
Recovery-Oriented Computing in Distributed Systems

Vincent Borchardt
Department of Computer Science

University of Minnesota, Morris
borch135@morris.umn.edu

ABSTRACT
Our computing lives are moving off the computers we own
to distributed systems we access through the internet, pop-
ularly known as the “cloud”. However, since we do not have
direct access to the computers in the cloud, we need to trust
the system, and part of that trust includes understanding
how those systems prevent and recover from failures, known
collectively as the systems’ fault tolerance. Recovery Ori-
ented Computing is a different approach to fault tolerance
that accepts that errors will happen and instead focuses on
the recovery time of the system. The paper discusses two
different types of distributed systems, grid computing and
stream computing, each using concepts from Recovery Ori-
ented Computing to improve fault tolerance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance, Reli-
ability, availability, and serviceability; C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms
Design, Performance, Reliability

Keywords
Stream computing, Grid computing, Cloud, Recovery Ori-
ented Computing

1. INTRODUCTION
Our computing lives, from our data to the majority of our

processing power, are generally moving off the computers we
sit in front of to computers we access through the Internet.
These computers, which are referred to as the “cloud”, are
part of very large systems, and the user only sees a small
part of that larger whole. This larger system is known as
a distributed system, and is made of many individual com-
puters which communicate in various ways.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

When the user does not have direct access to the system
that is doing most of their necessary work, they have to
blindly rely on the system, since it cannot be directly fixed
by the user. However, in direct contrast to this blind re-
liance, the parts of the system can each fail in many ways,
including individual failure of each part as well as failure
in communication between parts. Traditionally, protection
against faults in a system has been focused on stopping
faults from happening completely [3]. However, an easier
and more efficient way to protect against faults is to focus
on returning the system to normal after a fault occurs, and
this is the defining idea of Recovery-Oriented Computing [3].

This paper will focus on two different types of distributed
systems: one based on grid computing and one based on
stream computing. The grid computing systems we will dis-
cuss in Section 3 operate under strict time limits, and the
fault tolerance of those systems come from ensuring the use
of reliable sub-systems, as well as a hybrid technique of sav-
ing partial progress and duplicating other parts of the sys-
tem. The stream computing system discussed in Section 4
gathers information from various sources, and communicates
that information from different parts of the system in a fault-
tolerant way.

2. BACKGROUND

2.1 Fault Tolerance
When building a large system that includes unreliable

components, making the overall system reliable is difficult.
The process of detecting errors and doing useful things when
errors are detected is called fault tolerance [5].

The two main metrics used when considering if a system
is fault-tolerant are the mean time to failure (MTTF) of
the system and the mean time to repair (MTTR) of the
system [5]. The MTTF of a system is the average time until
the system fails in some way over a large number of cycles
of run-fail-repair. Similarly, the MTTR of a system is the
average time it takes to repair the system after a failure over
a large number of run-fail-repair cycles. The availability,
or uptime of the system is the total time the system was
running during the cycle (MTTF), divided by the total time
of the cycle (MTTF + MTTR), which gives a percentage of
the time the system was up. The downtime is the time the
system was not available as a percentage of the entire cycle
time, which is the MTTR divided by the MTTF + MTTR.

Source of Failure Percentage
Operator Error 51%
Hardware Error 15%
Software Error 34%

Table 1: Sources of website failures from [3]. In-
cludes only failures with a visible cause.

2.2 Recovery Oriented Computing
The ultimate goal for a system is to have an uptime of

100%, but this requires either a system that never fails or
a system that takes no time to recover, both of which are
impossible. Still, the difference between 99% and 99.999%
uptime can be millions of dollars, since one percent of a
year is 80 hours, and the cost per hour of downtime for a
large service can range from $200,000 for an internet service
to $6,000,000 for a stock brokerage [3]. Using the extreme
example of a stock brokerage, increasing the uptime from
99% to 99.999% would decrease the downtime from 80 hours
to less than 5 minutes, reducing the cost by nearly six orders
of magnitude.

