
Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Recovery Oriented Computing in Distributed
Systems

Vincent Borchardt

Department of Computer Science
University of Minnesota, Morris

November 30, 2012

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Traditional System Design

System designs are often built on unrealistic assumptions:
Systems do not fail.
When failures occur, they occur in isolation.
Failures only occur when components fail.

Emphasis is placed on preventing failures rather than
repairing failures.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Realities of Systems

Realities of systems:
Systems do fail in many ways.
Failures occur in many combinations of components.
Failures occur primarily when operators make errors.

More failures occur than expected.

Failures are difficult to repair.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Costs of Failures

Well-managed systems generally are working 99% to 99.9%
of the time–systems are down 8 to 80 hours a year.

Each hour a system is down costs between $200,000 (a
commerce website) and $6,000,000 (a stock-trading system)
depending on how critical the system is [3].

Decreasing the time the system is down can save millions of
dollars a year.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Overview

1 Introduction
Traditional System Designs

2 Fault Tolerance and Recovery Oriented Computing
Fault Tolerance Measurements
Recovery Oriented Computing

3 Distributed Systems
Grid Computing
Stream Computing

4 Conclusion
Comparing the Systems

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

1 Introduction
Traditional System Designs

2 Fault Tolerance and Recovery Oriented Computing
Fault Tolerance Measurements
Recovery Oriented Computing

3 Distributed Systems
Grid Computing
Stream Computing

4 Conclusion
Comparing the Systems

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Mean Time to Failure and Mean Time to Recovery

Mean Time to Failure (MTTF): Average time it takes for the given
component/system to fail

Example: Average time until a hard drive fails
Mean Time to Repair (MTTR): Average time it takes for the given
component/system to be repaired/replaced

Example: Average time to replace a hard drive

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:
The MTTF of the hard drive is the average time until a hard drive
fails, but the MTTF of the system is the average time until any
failure occurs that causes the system to fail (any of the
components fail, the software fails, a user makes an error).

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:
The MTTR of the hard drive is the time it takes to replace the
hard drive (buying a new one, installing it in the system), but the
MTTR of the system includes all the steps until the system is
running normally again for an average failure (rebooting the
system, restoring from backups, confirming everything is
working correctly).

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Large-Scale MTTF and MTTR

Network File System (NFS) Server: Many hard drives linked together,
then partitioned to provide consistent space for a user on multiple
computers in a network.

Scenario: A single hard drive dies, which causes the system to fail:
The MTTF and MTTR for systems is much more complicated
than that for individual components.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Problems with a Prevention-Focused Approach

Estimation of MTTF of components is flawed:
Based on a large group of components over a short time, but the
failure rate is not independent of time

Example of MTTF estimation from [4]:
1,000 hard drives run for 3,000 hours: 3,000,000 operation
hours total
10 drives fail–1 failure per 300,000 hours of operation
MTTF = 300,000 hours ≈ 34 years

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Problems with a Prevention-Focused Approach

Systems already have a
large MTTF.

Many failures are based on
operator error, rather than
hardware or software errors.

This means that having the
individual components’ MTTF
be large is not as important
for preventing failures.

 2

of the number of users than of the price of the system. These trends inevitably lead to purchase price of
hardware and software becoming a dwindling fraction of the total cost of ownership.

Our concentration on performance may have led us to neglect availability. Despite marketing
campaigns promising 99.999% availability, well-managed servers today achieve 99.9% to 99%, or 8 to 80
hours of downtime per year. Each hour can be costly, from $200,000 per hour for an Internet service like
Amazon to $6,000,000 per hour for a stock brokerage firm [Kembe00].
Operating system/Service Linux/Internet Linux/Collab. Unix/Internet Unix/Collab.
Average number of servers 3.1 4.1 12.2 11.0
Average number of users 1150 4550 7600 4800
HW-SW purchase price $127,650 $159,530 $2,605,771 $1,109,262
3 year Total Cost of Ownership $1,020,050 $2,949,026 $9,450,668 $17,426,458
TCO/HW-SW ratio 8.0 18.5 3.6 15.7
Figure 1. Ratio of three tear total cost of ownership to hardware-software purchase price. TCO includes
administration, operations, network management, database management, and user support. Several costs
typically associated with TCO were not included: space, power, backup media, communications, HW/SW
support contracts, and downtime. The sites were divided into two services: “Internet/Intranet” (firewall, Web
serving, Web caching, B2B, B2C) and “Collaborative” (calendar, email, shared files, shared database). IDC
interviewed 142 companies, with average sales of $2.4B/year, to collect these statistics.

