Introduction
[Jelelele}

Recovery Oriented Computing in Distributed

Systems

Vincent Borchardt

Department of Computer Science
University of Minnesota, Morris

November 30, 2012

Introduction
[¢] lele]e}

Traditional System Design

System designs are often built on unrealistic assumptions:
@ Systems do not fail.
@ When failures occur, they occur in isolation.
@ Failures only occur when components fail.

Emphasis is placed on preventing failures rather than
repairing failures.

Introduction
[e]e] lele}

Realities of Systems

Realities of systems:
@ Systems do fail in many ways.
@ Failures occur in many combinations of components.
@ Failures occur primarily when operators make errors.
More failures occur than expected.

Failures are difficult to repair.

Introduction
[e]e]e] o}

Costs of Failures

Well-managed systems generally are working 99% to 99.9%
of the time—systems are down 8 to 80 hours a year.

Each hour a system is down costs between $200,000 (a
commerce website) and $6,000,000 (a stock-trading system)
depending on how critical the system is [3].

Decreasing the time the system is down can save millions of
dollars a year.

Introduction
[e]e]e]e] }

Overview

e Introduction
@ Traditional System Designs

9 Fault Tolerance and Recovery Oriented Computing
@ Fault Tolerance Measurements
@ Recovery Oriented Computing

@ Distributed Systems
@ Grid Computing
@ Stream Computing

e Conclusion
@ Comparing the Systems

Fault Tolerance and ROC

e Fault Tolerance and Recovery Oriented Computing
@ Fault Tolerance Measurements
@ Recovery Oriented Computing

Fault Tolerance and ROC
[1e}

Mean Time to Failure and Mean Time to Recovery

Mean Time to Failure (MTTF): Average time it takes for the given
component/system to fail

@ Example: Average time until a hard drive fails

Mean Time to Repair (MTTR): Average time it takes for the given
component/system to be repaired/replaced

@ Example: Average time to replace a hard drive

Fault Tolerance and ROC
oce

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:
@ The MTTF of the hard drive is the average time until a hard drive
fails, but the MTTF of the system is the average time until any

failure occurs that causes the system to fail (any of the
components fail, the software fails, a user makes an error).

Fault Tolerance and ROC
oce

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:

@ The MTTR of the hard drive is the time it takes to replace the
hard drive (buying a new one, installing it in the system), but the
MTTR of the system includes all the steps until the system is
running normally again for an average failure (rebooting the
system, restoring from backups, confirming everything is
working correctly).

Fault Tolerance and ROC
oce

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:

@ The MTTF and MTTR for systems is much more complicated
than that for individual components.

Fault Tolerance and ROC
€000

Problems with a Prevention-Focused Approach

Estimation of MTTF of components is flawed:

@ Based on a large group of components over a short time, but the
failure rate is not independent of time

Example of MTTF estimation from [4]:

@ 1,000 hard drives run for 3,000 hours: 3,000,000 operation
hours total

@ 10 drives fail-1 failure per 300,000 hours of operation
@ MTTF = 300,000 hours = 34 years

Fault Tolerance and ROC
0@00

Problems with a Prevention-Focused Approach

Systems already have a

large MTTF.

Many failures are based on 34%
@ Operator

operator error, rather than B Hardware

hardware or software errors. OSoftware 51%
O Overload

This means that having the

individual components’ MTTF 15%

be large is not as important Causes of website failures from [3]

for preventing failures.

Fault Tolerance and ROC
00@0

Uptime and Downtime

Uptime: % of the time the system is running (also called Availability)

MTTF

Uptime =
(MTTF + MTTR)

Downtime: % of the time the system is not running

MTTR

Downtime = 1 — Uptime =
(MTTF + MTTR)

Fault Tolerance and ROC
oooe

Recovery Oriented Computing

Errors are "facts to be coped with, not problems to be solved." [3]
Availability is most important, not just MTTF.

MTTR is generally focused on to reduce downtime:
o If MTTR is small compared to MTTF, halving MTTR has the
same impact as doubling MTTF:
MTTR _ MTTR

Downtime = ~
OWIHIE = (MTTF + MTTR) ~ MTTF

Distributed Systems

@ Distributed Systems
@ Grid Computing
@ Stream Computing

Distributed Systems
©00000000000

Distributed Systems in General

Multiple computers working together to accomplish a single goal.

These large systems have many components, which implies a
low MTTF and high MTTR for the overall system.

Systems are classified by the types of problems they solve.