There are two ways to increase uptime: increasing the
MTTF or decreasing the MTTR. Since most systems are
built with the mindset of completely eliminating errors, they
already have a high MTTF. However, errors will happen in
systems, no matter how much you try to mitigate them. To
further that point, Table 1 shows what percentage of fail-
ures from three websites were caused by operator error (the
person maintaining the system makes a mistake), hardware
error (a failure in the physical components of the system),
and software error (the programming of the system has a
mistake), and over half of the errors were caused by the op-
erators of the system [3]. In those cases, the MTTF deter-
mined from the hardware and software used by the system
is much less important.

Since the MTTF of most systems is already high, decreas-
ing MTTR is a much easier way to increase uptime in most
systems. Decreasing the MTTR to improve the fault toler-
ance of a system is the basis of Recovery Oriented Comput-
ing (ROC), which says that faults and errors “are facts to
be coped with, not problems to be solved” [3]. Even though
ROC focuses on MTTR, the MTTF is not ignored: Since
ROC forces you to understand failures in order to recover
from them, that understanding can be used to help try and
reduce the number of failures, increasing MTTF.

2.3 Distributed Systems
In general, a distributed system is a collection of comput-

ers working together in order to accomplish a common goal
that is larger than any single computer could accomplish
in a reasonable amount of time. There are many types of
distributed systems that are classified based on the types of
problems they are designed to solved, as well as how they
solve those problems. The systems discussed in this part fall
into two categories: grid computing and stream computing.

A grid system is a distributed system that has tightly cou-
pled components, with each computer working on a small
part of the large problem. This type of distributed system
is most similar to a traditional supercomputer (which has
multiple processors in a single computer), since the basic
problem is the same for each category of computers [7]. For
example, if you had a very large array, and had many com-

puters processing small chunks of that array, it does not
matter which computer processes each part of the array, as
long as the entire array is processed. In that sense, the com-
puters in the grid are interchangeable.

A system using stream computing is different from a stan-
dard distributed system in the way it processes queries for
data. With a standard query, the data source is searched
once and the data retrieved is not changed; in order to get
new data, the database must be queried again. The idea of
stream computing is to use “continuous queries” to get data
and continually update it as the data changes [2]. For exam-
ple, if you wanted to keep track of your location using GPS,
instead of having to send a query whenever you think you
have moved, you would just use a continuous query with
stream computing, and your information would update as
soon as the information from the GPS changes. More con-
ceptually, a system using stream computing gets its data
from multiple continuous queries (or ”streams”) from differ-
ent but related sources, and uses that data to determine a
larger whole.

2.4 Remote Procedure Calls
If a system needs to perform an action that cannot rea-

sonably be performed by one computer, that action can be
broken up into many smaller steps, and those steps can be
performed by different computers in a distributed system.
In order to communicate between the computers, remote
procedure calls (RPCs) are used to send messages between
computers, and these low-level messages are represented as
standard procedure calls [4]. These messages are sent from
the part of the system the procedure is called from (the
client) to the part of the system performing the action (the
service), and the two communicate to ensure the action is
performed. Even though high level programming languages
such as Java disguise the use of RPCs as much as possible,
the use of RPCs introduces new errors dealing with the low-
level message passing, most notably when the client receives
no response from the service, and these message-passing er-
rors require additional fault tolerance.

An example where RPCs is used is online shopping. For
example, if you purchase an item from a large online re-
tailer, the retailer’s system may need to check if your credit
card is still valid while also checking if the item is still in
stock before serving you a web page asking you to confirm
your purchase [6]. The retailer’s website, the retailer’s in-
ventory system, the credit card company’s validation service
are likely all on different computers, and RPCs are used to
communicate between the systems.

The ideal case when a client sends a message is for the
service to execute the command exactly once, but when the
client receives no response from the service, the client does
not know if the service executed the command or not [4].
In these cases, the client could simply resend the message
after a predetermined timeout, in order to ensure the service
executes the command at least once. However, in many
distributed systems, this can cause problems. Going back to
the online shopping example, having even the chance that
your credit card could be charged twice while trying to buy
an item is not acceptable to the customer. On the other
hand, the client could attempt to check in with the service,
only resending the original command after it confirms the
service failed on the first command, ensuring the command
is executed at most once.