We conducted two surveys on the causes of downtime, with unexpected results. In our first survey, we
collected failure data on the U.S. Public Switched Telephone Network (PSTN). In our second, we collected
failure data from three Internet sites. Based on that data, Figure 2 shows the percentage of failures due to
operators, hardware failures, software failures, and overload. The surveys are notably consistent in their
suggestion that operators are the leading cause of failure.

We are not alone in calling for new challenges. Jim Gray [1999] has called for Trouble-Free Systems,
which can largely manage themselves while providing a service for millions of people. Butler Lampson
[1999] has called for systems that work: they meet their specs, are always available, adapt to changing
environment, evolve while they run, and grow without practical limit. Hennessy [1999] has proposed a new
research target: availability, maintainability, and scalability. IBM Research [2001] has announced a new
program in Autonomic Computing, whereby they try to make systems smarter about managing themselves
rather than just faster. Finally, Bill Gates [2002] has set trustworthy systems as the new target for his
developers, which means improved security, availability, and privacy.

The Recovery Oriented Computing (ROC) project presents one perspective on how to achieve the
goals of these luminaries. Our target is services over the network, including both Internet services like
Yahoo! and enterprise services like corporate email. The killer metrics for such services are availability and
total cost of ownership, with Internet services also challenged by rapid scale-up in demand and deployment
and rapid change in software.

59%22%

8%

11%

Operator
Hardware
Software
Overload

51%

15%

34%

0%

Figure 2. Percentage of failures by operator, hardware, software, and overload for PSTN and three Internet
sites. Note that the mature software of the PSTN is much less of a problem than Internet site software, yet the
Internet sites have such frequent fluctuations that they have overprovisioned so that overload failures are rare. The
PSTN data measured blocked calls in the year 2000. We collected this data from the FCC; it represents over 200
telephone outages in the U.S. that affected at least 30,000 customers or lasted at least 30 minutes. Rather than report
outages, telephone switches record the number of attempted calls blocked during an outage, which is an attractive
metric. (This figure does not show vandalism, which is responsible for 0.5% of blocked calls.) The Internet site data
measured outages in 2001. We collected this data from companies in return for anonymity; it represents six weeks
to six months of service for 500 to 5000 computers. (The figure does not include environmental causes, which are
responsible for 1% of the outages. Also, 25% of outages had no identifiable cause and are not included in the data.)

Public Switched Telephone Network Average of Three Internet Sites Causes of website failures from [3]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Uptime and Downtime

Uptime: % of the time the system is running (also called Availability)

Uptime =
MTTF

(MTTF + MTTR)

Downtime: % of the time the system is not running

Downtime = 1− Uptime =
MTTR

(MTTF + MTTR)

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Recovery Oriented Computing

Errors are "facts to be coped with, not problems to be solved." [3]

Availability is most important, not just MTTF.

MTTR is generally focused on to reduce downtime:
If MTTR is small compared to MTTF, halving MTTR has the
same impact as doubling MTTF:

Downtime =
MTTR

(MTTF + MTTR)
≈ MTTR

MTTF

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

1 Introduction
Traditional System Designs

2 Fault Tolerance and Recovery Oriented Computing
Fault Tolerance Measurements
Recovery Oriented Computing

3 Distributed Systems
Grid Computing
Stream Computing

4 Conclusion
Comparing the Systems

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Distributed Systems in General

Multiple computers working together to accomplish a single goal.

