
nextlist.delete(ch)

end

In the initialization stage, global memory is allocated for tree con-
struction and the root node is created. Additionally, a streaming
step is performed to compute the AABB (axis aligned bounding
box) for each input triangle. In our current implementation, the
user-specified threshold for large/small node is set as T = 64.

3.1 Large Node Stage

As mentioned, the SAH evaluation in the conventional greedy op-
timization algorithm assumes that the current split produces two
leaf nodes. For large nodes, this assumption is almost always un-
true. The resulting estimation is far from accurate. Our splitting
scheme for large nodes is a combination of spatial median splitting
and “empty space maximizing”, which is highly effective for the
upper levels of the tree as noted in [Havran 2001]. Specifically, if

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Median Split

Figure: Taken from [8]

Surface Area vs. Ray Hits

Left: (Taken from [8])
shows a node being split
along its longest axis

Splits the node arbitrarily
along its longest axis

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Using heuristics effectively

Construction

Generate AABBs for all primitives

Put all graphics primitives in root node

Classify all nodes with over 64 primitives as large

Classify all nodes with 64 or less primitives as small

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Small Nodes

Split candidates at all primitive’s AABBs

Run SAH approximation on all split candidates

Split on lowest cost candidate

Filter graphics primitives down to new children

Overlapping primitives are brought down to both new children

Large Nodes

If applicable use empty space minimizing

Else use median split

Filter graphics primitives down to new children

Overlapping primitives are clipped

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Results

(a) Toys (b) Museum (c) Robots

(d) Kitchen (e) Fairy Forest (f) Dragon

Figure 4: Test scenes for kd-tree construction and ray tracing. (a)
11K triangles, 1 light; (b) 27K triangles, 2 lights, 2 bounces; (c)
71K triangles, 3 lights, 1 bounce; (d) 111K triangles, 6 lights, 8
bounces; (e) 178K triangles, 2 lights; (f) 252K triangles, 1 light.

Scene
Off-line CPU builder Our GPU builder
Ttree Ttrace SAH Ttree Ttrace SAH

Fig. 4(a) 0.085s 0.022s 79.0 0.012s 0.018s 67.9

Fig. 4(b) 0.108s 0.109s 76.6 0.017s 0.108s 38.3

Fig. 4(c) 0.487s 0.165s 68.6 0.039s 0.157s 59.7

Fig. 4(d) 0.559s 0.226s 49.6 0.053s 0.207s 77.8

Fig. 4(e) 1.226s 0.087s 74.4 0.077s 0.078s 94.6

Fig. 4(f) 1.354s 0.027s 124.2 0.093s 0.025s 193.9

Table 2: Comparing kd-tree construction time Ttree, ray tracing
time Ttrace and SAH costs between an offline CPU builder and our
GPU builder. All rendering times are for 1024× 1024 images.

lel are GPU code; others are CPU code. We also need to specify
the number of thread blocks and threads per block for the parallel
primitives and the code fragments marked by in parallel. In our
current implementation, we use 256 threads for each block. The
block number is computed by dividing the total number of parallel
threads by the number of threads per block.

During kd-tree construction, we store all data as dynamic lists in
linear device memory allocated via CUDA. List size is doubled
whenever more memory is required. This allows us to avoid high
overhead in CUDA memory management after an initial run, at the
cost of more memory consumption. For structures with many fields
such as nodes and triangles, we use structure of arrays (SoA) in-
stead of array of structures (AoS) for optimal GPU cache perfor-
mance.

From its description, the reader may have noticed that our algo-
rithm also frequently calls certain parallel primitives such as reduce
and scan. Many of these primitives have been efficiently imple-
mented and exposed in CUDPP [Harris et al. 2007]. Most con-
ditional program flows in the pseudo code are handled using list
splitting, which is also a standard GPU primitive with optimized
implementation [Sengupta et al. 2007]. The conditional programs
in Algorithm 3 (lines 12 ∼ 15) will be serialized and result in
performance penalty, but the chunk structure used to perform most
computations in the per-chunk standard reduction in Algorithm 2
avoid these conditional program flows. Compared to per-chunk
standard reductions, the segmented reduction in Algorithm 3 does
not consume any significant processing time, and its performance
issues can thus be safely ignored.

#procs Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f)

16 0.037s 0.057s 0.197s 0.260s 0.463s 0.564s

32 0.022s 0.034s 0.107s 0.139s 0.242s 0.292s

48 0.018s 0.026s 0.077s 0.098s 0.169s 0.202s

64 0.016s 0.022s 0.063s 0.079s 0.133s 0.157s

80 0.015s 0.020s 0.055s 0.068s 0.113s 0.132s

96 0.014s 0.019s 0.049s 0.060s 0.100s 0.116s

112 0.013s 0.018s 0.046s 0.056s 0.091s 0.105s

128 0.012s 0.017s 0.039s 0.053s 0.077s 0.093s

speedup 3.08 3.35 5.05 4.90 6.01 6.06

Table 3: Scalability of our kd-tree construction algorithm on a
GeForce 8800 ULTRA graphics card. The bottom row shows the
speedup going from 16 to 128 processors. Note that our algorithm
scales better with large scenes. However, the scalability is still sub-
linear mainly because the total running time contains a constant
portion due to the overheard of CUDA API.