3. TIME-CRITICAL GRID COMPUTING

3.1 Examples of Grid Computing Systems
Although speed is a concern for almost all systems in

some sense, some systems are time-critical, either because
the data set they are working with is rapidly changing or be-
cause the system is part of an inherently risky action. These
systems have a strict time limit to execute the process in,
and as such the goal is to maximize the benefit in that time.
This benefit is measured with a benefit function [9] which
varies based on the application domain. In addition to being
fast, these systems need to be fault-tolerant, and that fault
tolerance cannot come with a significant loss in speed.

The main example we will look at in this paper is real-time
rendering of 2-D images from a 3-D data set, specifically
rendering tissue volumes during surgery [9]. This is time-
critical because the rendering happens in real-time. If a
notable event is shown in the image (such as an abnormality
in the tissue), the surgeon can request detailed information
on the event. The goal is for an image to be rendered and
displayed, and this has to happen in a fixed amount of time.

The secondary example in this paper is a system used for
data mining, or the act of finding patterns in a large collec-
tion of data [1]. The structure of the data-mining system is
that when a user starts a data-mining operation, that op-
eration is first communicated to a global unit. That global
unit then communicates that operation to a group of local
units, and those local units perform the actual data mining.
When the local units each finish mining their piece of the
larger collection of data, that unit communicates that infor-
mation back to the global unit, which integrates the data it
receives from all the local units. When all the local units
have completed their data mining, the global unit commu-
nicates the results back to the user.

3.2 Checkpointing and Replication
The simplest way to implement fault tolerance in dis-

tributed systems is to duplicate the entire system multiple
times, so you can switch over to a backup system if the
main unit fails. The easiest way to implement a duplication
strategy is to run the backup systems concurrently with the
main system, but that has many problems. Running many
systems simultaneously will cause the performance of each
individual system to fail, which particularly causes problems
for time-critical systems [9]. In addition, in some systems
like the data mining system, some of the actions are non-
deterministic [1], which means that random actions would
have to be consistent across all the backup systems, which
is not possible.

In grid systems like the ones described in Section 3.1, the
system consists of one large, main process that calls many
small processes, and most of those small processes are called
repeatedly. For example, rendering a small section of tissue
is not that much work relative to the whole system. With
these processes there is not a lot of state to be saved, com-
pared with the total size of the application. Since there is
not much to save, you can efficiently save that small amount
of state and then propagate those changes to the backup
systems in a process known as checkpointing. This check-
pointing allows the backup systems to be updated without
incurring the overhead of running all of the backup systems.

Cesario and Talia use checkpointing in a fault-tolerance
strategy known as primary-backup [1], which works as de-

scribed above: instead of having multiple units running, the
primary-backup strategy only has one unit running at any
one time (the primary unit), but there are a number of
backup units ready to take over if the primary unit fails. If
and when the primary unit fails during the collection of data,
a new primary unit is selected from the backups. Using the
primary-backup strategy, the new architecture has r global
units, one of which is the initial primary unit and the rest are
backup units. Each backup unit has a failure-detection unit
associated with it, and these backup and failure-detection
units are linked to the necessary resources during the first
phase of the data-mining process.

There are three phases to Cesario and Talia’s primary-
backup strategy for the data mining system: checkpointing,
failure detection, and recovery. During the checkpointing
phase, the change of state of the primary unit is sent to each
of the r− 1 backup units, and this happens after the global
unit integrates a segment of data from the local units. Fail-
ures can be detected because the primary global unit sends a
heartbeat message to each of the failure-detection units peri-
odically while processing the data, and if this message is not
received within a given time, the failure-detection unit as-
sumes that the primary unit has failed. If a failure-detection
unit detects that the primary unit has failed, it awakes its
associated backup unit and that global unit takes control of
the data-mining operation as the new primary unit, sends a
heartbeat message to the remaining failure-detection units,
and continues mining from the last checkpoint sent. This
primary-backup strategy protects against failures, while in-
creasing the calculation time by only 4% compared to a sys-
tem without fault tolerance.