These large systems have many components, which implies a
low MTTF and high MTTR for the overall system.

Systems are classified by the types of problems they solve.

Two types covered:
Grid computing
Stream computing

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Introduction to Grid Computing

Components (computers) are tightly coupled with each other

Problems are split up among the components

Time-critical actions:
Strict time constraints
Focus on maximizing benefit (useful work done)
Minimum amount of benefit required to make the
task worth doing

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Tissue Volume Rendering

Real-time rendering and
display of 2-D images
from a 3-D data set

Goal is to produce a large,
accurate image

Useful for doctors during surgery

SIGGRAPH '88, Atlanta, August 1-5, 1988

F|gure 6. Rendered images from a 650 slice 256x256 CT study of a man. A matte volume was used to apply different
levels of translucency to the tissue on the left and right halves. The CT study is courtesy of Elliot Fishman, M.D., and H.R.
Hruban, M.D., Johns Hopkins Medical Institution.

attenuate light along a ray in any direction. One potential
advantage of a ray tracer is that if a ray immediately intersects
an opaque material, voxels behind that material need not be
processed since they are hidden; however, in many situations a
volume is easier to visualize if materials are not completely
opaque. The major disadvantage of ray tracing is that it is very
difficult to avoid artifacts due to point sampling. When rays
diverge they may not sample adjacent pixels. Although rays
can be jittered to avoid some of these problems, this requires a
larger number of additional rays to be cast. Ray tracers also
require random access (or access along an arbitrary line) to a
voxel array. The algorithm described in this paper always
accesses images by scanlines, and thus in many cases is much
more efficient.

Future research should attempt to incorporate other visual
effects into volume rendering. Examples of these include:
complex lighting and shading, motion blur, depth-of-field, etc.
Finding practical methods of solving the radiation transport
equation to include multiple scattering would be useful. Trac-
ing rays from light sources to form an illumination or shadow
volume can already be done using the techniques described in
the paper.

Figure 7. Rendered images from a 400 slice CT study of a
sea otter. Data courtesy of Michael Stoskopf, M.D., and Elliot
Fishman, M.D., The Johns Hopkins Hospital.

72

A rendering of sea otters from [1]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Benefit

Each action taken by the system has a benefit function B
that determines how well the action is doing its job.

Volume Rendering: How large/accurate the image is
Each action also has a baseline benefit B0 that represents
the minimum level of acceptable benefit–if B < B0, the action
is not worth doing.

Benefit Percentage =
B
B0
∗ 100%

Each of these parameters are based on a time constraint
Tc–benefit obtained outside of Tc has little to no usefulness.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Reliability

Each component of the system N i has a reliability value R i
N ,

which says how likely the component is to fail.
R i

N ∈ [0, 1], where 0 means the system always fails and
1 means the system never fails.

The possibility of failure goes up over time (which correlates to
the MTTF of the system), and failures do not occur in isolation.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Reliability vs Efficiency

Available resources (computers) have varying amounts of
reliability and efficiency.

In general, resources only excel in either reliability or efficiency.

Choosing only reliable resources means the system can’t meet
the baseline efficiency.

Choosing only efficient resources means the system fails often
enough so it can’t meet the baseline efficiency.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Reliability vs Efficiency

is executed at most once.

3. TIME-CRITICAL GRID COMPUTING

3.1 Examples of Time-Critical Systems
Although speed is a concern for almost all systems in

some sense, some systems are time-critical, either because
the data set they are working with is rapidly changing or be-
cause the system is part of an inherently risky action. These
systems have a strict time limit to execute the process in,
and as such the goal is to maximize the benefit in that time.
This benefit is measured with a benefit function [9] which
varies based on the application domain. In addition to being
fast, these systems need to be fault-tolerant, and that fault
tolerance cannot come with a significant loss in speed.

The main example we will look at in this paper is real-time
rendering of 2-D images from a 3-D data set, specifically
rendering tissue volumes during surgery [9]. This is time-
critical because the rendering happens in real-time. If a
notable event is shown in the image (such as an abnormality
in the tissue), the surgeon can request detailed information
on the event. The goal is for an image to be rendered and
displayed, and this has to happen in a fixed amount of time.