Two types covered:
@ Grid computing
@ Stream computing

Distributed Systems
0®0000000000

Introduction to Grid Computing

Components (computers) are tightly coupled with each other
Problems are split up among the components

Time-critical actions:
@ Strict time constraints
@ Focus on maximizing benefit (useful work done)

@ Minimum amount of benefit required to make the
task worth doing

Distributed Systems
00®000000000

Tissue Volume Rendering

Real-time rendering and
display of 2-D images
from a 3-D data set

Goal is to produce a large,
accurate image

Useful for doctors during surgery

A rendering of sea otters from [1]

Distributed Systems
000800000000

Benefit

Each action taken by the system has a benefit function B
that determines how well the action is doing its job.

@ Volume Rendering: How large/accurate the image is
Each action also has a baseline benefit By that represents
the minimum level of acceptable benefit—if B < By, the action
is not worth doing.

B
Benefit Percentage = Bt 100%
0

Each of these parameters are based on a time constraint
T.—benefit obtained outside of T, has little to no usefulness.

Distributed Systems
0000@0000000

Reliability

Each component of the system N' has a reliability value R},
which says how likely the component is to fail.
@ R, € [0,1], where 0 means the system always fails and
1 means the system never fails.
The possibility of failure goes up over time (which correlates to
the MTTF of the system), and failures do not occur in isolation.

Distributed Systems
000008000000

Reliability vs Efficiency

Available resources (computers) have varying amounts of
reliability and efficiency.

In general, resources only excel in either reliability or efficiency.

Choosing only reliable resources means the system can’t meet
the baseline efficiency.

Choosing only efficient resources means the system fails often
enough so it can’t meet the baseline efficiency.

Distributed Systems

[e]e]e]e]o]e] lelelele]e]

Reliability vs Efficiency

180% 100%
160% 90%
80%
140%
& g’ 70%
£ 120% S
s S 60%
S 100% 8
& S 50%
g 80% § 0% X
2 60% § 30%
40% 20%
20% 10%
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Run Number Run Number
Test results of the Volume Test results of the Volume
Rendering system from [5] using Rendering system from [5] using

only efficient resources. only reliable resources.

Distributed Systems
000000080000

Maximizing Benefit and Reliability

To maximize the performance and reliability of the system,
the resources chosen must:

@ Maximize benefit B

@ Maximize reliability Ry,

@ Meet the baseline benefit By

@ Stay within the time constraint T,

Maximizing two variables (B and Rj,) is a difficult problem—an
evolutionary algorithm is used to determine a good resource set.

Distributed Systems
[e]e]eleYoloTe]e] Yolole}

Failure Recovery: Replication

Even with reliable resources, failures still happen.

The simplest way to guard against failures is to replicate the entire
system, but that has problems:

@ Incurs significant overhead—very bad for time-critical operations

@ Each duplicate needs to do the same thing—doesn’t work in
systems with randomness

Distributed Systems

000000000800

Replication Results

The graph shows the Volume
Rendering system run with good
resources and fault tolerance by
replication:

@ No failures

@ Average benefit = 96%
The system still isn’t meeting the
baseline benefit on average.

Benefit Percentage

1 2 3 4 5 6 7 8 9 10
Run Number

From [5]

Distributed Systems
000000000080

Failure Recovery: Checkpointing

The duplicate systems exist, but aren’t running concurrently
with the main system.

Progress in the main system is periodically transferred to the
backup systems.

The main system sends a heartbeat message periodically to
all the backup units.

If a backup unit doesn’t hear from the main system in a certain
period of time, it assumes the main system has failed and
takes over the action.

Distributed Systems

00000000000 e

Overall Results of Fault Tolerance

The graph shows benefit

percentage for different time

constraints using three variations

of the Volume Rendering system: 1505 | I Without Failre Recovery

[With Application Redundancy
160%| [___] With Hybrid Approach

140%

@ No failure recovery
@ Replication only
@ Replication and

120%

100%

Benefit Percentage
°
<
E

checkpointing -
The system with checkpointing e
obtained the most benefit in the o LML RUT] WA WO WO R RE
majority of cases, exceeded the Time Constraints (Min)
replication only strategy in all From [5]

cases, and exceeded the
baseline benefit in all cases.

Distributed Systems
@000

Introduction to Stream Computing

Uses streaming data:

@ Information is obtained continuously, without having to
ask for that information multiple times

Example: GPS

@ Static data: You ask the GPS for your location when you
need that information.

@ Streaming data: When your location changes, the GPS
gives you your new location.