In contrast, for the time-critical systems discussed by Zhu
and Agrawal, although many of the processes are small enough
for a checkpointing-based strategy to work, some have too
much state to be efficiently checkpointed. Instead, there are
three possibilities for those larger actions. While the first
possibility is to simply replicate the part of the system for
that process, the other two look at the overall benefit we
would lose on a failure or gain on a restart versus the time
needed. If the process that failed just started, it can just
be restarted, since it probably had not gained much ben-
efit, and the time used would be minimal. On the other
hand, if the process was almost finished and we can recover
the results, we can just accept the benefit gained since the
time taken for a restart or to execute fault-tolerance pro-
cedures would be large compared to the remaining benefit.
If the process falls between these two extremes, we will use
the checkpointing or replication techniques described above,
depending on the size and state involved in the process.

3.3 Reliable Time-Critical Systems
The focus for fault tolerance in Zhu and Agrawal’s system

is obtaining reliable resources. To explain the process and
algorithms for obtaining those resources, they define several
concepts [9]. Each time-critical application is made of a set
of services S1, S2, ..., Sn, and the application in general has a
time constraint Tc. Each application has a benefit function
B (as described in Section 3.1) and a baseline benefit B0 it
needs to provide in order to be considered useful. The goal is
to provide the baseline B0 within Tc, while maximizing B.
For the tissue volume rendering system from Section 3.1,
the benefit function is based on the error tolerance and the
image size.

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (Θ) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to Θ1, we have
[B(Θ1)/B0 = 178%, R(Θ1, 20) = 0.28]. While with the selected
resources in Θ2, we have [B(Θ2)/B0 = 72%, R(Θ2, 20) = 0.85].
We can not say Θ1 is a better resource configuration than Θ2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan Θ1 dominates another resource plan Θ2, if and only if Θ1

is partially larger than Θ2(Θ1 >p Θ2)
B(Θ1) ≥ B(Θ2) ∧R(Θ1, Tc) ≥ R(Θ2, Tc), and (6)

B(Θ1) > B(Θ2) ∨R(Θ1, Tc) > R(Θ2, Tc) (7)

In the absence of any preference information, a set of solutions for Θ
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor α.

max
Θ∈PO

α× (B(Θ)/B0) + (1− α)×R(Θ, Tc) (8)

The trade-off factor, α, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter α. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of α.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of α
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of α we choose is less than 0.5. In the second
step, we further refine the value of α. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ΘE and ΘR, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of α. If the environment is consid-
ered reliable, we increase the value of α, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ΘR. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of α, starting from 0.5, and work
with the configurations in the set ΘE .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (Θ) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to Θ1, we have
[B(Θ1)/B0 = 178%, R(Θ1, 20) = 0.28]. While with the selected
resources in Θ2, we have [B(Θ2)/B0 = 72%, R(Θ2, 20) = 0.85].
We can not say Θ1 is a better resource configuration than Θ2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan Θ1 dominates another resource plan Θ2, if and only if Θ1

is partially larger than Θ2(Θ1 >p Θ2)
B(Θ1) ≥ B(Θ2) ∧R(Θ1, Tc) ≥ R(Θ2, Tc), and (6)

B(Θ1) > B(Θ2) ∨R(Θ1, Tc) > R(Θ2, Tc) (7)

In the absence of any preference information, a set of solutions for Θ
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor α.

max
Θ∈PO

α× (B(Θ)/B0) + (1− α)×R(Θ, Tc) (8)

The trade-off factor, α, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter α. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of α.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of α
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of α we choose is less than 0.5. In the second
step, we further refine the value of α. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ΘE and ΘR, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of α. If the environment is consid-
ered reliable, we increase the value of α, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ΘR. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of α, starting from 0.5, and work
with the configurations in the set ΘE .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

Figure 1: Benefit percentage of VolumeRendering
system with different selection heuristics from [9].
The x represents a failed run. (a) shows the results
using the efficient resources, (b) shows the results
using the reliable resources. (The y-axes differ.)

Given a selection of resources Θ, there are two straightfor-
ward ways to select which resources to use while managing
failures. On one hand, you can use the most efficient re-
sources. On the other hand, you can use the most reliable
resources. However, neither of these met Zhu and Agrawal’s
needs for maximizing benefit. Figure 1 shows the results of
ten test runs for the volume rendering system under each ap-
proach, showing a percentage calculated as B(Θ)/B0; 100%
or higher means the achieved benefit exceeded the required
baseline benefit B0. Using the efficient resources, two runs
succeeded in providing benefit greater than the baseline ben-
efit, but eight runs had failures and thus failed to meet the
baseline benefit. Using the reliable resources, although only
one run failed, none of the runs exceeded the baseline ben-
efit, with an average benefit percentage of 70%.