3.2 Reliable Time-Critical Systems
The focus for fault tolerance in Zhu and Agrawal’s system

is obtaining reliable resources. To explain the process and
algorithms for obtaining those resources, they define several
concepts [9]. Each time-critical application is made of a set
of services S1, S2, ..., Sn, and the application in general has a
time constraint Tc. Each application has a benefit function
B (as described in Section 3.1) and a baseline benefit B0 it
needs to provide in order to be considered useful. The goal is
to provide the baseline B0 within Tc, while maximizing B.
For the tissue volume rendering system from Section 3.1,
the benefit function is based on the error tolerance and the
image size.

Given a selection of resources ⇥, there are two straightfor-
ward ways to select which resources to use while managing
failures. On one hand, you can use the most e�cient re-
sources. On the other hand, you can use the most reliable
resources. However, neither of these met Zhu and Agrawal’s
needs for maximizing benefit. Figure 1 shows the results of
ten test runs for the volume rendering system under each ap-
proach, showing a percentage calculated as B(⇥)/B0; 100%
or higher means the achieved benefit exceeded the required
baseline benefit B0. Using the e�cient resources, two runs
succeeded in providing benefit greater than the baseline ben-
efit, but eight runs had failures and thus failed to meet the
baseline benefit. Using the reliable resources, although only
one run failed, none of the runs exceeded the baseline ben-
efit, with an average benefit percentage of 70%.

When failures occur in a system, they generally don’t oc-
cur purely randomly or in isolation. Each node N i of the
system has a reliability value Ri

N 2 [0, 1], where 1 means the
node never fails. Similarly, the connection between nodes i
and j, Li,j , has an independent reliability value Ri,j

L 2 [0, 1].
The possibility of failure of each component increases as up-
time increases (which correlates to the MTTF), as well as
when the workload on the system increases. Multiple fail-
ures can also occur, and those failures can happen over a
short time period, or even simultaneously.

In order to maximize reliability of the system and meet

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number
B

en
ef

it
P

er
ce

nt
ag

e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (⇥) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to ⇥1, we have
[B(⇥1)/B0 = 178%, R(⇥1, 20) = 0.28]. While with the selected
resources in ⇥2, we have [B(⇥2)/B0 = 72%, R(⇥2, 20) = 0.85].
We can not say ⇥1 is a better resource configuration than ⇥2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan ⇥1 dominates another resource plan ⇥2, if and only if ⇥1

is partially larger than ⇥2(⇥1 >p ⇥2)
B(⇥1) � B(⇥2) �R(⇥1, Tc) � R(⇥2, Tc), and (6)

B(⇥1) > B(⇥2) �R(⇥1, Tc) > R(⇥2, Tc) (7)

In the absence of any preference information, a set of solutions for ⇥
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor ↵.

max
��PO

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (8)

The trade-off factor, ↵, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter ↵. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of ↵.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of ↵
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of ↵ we choose is less than 0.5. In the second
step, we further refine the value of ↵. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ⇥E and ⇥R, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of ↵. If the environment is consid-
ered reliable, we increase the value of ↵, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ⇥R. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of ↵, starting from 0.5, and work
with the configurations in the set ⇥E .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (⇥) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to ⇥1, we have
[B(⇥1)/B0 = 178%, R(⇥1, 20) = 0.28]. While with the selected
resources in ⇥2, we have [B(⇥2)/B0 = 72%, R(⇥2, 20) = 0.85].
We can not say ⇥1 is a better resource configuration than ⇥2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan ⇥1 dominates another resource plan ⇥2, if and only if ⇥1

is partially larger than ⇥2(⇥1 >p ⇥2)
B(⇥1) � B(⇥2) �R(⇥1, Tc) � R(⇥2, Tc), and (6)

B(⇥1) > B(⇥2) �R(⇥1, Tc) > R(⇥2, Tc) (7)