- -

a) static data b) streaming data

Visual representation of static versus streaming data from [2]

System S

Distributed Systems

(o] lee]

Gets data from many
different sources

Example: Predicting a
company’s stock price:

@ Many sources of
information:

e Past performance
of the stock

@ Opinions of the news
on the company

e Impact of the
weather forecast
on the company

@ Prediction changes as all
of these sources change

‘ B nyse

NYSE
|

,,,,,,,,,

Y | o o)
|Weather Data U ‘ﬂ ‘D ‘E
Data streams used by a stock trading

stream computing system from [2]

Distributed Systems
00e0

Processing Streams in System S

Streams are processed by smaller parts of the system, then
that information is processed by the larger system.

Scheduling the processing of a group of streams is known
as submitting a job.

Submitting a job involves checking if the job can be executed,
letting the larger system know that the job is being executed,
then processing the data.

Distributed Systems
0o0e

Fault Tolerance in System S

Two major steps to submitting a job:

@ Checking if the user has permission to submit a job

@ Registering the job in the larger system and processing the data
A job may only be registered in the larger system once.

What happens if a job submission is interrupted because a failure
occurred in the system?

@ The smaller system does not know if the job has been registered
in the larger system.

@ The process cannot be restarted in a reasonable way.

Distributed Systems
0o0e

Fault Tolerance in System S

Two major steps to submitting a job:

@ Checking if the user has permission to submit a job

@ Registering the job in the larger system and processing the data
A job may only be registered in the larger system once.

Implementing fault tolerance for submitting a job:
@ The two parts of submitting a job are split into two distinct
actions: preparation and registration.
@ After the permission is checked in the first action, an ID is
assigned to the job.

@ That ID will be used in the second action to actually register
the job (like reserving a place in line).

Distributed Systems
0o0e

Fault Tolerance in System S

Two major steps to submitting a job:

@ Checking if the user has permission to submit a job

@ Registering the job in the larger system and processing the data
A job may only be registered in the larger system once.

What happens if this new process is interrupted by a failure?

@ The first action doesn’t change the state of the larger system,
so it can be restarted at will.

@ If the second action is interrupted, the job still has an ID, and
that ID can be used to resume the process.

This isolates failures, ensures the system is always in a consistent
state, and greatly reduces the time needed to recover from a failure.

Conclusion
®00

Summary

Recovery Oriented Computing techniques are implemented in
different ways for different systems:
@ The time-critical Volume Rendering grid system chose the right
combination of efficient and reliable resources and reinforced
that strategy with a combination of checkpointing and replication.

@ System S used stream computing and was separated into small
components so parts of the system could be restarted quickly.

Conclusion
oeo

Comparison of the Systems

The difference in fault tolerance in the two types of systems
comes from the way they solve their problems:

@ The grid computing systems are tightly coupled and only
communicate with the larger system, so the fault tolerant
communication mechanisms between the smaller parts
of the system are not worth the extra overhead.

@ The available resources for a stream computing system are
constantly changing, so it isn’'t appropriate for the stream
computing system to spend time looking for good resources.

This shows that ROC techniques can be different for many
different systems.

Conclusion
ooe

Questions?

Conclusion
ooe

[§ R.A.Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering.
In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, SIGGRAPH '88, pages
65—74, New York, NY, USA, 1988. ACM.

[1BM.
System S - Stream Computing at IBM Research.
http://download.boulder.ibm.com/ibmdl/pub/
software/data/sw-1library/ii/whitepaper/SystemS_
2008-1001.pdf, 2008.

@ D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tezzlaff, J. Traupman, and
N. Treuhaft.
Recovery oriented computing (ROC): Motivation, definition,
techniques, and case studies.
Technical report, U.C. Berkley, 2002.
http:
//roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf

http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf
http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf

Conclusion
ooe

[@ J. H. Saltzer and M. F. Kaashoek.
Principles of Computer System Design Part 2.
MIT Open Courseware.
Chapter 8, http://goo.gl/hhppt.

[d Q. Zhu and G. Agrawal.
Supporting fault-tolerance for time-critical events in distributed
environments.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC 09, pages
32:1-32:12, New York, NY, USA, 2009. ACM.

http://goo.gl/hhppt

	Introduction
	Traditional System Designs

	Fault Tolerance and Recovery Oriented Computing
	Fault Tolerance Measurements
	Recovery Oriented Computing

	Distributed Systems
	Grid Computing
	Stream Computing

	Conclusion
	Comparing the Systems