When failures occur in a system, they generally do not
occur purely randomly or in isolation. Each node N i of the
system has a reliability value Ri

N ∈ [0, 1], where 0 means
the node always fails and 1 means the node never fails. Sim-
ilarly, the connection between nodes i and j, Li,j , has an
independent reliability value Ri,j

L ∈ [0, 1]. The possibility
of failure of each component increases as uptime increases
(which correlates to the MTTF), as well as when the work-
load on the system increases. Multiple failures can also oc-

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (Θ) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to Θ1, we have
[B(Θ1)/B0 = 178%, R(Θ1, 20) = 0.28]. While with the selected
resources in Θ2, we have [B(Θ2)/B0 = 72%, R(Θ2, 20) = 0.85].
We can not say Θ1 is a better resource configuration than Θ2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan Θ1 dominates another resource plan Θ2, if and only if Θ1

is partially larger than Θ2(Θ1 >p Θ2)
B(Θ1) ≥ B(Θ2) ∧R(Θ1, Tc) ≥ R(Θ2, Tc), and (6)

B(Θ1) > B(Θ2) ∨R(Θ1, Tc) > R(Θ2, Tc) (7)

In the absence of any preference information, a set of solutions for Θ
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor α.

max
Θ∈PO

α× (B(Θ)/B0) + (1− α)×R(Θ, Tc) (8)

The trade-off factor, α, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter α. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of α.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of α
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of α we choose is less than 0.5. In the second
step, we further refine the value of α. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ΘE and ΘR, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of α. If the environment is consid-
ered reliable, we increase the value of α, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ΘR. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of α, starting from 0.5, and work
with the configurations in the set ΘE .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

Figure 2: Benefit percentage of VolumeRendering
system with multiple application copies and opti-
mized resources from [9].

cur, and those failures can happen over a short time period,
or even simultaneously.

In order to maximize reliability of the system and meet
the baseline benefit, the benefit function B(Θ) and the re-
liability function R(Θ, Tc) must both be maximized while
meeting the baseline benefit and staying within the time
constraint. However, since trade-offs must be made between
efficiency and reliability, there is not a single solution to
the problem. In our case, the solution chosen is based on a
trade-off factor α, which is higher if the resources are gener-
ally more reliable1. The solution Θ is then the solution with
the maximum weighted sum of the benefit percentage and
the reliability:

α× (B(Θ)/B0) + (1− α)×R(Θ, Tc) (1)

To find which resources Θ̂ from the full set of resources
are the best for the current situation, a relatively simple
algorithm is used. The algorithm starts with the objective
function described as Equation 1 above, the set of services
S, and the time constraint Tc. Using those parameters, the
system uses an evolutionary algorithm known as Particle-
swarm Optimization to determine a reasonable set of re-
sources based on the objective function. The idea behind
Particle-swarm Optimization is that there is a set of initial
resource configurations, and those configurations can be rep-
resented on a coordinate axis of the two parameters (in this
case, B(Θ) and R(Θ, Tc)) as particles [8]. At the start of
the algorithm, each of those particles moves in a random
direction. Once the particles are moving, the direction they
move is slightly adjusted towards the direction of its current
best value, as well as the direction of the current overall
best value (though the magnitude of the adjustments are
random). Once the particles converge, the overall algorithm
returns the corresponding resource set, which is presumably
a good resource set for the given environment.

In order to test the new algorithm for obtaining resources,
Zhu and Agrawal repeated the same tests as in Figure 1 us-
ing the new algorithm. In addition, Zhu and Agrawal im-
plemented a simple fault tolerance system of replicating the
system four times. The results of this test are shown in

1If the environment is generally reliable, more focus has to
be placed on the benefits, and similarly for the opposite case.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Alpha

B
en

ef
it

P
er

ce
nt

ag
e

HighReliable
ModReliable
HighUnreliable

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alpha

S
uc

ce
ss

−R
at

e

HighReliable
ModReliable
HighUnreliable

(b)

Figure 7. Varying the Value of the Parameter
α: VolumeRendering – (a) Benefit Percentage (b)
Success Rate

be very inefficient and focusing only on the reliability could degrade
the application benefit significantly.