In the absence of any preference information, a set of solutions for ⇥
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor ↵.

max
��PO

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (8)

The trade-off factor, ↵, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter ↵. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of ↵.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of ↵
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of ↵ we choose is less than 0.5. In the second
step, we further refine the value of ↵. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ⇥E and ⇥R, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of ↵. If the environment is consid-
ered reliable, we increase the value of ↵, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ⇥R. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of ↵, starting from 0.5, and work
with the configurations in the set ⇥E .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

Figure 1: Benefit percentage of VolumeRendering
system with di↵erent selection heuristics from [9].
The x represents a failed run. (a) shows the results
using the e�cient resources, (b) shows the results
using the reliable resources. (The y-axes di↵er)

the baseline benefit, the benefit function B(⇥) and the re-
liability function R(⇥, Tc) must both be maximized while
meeting the baseline benefit and staying within the time
constraint. However, since trade-o↵s must be made between
e�ciency and reliability, there is not a single solution to
the problem. In our case, the solution chosen is based on a
trade-o↵ factor ↵, which is higher if the resources are gener-
ally more reliable1. The solution ⇥ is then the solution with
the maximum weighted sum of the benefit percentage and
the reliability:

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (1)

To find which resources ⇥̂ from the full set of resources are
the best for the current situation, a relatively simple algo-
rithm is used. The algorithm starts with the objective func-
tion described as Equation 1 above, the set of services S, and
the time constraint Tc. First, the algorithm examines the
environment to determine the value of ↵, as described above.
Next, the system uses an evolutionary algorithm known as
Particle-swarm Optimization to determine a reasonable set
of resources based on the objective function. The idea be-
hind Particle-swarm Optimization is that there is a set of

1If the environment is generally reliable, more focus has to
be placed on the benefits, and similarly for the opposite case.

Test results of the Volume
Rendering system from [5] using

only efficient resources.

is executed at most once.

3. TIME-CRITICAL GRID COMPUTING

3.1 Examples of Time-Critical Systems
Although speed is a concern for almost all systems in

some sense, some systems are time-critical, either because
the data set they are working with is rapidly changing or be-
cause the system is part of an inherently risky action. These
systems have a strict time limit to execute the process in,
and as such the goal is to maximize the benefit in that time.
This benefit is measured with a benefit function [9] which
varies based on the application domain. In addition to being
fast, these systems need to be fault-tolerant, and that fault
tolerance cannot come with a significant loss in speed.

The main example we will look at in this paper is real-time
rendering of 2-D images from a 3-D data set, specifically
rendering tissue volumes during surgery [9]. This is time-
critical because the rendering happens in real-time. If a
notable event is shown in the image (such as an abnormality
in the tissue), the surgeon can request detailed information
on the event. The goal is for an image to be rendered and
displayed, and this has to happen in a fixed amount of time.

3.2 Reliable Time-Critical Systems
The focus for fault tolerance in Zhu and Agrawal’s system

is obtaining reliable resources. To explain the process and
algorithms for obtaining those resources, they define several
concepts [9]. Each time-critical application is made of a set
of services S1, S2, ..., Sn, and the application in general has a
time constraint Tc. Each application has a benefit function
B (as described in Section 3.1) and a baseline benefit B0 it
needs to provide in order to be considered useful. The goal is
to provide the baseline B0 within Tc, while maximizing B.
For the tissue volume rendering system from Section 3.1,
the benefit function is based on the error tolerance and the
image size.

Given a selection of resources ⇥, there are two straightfor-
ward ways to select which resources to use while managing
failures. On one hand, you can use the most e�cient re-
sources. On the other hand, you can use the most reliable
resources. However, neither of these met Zhu and Agrawal’s
needs for maximizing benefit. Figure 1 shows the results of
ten test runs for the volume rendering system under each ap-
proach, showing a percentage calculated as B(⇥)/B0; 100%
or higher means the achieved benefit exceeded the required
baseline benefit B0. Using the e�cient resources, two runs
succeeded in providing benefit greater than the baseline ben-
efit, but eight runs had failures and thus failed to meet the
baseline benefit. Using the reliable resources, although only
one run failed, none of the runs exceeded the baseline ben-
efit, with an average benefit percentage of 70%.

