Implementation of Kd-Trees on the GPU to
Achieve Real Time Graphics Processing

Will W. Martin

December 3 2011

University Of Minnesota
Computer Science Senior Seminar

Introduction
®00

Ray Tracing

What Does Ray Tracing Do?

@ Creates high quality graphics

@ Renders reflections,
refraction, shading

@ Takes minutes to hours to
render single frame on CPU

4

s

Figure: Taken from [3]

Introduction
oeo

Table of Contents

@ Introduction

© Bounding Boxes

© Kd-trees

@ Heuristics for Ray Tracing

© GPU kd-tree construction algorithm

Introduction
ooe

What is Ray Tracing

How Does Ray Tracing Work?

@ Creating a 3-dimensional scene.

@ Shooting “light” rays through the scene.

buffer

Figure: Taken from [1]

Bounding Boxes

Axes Aligned Bounding Boxes

NG P? (AABBs)
’ / / @ A rectangular prism
/ : surrounding an object

@ All faces are axis aligned

@ Encloses primitives and
other AABBs

Y vl @ Used to simplify intersection
_ j calculations

— @ Look very similar to
graphical representations of
kd-trees

Figure: Based on [2]

Kd-trees
[Jelele]

2-D Kd-Tree

Tree Structure
@ Binary tree sorted on k dimensions.

@ Data sorted on x.

X
<

[271][0.31]) | [18,61]| 9.8
[4,9] [7,2]

~ DN =
©O© N W

x<5 x>5

(€]
w

©O© 00
o O N

Kd-trees
0®00

2-D Kd-Tree

Tree Structure

@ Binary tree sorted on k dimensions.

@ Data sorted on x then y.

= X
w|'<

N
~

X<5,y=7 Qvivg NN x>5, y=6

RTINS
N W O

(8 6 | (0,31 [4,9]|17,21]

9 8 x<5,y<7 x<5,y>7 x>5,y<6 x>5,y>6

Kd-trees
coe0

3-D Kd-Tree

Tree Structure
@ Binary tree sorted on k dimensions.

@ Data sorted on x.

[12,1,51][13,5,31] || [16,4, 91][18,9, 31]
32,51 [6,8, 8]

W W N X

© 00 Ao Ol N R
W 0 OIS w o1 U1 N

x<4 x>4

o O O

Kd-trees
ocooe

3-D Kd-Tree

Tree Structure

@ Binary tree sorted on k dimensions.

@ Data sorted on y.

X y z

2 1 5

.

3 5 3 X< x>4,
S— e (32, 5] (6,8, 8] N
64 9 (21,5 [B531]649] [1893]
x<4,y<2 x<4,y>2 x>4,y<8 x>4,y>8

Kd-trees

3-D Tree (Graphical)

@000

Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 volume.

@ Each non-leaf node crates a split plane

;:2‘ 3,2,5] 6,8,8] ;zg' .
(215] [Bs3]es9] [B931]]|
x<4,y<2 X<4,y>2 x>4,y<8 x>4,y>8 = |

Kd-trees

3-D Tree (Graphical)

Oe00

Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The root node splits on x=4

ZA

x=4 |
x<4, x>4,]
y=2 |B:2,5] 688]

21,51 [Bs3]ieas] [B93]]
x<4,y<2 x<4,y>2 x>4,y<8 x>4,y>8 —

Kd-trees

3-D Tree (Graphical)

ooeo

Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The right child splits on y=2

X=

x<4, x>4, o
y=2 688 | "]
[21,5] [Bs31]ieas] [B93]]]
x<4,y<2 x<4,y>2 x>4,y<8 x>4,y>8 —

Kd-trees

3-D Tree (Graphical)

oooe

Split Planes
@ Assume this kd-tree fits in a 10 x 10 x 10 area.

@ The left child splits on y=8

x<4,

y=2 7
[21,5] [B53l]649] [B93]]
x<4,y<2 x<4,y>2 x>4,y<8 x>4,y>8 —

Kd-trees
°

Kd-trees constructed for ray tracing

Specialized kd-trees
@ All non-leaf nodes are used for sorting.
o Kd-trees for ray tracing store all graphics data in leaf nodes.

@ Heuristics are used to maximize the efficiency of kd-trees for
ray tracing

Heuristics for Ray Tracing

Heuristics

Heuristics

@ Experienced based technique for problem solving

@ Used to narrow search spaces when exhaustive searches are
impractical

v
Goals

@ Minimize surface area

@ A node split into 2 nodes of minimal surface area will be
balanced

@ Split nodes into cubes

Heuristics for Ray Tracing

Surface Area vs Intersections

Number of intersecting rays

5000
4500 f
4000 .f
3500 .f
3000 .f
2500 f
2000 f
1500
1000 J
500
0

Experimental verification of surface area metric

e

rd

o
-
o o

o
.

o
-}

o o
o
&8
o
o

40

60

80 100 1

20 140 160 180

Surface area

Figure: Taken from [4]

200

Surface Area vs. Ray Hits
o Left: (Taken from [4])
Shows number of
intersections to surface area
of bounding box

@ Strong linear relationship

Heuristics for Ray Tracing
°

SAH Approximation

CL[x]SAL[X] n Cr[x]SAR[X]
SAparent SAparent

Used in [7]