The benefit experiment was repeated using the GLFS application.
We invoked time-critical events with 1, 2, 3, 4 and 5 hours as the time
constraints. Figures are not presented due to page limit. Similar obser-
vations can be made for this application. The benefit percentage from
our scheduling algorithm is up to 220%, 172% and 117% in the three
environments. Whereas, Greedy-E could achieve 176%, 128% and
87% on average and Greedy-E×R achieves 143%, 158% and 91%.
Similarly, Greedy-R can hardly reach the baseline benefit.

Success-Rate Comparison: Next we compared the performance
of the four scheduling algorithms in terms of the success-rate. We first
carried out the experiment using the VolumeRendering applica-
tion. As illustrated in Figure 8(a), in a highly reliable environment,
we can achieve 90% to 100% from our algorithm. In comparison,
the success-rate for Greedy-E and Greedy-E × R is 80% and
90%, respectively. The Greedy-R can achieve 100% success-rate.
In an environment where resources rarely fail, selecting the resources
regardless of their reliability values will not significantly impact the
application performance. In such a case, we tune the weight factor
α in Equation 8 to favor the resource efficiency value. Therefore, we
can achieve better benefit while minimizing the possibility of resource
failure during the event handling, comparing to the other three heuris-
tics. When the application is executed in a highly unreliable envi-
ronment, as the shown in Figure 8 (c), the success-rate of Greedy-E
and Greedy-E×R dramatically drop to 40% and 60%, respectively.
This also explains the benefit percentage drop we discussed previously.
Now our approach tunes the α parameter to favor the resource reliabil-
ity. Thus, we can still reach the baseline benefit with the success-rate
of 80%. Note that failure recovery is not invoked for this experiment,

as we consider this in the next subsection. Similar observations can
be made from the moderately reliable environment, as illustrated in
Figure 8 (b). We also used the GLFS application for the success-rate
comparison. Results are demonstrated in Figure 9. The GLFS applica-
tion using our algorithm can achieve 100%, 90% and 80% in the three
computing environments, outperforming other approaches.

Scheduling Overhead and Scalability: We now evaluate the over-
head of our scheduling algorithm and compare it with the overhead of
the other three heuristics. We first used VolumeRendering appli-
cation and the results are shown in Figure 10(a). Note that the schedul-
ing overhead is not dependent on the resource reliability. As shown in
the figure, when the time constraints associated with events get longer,
our algorithm spent more time on generating the resource configura-
tion. Our algorithm scheduled the application with six service compo-
nents onto 2 emulated grid sites, each with 64 nodes, in 6.3 seconds
in the worst case. It is less than 0.3% of the application execution
time, which is 40 minutes. In comparison, the other three heuristics
only caused 1 second or less. Although our approach is several times
slower, processing applications on the resources selected by our algo-
rithm can achieve much better benefit and success-rate. The overhead
of scheduling was also measured for the GLFS application and similar
trend was observed.

Furthermore, we evaluated the scalability of our scheduling algo-
rithm and we demonstrate the result in Figure 10(b). For this experi-
ment, we simulated 640 processing nodes for a grid computing envi-
ronment that is moderately reliable. We generated a synthetic appli-
cation with the number of service components varying as 10, 20, 40,
80, and 160. Dependencies are involved in each case. We compare
our proposed algorithm with the Greedy-E × R heuristic, since it
has the most scheduling overhead among the heuristics we have con-
sidered in this paper. We have observed that the scheduling overhead
increases linearly as the number of services increases and it takes less
than 49 seconds to schedule 160 service components on 640 nodes.
This demonstrates that our scheduling algorithm is scalable.