When failures occur in a system, they generally don’t oc-
cur purely randomly or in isolation. Each node N i of the
system has a reliability value Ri

N 2 [0, 1], where 1 means the
node never fails. Similarly, the connection between nodes i
and j, Li,j , has an independent reliability value Ri,j

L 2 [0, 1].
The possibility of failure of each component increases as up-
time increases (which correlates to the MTTF), as well as
when the workload on the system increases. Multiple fail-
ures can also occur, and those failures can happen over a
short time period, or even simultaneously.

In order to maximize reliability of the system and meet

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (⇥) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to ⇥1, we have
[B(⇥1)/B0 = 178%, R(⇥1, 20) = 0.28]. While with the selected
resources in ⇥2, we have [B(⇥2)/B0 = 72%, R(⇥2, 20) = 0.85].
We can not say ⇥1 is a better resource configuration than ⇥2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan ⇥1 dominates another resource plan ⇥2, if and only if ⇥1

is partially larger than ⇥2(⇥1 >p ⇥2)
B(⇥1) � B(⇥2) �R(⇥1, Tc) � R(⇥2, Tc), and (6)

B(⇥1) > B(⇥2) �R(⇥1, Tc) > R(⇥2, Tc) (7)

In the absence of any preference information, a set of solutions for ⇥
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor ↵.

max
��PO

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (8)

The trade-off factor, ↵, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter ↵. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of ↵.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of ↵
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of ↵ we choose is less than 0.5. In the second
step, we further refine the value of ↵. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ⇥E and ⇥R, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of ↵. If the environment is consid-
ered reliable, we increase the value of ↵, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ⇥R. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of ↵, starting from 0.5, and work
with the configurations in the set ⇥E .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number
B

en
ef

it
P

er
ce

nt
ag

e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (⇥) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to ⇥1, we have
[B(⇥1)/B0 = 178%, R(⇥1, 20) = 0.28]. While with the selected
resources in ⇥2, we have [B(⇥2)/B0 = 72%, R(⇥2, 20) = 0.85].
We can not say ⇥1 is a better resource configuration than ⇥2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan ⇥1 dominates another resource plan ⇥2, if and only if ⇥1

is partially larger than ⇥2(⇥1 >p ⇥2)
B(⇥1) � B(⇥2) �R(⇥1, Tc) � R(⇥2, Tc), and (6)

B(⇥1) > B(⇥2) �R(⇥1, Tc) > R(⇥2, Tc) (7)

In the absence of any preference information, a set of solutions for ⇥
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor ↵.

max
��PO

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (8)

The trade-off factor, ↵, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter ↵. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of ↵.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of ↵
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of ↵ we choose is less than 0.5. In the second
step, we further refine the value of ↵. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ⇥E and ⇥R, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of ↵. If the environment is consid-
ered reliable, we increase the value of ↵, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ⇥R. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of ↵, starting from 0.5, and work
with the configurations in the set ⇥E .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

Figure 1: Benefit percentage of VolumeRendering
system with di↵erent selection heuristics from [9].
The x represents a failed run. (a) shows the results
using the e�cient resources, (b) shows the results
using the reliable resources. (The y-axes di↵er)

the baseline benefit, the benefit function B(⇥) and the re-
liability function R(⇥, Tc) must both be maximized while
meeting the baseline benefit and staying within the time
constraint. However, since trade-o↵s must be made between
e�ciency and reliability, there is not a single solution to
the problem. In our case, the solution chosen is based on a
trade-o↵ factor ↵, which is higher if the resources are gener-
ally more reliable1. The solution ⇥ is then the solution with
the maximum weighted sum of the benefit percentage and
the reliability:

↵⇥ (B(⇥)/B0) + (1� ↵)⇥R(⇥, Tc) (1)

To find which resources ⇥̂ from the full set of resources are
the best for the current situation, a relatively simple algo-
rithm is used. The algorithm starts with the objective func-
tion described as Equation 1 above, the set of services S, and
the time constraint Tc. First, the algorithm examines the
environment to determine the value of ↵, as described above.
Next, the system uses an evolutionary algorithm known as
Particle-swarm Optimization to determine a reasonable set
of resources based on the objective function. The idea be-
hind Particle-swarm Optimization is that there is a set of

1If the environment is generally reliable, more focus has to
be placed on the benefits, and similarly for the opposite case.