Figure 5: The tree construction time decreases quickly with the in-
crease in the number of GPU processors before reaching a plateau.

3.5 Results and Discussion

The described algorithm has been tested on an Intel Xeon 3.7GHz
CPU with an NVIDIA GeForce 8800 ULTRA (768MB) graphics
card. Parameters (e.g., T and N) used during tree construction are
intentionally kept the same for all scenes.

We compare our GPU algorithm with an off-line CPU algorithm
which always uses the greedy SAH cost to calculate optimal split
planes and clips triangles into child nodes [Wald and Havran 2006].
Table 2 summarizes the comparison results for several publicly
available scenes as shown in Fig. 4. As shown, our kd-tree construc-
tion algorithm is 6 ∼ 15 times faster for all scenes. The quality of
the trees is assessed in two ways. First, we compute the SAH costs.
Second, we evaluate the practical effect of tree quality on render
time by using the constructed trees in a ray tracer as described in
Section 4. As shown in the table, our algorithm generates lower
SAH costs for Toys, Museum and Robots, but higher SAH costs
for Kitchen, Fairy Forest and Dragon. In all cases, our trees always
offer better rendering performance, which attests to the high qual-
ity of our trees in practical applications. Note that SAH cost is the
expected cost for a ray to traverse the entire tree, whereas actual kd-
tree traversal terminates at the first node of intersection. Therefore
there is no strict correlation between the SAH costs and the actual
ray trace time. SAH cost is only one way to measure the quality of
kd-trees. The most important metric is how well the resulting tree
accelerates ray traversals, which is the ultimate goal of an SAH tree
construction strategy.

126:6 • K. Zhou et al.

ACM Transactions on Graphics, Vol. 27, No. 5, Article 126, Publication date: December 2008.

Test Scenes From [8]

(a) 11K triangles, 1 light

(b) 27K triangles, 2 lights

(c) 71K triangles, 3 lights

(d) 111K triangles, 6 lights

(e) 178K triangles, 2 lights

(f) 252K triangles, 1 light

#processors
0 16 32 48 64 80 96 112 128

0

100

200

300

400

500

600

tr
ee

 c
on

st
ru

ct
io

n
tim

e
(m

s) Toys

Museum

Robots

Kitchen

Fairy

Dragon

Scaling From [8]

Scales well in the beginning

Tends to taper off toward 80
processors

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Results

Performance

Scene [6] [5] GPU builder

(a) 10.5fps 23.5fps 32.0fps

(b) n/a n/a 8.00fps

(c) n/a n/a 4.96fps

(d) n/a n/a 4.84fps

(e) 2.30fps 5.84fps 6.40fps

(f) n/a n/a 8.85fps

[6] used AMD Opteron 2.6GHz CPU

[5] used Dual Intel Core2 Duo 3.0GHz CPU

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

Conclusion

Conclusion

GPU builders are faster than CPU builders

GPU builders still need to get faster

GPU builders show promise

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

F. S. Hill, Jr.
Computer Graphics Using Open GL.
Macmillan Publishing Company, second edition.

J. Goldsmith and J. Salmon.
Automatic creation of object hierarchies for ray tracing.
Computer Graphics and Applications, IEEE, 7(5):14 –20, May
1987.

B. Grass.
X3D class examples of ray tracing.
https:

//www.movesinstitute.org/pipermail/x3d-courses/

attachments/20110428/0943b920/attachment-0004.jpg,
Apr. 2011.

J. D. MacDonald and K. S. Booth.
Heuristics for ray tracing using space subdivision.
The Visual Computer, 6:153–166, 1990.
10.1007/BF01911006.

https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg
https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg
https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg

Introduction Bounding Boxes Kd-trees Heuristics for Ray Tracing GPU kd-tree construction algorithm

M. Shevtsov, A. Soupikov, and A. Kapustin.
Highly parallel fast kd-tree construction for interactive ray
tracing of dynamic scenes.
Computer Graphics Forum, 26(3):395–404, 2007.

I. Wald, S. Boulos, and P. Shirley.
Ray tracing deformable scenes using dynamic bounding volume
hierarchies.
ACM Trans. Graph., 26, January 2007.

I. Wald and V. Havran.
On building fast kd-trees for ray tracing, and on doing that in
O(n log(n)).
In Interactive Ray Tracing 2006, IEEE Symposium on, pages
61 –69, Sept. 2006.

K. Zhou, Q. Hou, R. Wang, and B. Guo.
Real-time kd-tree construction on graphics hardware.
ACM Trans. Graph., 27:126:1–126:11, December 2008.

	Introduction
	What is Ray Tracing

	Bounding Boxes
	Kd-trees
	Fundamentals
	Graphical Representation
	Kd-trees for ray tracing

	Heuristics for Ray Tracing
	Surface Area Heuristic (SAH)
	Empty Space Minimizing and Median Split

	GPU kd-tree construction algorithm
	Under the hood
	Results