5.4 Performance of the Failure Recovery Sch
eme

We now evaluate our proposed failure recovery scheme. The re-
sults from the VolumeRendering application are shown in Fig-
ure 11. The results show that we could further improve the obtained
benefit, while achieving a 100% success-rate, in the presence of re-
source failures. Note that there are one, three and five failures that oc-
curred during application processing in the highly reliable, moderately
reliable and highly unreliable environments. We refer to the appli-
cation execution without invoking any failure recovery as Without
Recovery. As discussed in subsection 5.1, the approach by sim-
ply scheduling multiple copies of the entire application is referred to
as With Redundancy. We denote our approach as the Hybrid
Approach. When comparing with Without Recovery, our pro-
posed hybrid failure recovery scheme can improve the benefit percent-
age to 8%, 20%, and 33%, in the three computing environments. Fur-
thermore, the success-rate is increased to 100%. The reason is that
by applying the failure recovery scheme, we incur the cost of main-
taining checkpoints and synchronizing the status of multiple service
copies. In the case where failures occur rarely, the relative improve-
ment is small because of this overhead. However, as the failures occur
more frequently, the recovery procedure is invoked more frequently.
This leads to a more significant benefit gain. Meanwhile, our scheme
always achieve 100% success-rate. We also compared our scheme
with With Redundancy. An obvious drawback for this approach
is the high overhead. Furthermore, it is hard to schedule redundant
copies to resources where an successful run with a high benefit could
be obtained, in a highly heterogeneous environment. Thus, our pro-

Figure 3: Benefit percentage of VolumeRendering
based on α in three environments from [9].

Figure 2. Although no runs had failures, the average benefit
percentage was only 96%. Since this average means the aver-
age benefit still does not meet the baseline benefit required,
a more efficient fault-tolerance system was needed, and this
was the checkpointing system described in Section 3.2.

3.4 Overall Fault Tolerance
In order to see the impact of choosing reliable resources,

we will be looking at two specific graphs from Zhu and
Agrawal. Each of the graphs looks at the performance of
the volume rendering application in three environments: one
where resources are generally reliable, one where resources
are generally unreliable, and one in-between the two ex-
tremes. Figure 3 shows how the choice of α affect the over-
all benefit, including if the system meets the baseline ben-
efit B0. The graph shows that even though α corresponds
to the environment in the best cases (higher α for reliable
environments, lower α for unreliable environments), a hy-
brid approach is still necessary, even in the extreme cases.2

Figure 4 shows the benefit percentage of the volume render-
ing in each of the three environments, based on the three
failure-recovery techniques discussed: no failure recovery,
only replication, and the hybrid scheme with checkpointing
and replication. In all cases, the hybrid technique performs
better than the pure replication technique, and, with the
exception of the reliable environment, the hybrid technique
performs best. In addition, the hybrid technique exceeds the
baseline benefit in each case.

4. STREAM COMPUTING
As discussed in Section 2.3, a system based on stream

computing gets its data from many sources, which means
there are many parts of the system to manage. In addi-
tion, these parts of the system have many different divisions
within themselves, and these smaller divisions of the system
may or may not change the state of the larger system, and
thus need to be handled differently.

An important example of a stream computing system is
IBM’s System S. System S is a general system which could
be applied to many types of problems. The initial white

2The α values for 0 and 1 correspond to ignoring the effi-
ciency and reliability of the resources respectively, and the
graph shows those values get worse results.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

Figure 4: Benefit percentage of VolumeRendering
using different fault-tolerance systems from [9]. (a)
is the highly reliable environment, (b) is the mod-
erately reliable environment, (c) is the highly unre-
liable environment.

paper IBM released for System S detailed many pilot pro-
grams for the system, including processing data from radio
telescopes, analyzing data for financial markets, and moni-
toring manufactured computer chips for defects [2]. The use
of stream computing by System S allows it to tackle these
problems from multiple angles to get a more comprehen-
sive solution. Looking at the financial example, to predict
the direction a company’s stock price could move, System
S could combine the statistics from the past performance of
that stock, news reports about that company, and the im-
pact of the weather forecast on that company’s business to
get a prediction, then update that prediction based on how
all three of those factors change.

When the user wants System S to process a set of streams
to accomplish a specific task (such as predicting a stock
price), this is called submitting a job [6]. Submitting a job
has two major parts: first checking if the user has permis-
sion to submit the job, then actually registering the job in
the larger system and processing the data. These two parts
communicate with the larger system using RPC.