Test results of the Volume
Rendering system from [5] using

only reliable resources.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Maximizing Benefit and Reliability

To maximize the performance and reliability of the system,
the resources chosen must:

Maximize benefit B
Maximize reliability R i

N

Meet the baseline benefit B0

Stay within the time constraint Tc

Maximizing two variables (B and R i
N) is a difficult problem–an

evolutionary algorithm is used to determine a good resource set.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Failure Recovery: Replication

Even with reliable resources, failures still happen.

The simplest way to guard against failures is to replicate the entire
system, but that has problems:

Incurs significant overhead–very bad for time-critical operations
Each duplicate needs to do the same thing–doesn’t work in
systems with randomness

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Replication Results

The graph shows the Volume
Rendering system run with good
resources and fault tolerance by
replication:

No failures
Average benefit = 96%

The system still isn’t meeting the
baseline benefit on average.1 2 3 4 5 6 7 8 9 10

0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X
X

X

X
X

X
X

X

(a)

1 2 3 4 5 6 7 8 9 10
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

X

(b)

Figure 3. Benefit Percentage of Volume Rendering Application with
Different Scheduling Heuristics: (a) Efficiency Value (b) Reliability

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

100%

Run Number

B
en

ef
it

P
er

ce
nt

ag
e

Figure 4. Benefit Percentage of
VolumeRendering: Multiple Ap-
plication Copies

T (Θ) = Tc (5)

In the case of MOO, two different solutions cannot always be di-
rectly compared to each other. In the running example, as we previ-
ously discussed, by assigning services S1, S2 and S3 to Θ1, we have
[B(Θ1)/B0 = 178%, R(Θ1, 20) = 0.28]. While with the selected
resources in Θ2, we have [B(Θ2)/B0 = 72%, R(Θ2, 20) = 0.85].
We can not say Θ1 is a better resource configuration than Θ2 or vice
versa. Thus, we use the concept of domination in order to compare
two resource plans in the context of our optimization problem. A re-
source plan Θ1 dominates another resource plan Θ2, if and only if Θ1

is partially larger than Θ2(Θ1 >p Θ2)
B(Θ1) ≥ B(Θ2) ∧R(Θ1, Tc) ≥ R(Θ2, Tc), and (6)

B(Θ1) > B(Θ2) ∨R(Θ1, Tc) > R(Θ2, Tc) (7)

In the absence of any preference information, a set of solutions for Θ
is obtained, where each solution is equally significant. This is because
in the obtained set of solutions, no solution is dominated by any other
solution. Such a set of solutions is referred to as the Pareto-optimal
(PO) set [18]. Usually, we need to choose a single solution from the
Pareto set, as required for the implementation. We define the following
objective function as weighted sum of benefit and reliability with a
trade-off factor α.

max
Θ∈PO

α× (B(Θ)/B0) + (1− α)×R(Θ, Tc) (8)

The trade-off factor, α, can be tuned to best fit to the characteristics
of the computing environment. We use the Equation 8 interactively
during the search process to find the best candidate from the Pareto-
optimal set. The detailed algorithm is presented in the following sub-
section.

4.2 Scheduling Algorithm for Unreliable Re-
sources

In this subsection, we first present our scheduling algorithm for
unreliable resources which has a serial scheduling structure. Then,
we discuss scheduling with redundancy and failure recovery, which is
based on the parallel structure. We argue that our proposed scheduling
algorithm is independent of the reliability model that is used.