Cts - Cost of traversing a node

C; and Cg - Cost of left and right child

SA; and SAg - Surface area of left and right child

SAparent - Total surface area of node being split

SAH[x] = Ces + (1)

Heuristics for Ray Tracing
®00

Empty Space Minimizing

larger Node Surface Area vs. Ray Hits

C

than €, o Left: (Taken from [8])
Cut off empty space | _ shows empty space being
cut off a node

@ Splits the node to cut off
empty space

@ Requires a piece of the node
larger than C, to be empty

Figure: Taken from [8]

Heuristics for Ray Tracing

oeo

Median Split

Surface Area vs. Ray Hits
o Left: (Taken from [8])
T- shows a node being split

along its longest axis

@ Splits the node arbitrarily
along its longest axis

Figure: Taken from [8]

Heuristics for Ray Tracing

ooe

Median Split

Surface Area vs. Ray Hits
o Left: (Taken from [8])
T- shows a node being split

along its longest axis

@ Splits the node arbitrarily
along its longest axis

Figure: Taken from [8]

GPU kd-tree construction algorithm
[Ie]

Using heuristics effectively

Generate AABBs for all primitives
Put all graphics primitives in root node
Classify all nodes with over 64 primitives as large

Classify all nodes with 64 or less primitives as small

GPU kd-tree construction algorithm
oe
Small Nodes

@ Split candidates at all primitive’s AABBs
Run SAH approximation on all split candidates
Split on lowest cost candidate

Filter graphics primitives down to new children

Overlapping primitives are brought down to both new children

Large Nodes

@ If applicable use empty space minimizing
@ Else use median split
o Filter graphics primitives down to new children

@ Overlapping primitives are clipped

GPU kd-tree construction algorithm

{ Jele}

Results

600

= ——Toys
£ 500 =W=NUseum
é . \ Robots
c =>=Kitchen
(b) Museum (c) Robots % 300 \ =¥~ Fairy
£ Dragon
1 g 200 \ \ ’
§ 100 \‘\\"\’(\
_ ey,
(d) Kitchen (¢) Fairy Forest () Dragon o 2 - ; - - -
0 16 32 48 64 80 96 112 128
Test Scenes From [8] #processors
(a) 11K triangles, 1 light
(b) 27K triangles, 2 lights Scaling From [8]
(¢) 71K triangles, 3 lights @ Scales well in the beginning
(d) 111K triangles, 6 lights @ Tends to taper off toward 80
(e) 178K triangles, 2 lights processors
(f) 252K triangles, 1 light

GPU kd-tree construction algorithm
oceo

Results

Performance

Scene [6] [5] GPU builder

(a) | 10.5fps | 23.5fps 32.0fps
(b) n/a n/a 8.00fps
(c) n/a n/a 4.96fps
(d) n/a n/a 4 .84fps
(e) | 2.30fps | 5.84fps 6.40fps
(f) n/a n/a 8.85fps

@ [6] used AMD Opteron 2.6GHz CPU

@ [5] used Dual Intel Core2 Duo 3.0GHz CPU

GPU kd-tree construction algorithm
ooe

Conclusion

@ GPU builders are faster than CPU builders
@ GPU builders still need to get faster

@ GPU builders show promise

GPU kd-tree construction algorithm
ooe

[F.S. Hill, Jr.
Computer Graphics Using Open GL.
Macmillan Publishing Company, second edition.

[J. Goldsmith and J. Salmon.
Automatic creation of object hierarchies for ray tracing.
Computer Graphics and Applications, IEEE, 7(5):14 —20, May
1987.

[3 B. Grass.
X3D class examples of ray tracing.
https:
//www.movesinstitute.org/pipermail/x3d-courses/
attachments/20110428/0943b920/attachment-0004. jpg,
Apr. 2011,

[1 J. D. MacDonald and K. S. Booth.
Heuristics for ray tracing using space subdivision.
The Visual Computer, 6:153-166, 1990.
10.1007/BF01911006.

https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg
https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg
https://www.movesinstitute.org/pipermail/x3d-courses/attachments/20110428/0943b920/attachment-0004.jpg

GPU kd-tree construction algorithm
ooe

[M. Shevtsov, A. Soupikov, and A. Kapustin.
Highly parallel fast kd-tree construction for interactive ray
tracing of dynamic scenes.
Computer Graphics Forum, 26(3):395-404, 2007.

[§ 1. Wald, S. Boulos, and P. Shirley.
Ray tracing deformable scenes using dynamic bounding volume
hierarchies.
ACM Trans. Graph., 26, January 2007.

[I. Wald and V. Havran,
On building fast kd-trees for ray tracing, and on doing that in
O(n log(n)).
In Interactive Ray Tracing 2006, IEEE Symposium on, pages
61 —69, Sept. 2006.

@ K. Zhou, Q. Hou, R. Wang, and B. Guo.
Real-time kd-tree construction on graphics hardware.
ACM Trans. Graph., 27:126:1-126:11, December 2008.

	Introduction
	What is Ray Tracing

	Bounding Boxes
	Kd-trees
	Fundamentals
	Graphical Representation
	Kd-trees for ray tracing

	Heuristics for Ray Tracing
	Surface Area Heuristic (SAH)
	Empty Space Minimizing and Median Split

	GPU kd-tree construction algorithm
	Under the hood
	Results