Since the state changes to the larger system cannot be du-
plicated, communicating with the larger system must use an
at-most-once RPC (as discussed in Section 2.4). However,
implementing a fault-tolerant at-most-once RPC is difficult
to do efficiently, since in addition to worrying about regis-
tering a job more than once, you also have to worry about
failures that happen during registration. The at-most-once
RPC implementation in System S has two basic parts. First,
the two parts of the procedure described above need to be
broken into two distinct parts. Second, after the first part
checks if the user has permission to submit the job, it as-
signs the job an ID that will be used in the second part
to actually register with the larger system (like reserving a
place in line), so that if the registration is interrupted, the
system still knows the ID and can attempt to resume where
the interruption occurred.

Most of the processes in System S were programmed in
the same pattern as submitting a job. They have two parts,
a part where the system is checked, and another where the
system is changed. The first part needs to get an ID to
reserve its place in line so the process can be completed,
even if there is a failure in the second transaction. These
processes do not affect one another, and once a processor
completes its part of processing the stream, its failure does
not affect the progress of processing the stream.

The result of this use of RPC is that the time to recover
(TTR) of the system is very small compared to the total
time of the operation. Wagle et al. showed this by induc-
ing crashes in many possible setups of System S, and then
delaying restarting the system for a set number of seconds.
In these tests, the difference in the total time taken for the
operations was almost equal to the artificial restart delay,
showing that the TTR was on the scale of milliseconds while
the total time for the operation was on the scale of seconds.

5. CONCLUSION
Through this paper, we have looked at two different types

of distributed systems, each of which handles fault tolerance
in a different way. The time-critical volume rendering grid
system evaluated the possible resources it could use based on
their reliability and efficiency, and chose which resources to
use based on the needs of the given system [9]. System S used
stream computing and was separated into small components

to quickly restart any component that failed, while using
reliable remote procedure calls to ensure changes in state
of the main system were performed at most once [6]. Each
of these approaches meets the specific needs of the system,
while using the ideas of Recovery Oriented Computing.

The main difference in the fault tolerance of the two sys-
tems comes in the way they solve their problems. The
stream computing system focuses on many separate systems
that do not relate to one another, so the RPC techniques
make the different parts work together. In contrast, the
grid computing systems are already tightly coupled and the
parts generally only interact with the main system, and not
with each other (like in the data mining system described by
Cesario and Talia [1]), so RPC is not worth the extra over-
head. Instead, the grid computing system can use a more
detailed system for selecting resources, which is not appro-
priate for the stream computing system since the resources
are always changing. This shows that Recovery Oriented
Computing can be used for many different systems, and in
different ways for each system.

6. REFERENCES
[1] E. Cesario and D. Talia. A failure handling framework

for distributed data mining services on the grid. In
Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference
on, pages 70 –79, February 2011.

[2] IBM. System S - Stream Computing at IBM Research.
http://download.boulder.ibm.com/ibmdl/pub/

software/data/sw-library/ii/whitepaper/SystemS_

2008-1001.pdf, 2008.

[3] D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry,
W. Tezzlaff, J. Traupman, and N. Treuhaft. Recovery
oriented computing (ROC): Motivation, definition,
techniques, and case studies. Technical report, U.C.
Berkley, 2002. http:
//roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf.

[4] J. H. Saltzer and M. F. Kaashoek. Principles of
Computer System Design Part 1. Morgan Kaufmann
Publishing. Chapter 4.

[5] J. H. Saltzer and M. F. Kaashoek. Principles of
Computer System Design Part 2. MIT Open
Courseware. Chapter 8, http://goo.gl/hhppt.

[6] R. Wagle, H. Andrade, K. Hildrum, C. Venkatramani,
and M. Spicer. Distributed middleware reliability and
fault tolerance support in System S. In Proceedings of
the 5th ACM international conference on Distributed
event-based system, DEBS ’11, pages 335–346, New
York, NY, USA, 2011. ACM.

[7] Wikipedia. Grid computing — Wikipedia, The Free
Encyclopedia, 2012. [Online; accessed 24-October-2012].

[8] Wikipedia. Particle swarm optimization — Wikipedia,
The Free Encyclopedia, 2012. [Online; accessed
25-October-2012].

[9] Q. Zhu and G. Agrawal. Supporting fault-tolerance for
time-critical events in distributed environments. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pages 32:1–32:12, New York, NY, USA, 2009. ACM.