The determination of a complete Pareto-optimal set is a very dif-
ficult task, due to the computational complexity caused by the pres-
ence of a large number of suboptimal Pareto sets. There has been a
tremendous amount of work on Multiobjective Optimization with the
goal of finding the Pareto-optimal set [18]. In this paper, we adopt
a recently proposed metaheuristic called Particle-swarm Optimization

(PSO) [13] as the search mechanism. The reason is that the algorithm
has a high speed of convergence and it allows us to iteratively interact
with the single objective function, which we defined in equation 8, to
find the best solution from the approximate Pareto-optimal set [29].
Furthermore, it is easy to balance the scheduling time and the qual-
ity of the resource plan generated by the algorithm by adjusting the
convergence criteria.

One of the issues is choosing the appropriate value for the param-
eter α. This parameter decides the weight of the benefit in the overall
objective. As we stated previously, the choice of this value should de-
pend on the characteristics of the underlying environment. We now
briefly describe a heuristic to automatically choose the value of α.

The heuristic has two main steps. In the first step, we decide if the
environment could be considered reliable or not. If yes, the value of α
we choose is higher than 0.5, since less weight needs to be given to re-
liability. If not, the value of α we choose is less than 0.5. In the second
step, we further refine the value of α. To enable these steps, we gener-
ate two sets of initial resource configurations using greedy scheduling,
with the efficiency value and reliability value as the criteria for each.
These two sets are denoted as ΘE and ΘR, respectively. For both the
sets, we calculate the mean of the reliability values. If the difference
between the mean reliability of the two sets is less than a threshold,
we conclude that the environment is reliable. In our implementation,
we used 0.1 as the threshold. Otherwise, we conclude that the environ-
ment is unreliable. The reason is that in a reliable environment, greedy
scheduling based only on efficiency will still lead to high reliability.

The next step refines the value of α. If the environment is consid-
ered reliable, we increase the value of α, starting from 0.5. After each
increment, we calculate the objective function value based on Equa-
tion 8, for each configuration in the set ΘR. The goal is to see how we
can maximize the benefit, within the set of configurations that maxi-
mize reliability. This procedure stops when there is no further increase
in the value of the objective function. If the environment is considered
unreliable, we decrease the value of α, starting from 0.5, and work
with the configurations in the set ΘE .

We next present the scheduling algorithm in Figure 5. A resource
configuration is referred to as a particle in the algorithm description.
The position of the particle is defined as the objective function value
calculated from the Equation 8. The velocity of the particle is defined
as change to the current resource configuration by assigning one of the
service components to anther node. The algorithm begins with calcu-
lating the efficiency values, and proceeds with searching for optima
by updating generations. In every iteration, we first update each re-
source configuration by following two best values. One is the optimal

From [5]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Failure Recovery: Checkpointing

The duplicate systems exist, but aren’t running concurrently
with the main system.

Progress in the main system is periodically transferred to the
backup systems.

The main system sends a heartbeat message periodically to
all the backup units.

If a backup unit doesn’t hear from the main system in a certain
period of time, it assumes the main system has failed and
takes over the action.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Overall Results of Fault Tolerance

The graph shows benefit
percentage for different time
constraints using three variations
of the Volume Rendering system:

No failure recovery
Replication only
Replication and
checkpointing

The system with checkpointing
obtained the most benefit in the
majority of cases, exceeded the
replication only strategy in all
cases, and exceeded the
baseline benefit in all cases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Alpha

B
en

ef
it

P
er

ce
nt

ag
e

HighReliable
ModReliable
HighUnreliable

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alpha

S
uc

ce
ss

−R
at

e

HighReliable
ModReliable
HighUnreliable

(b)

Figure 7. Varying the Value of the Parameter
↵: VolumeRendering – (a) Benefit Percentage (b)
Success Rate

be very inefficient and focusing only on the reliability could degrade
the application benefit significantly.

The benefit experiment was repeated using the GLFS application.
We invoked time-critical events with 1, 2, 3, 4 and 5 hours as the time
constraints. Figures are not presented due to page limit. Similar obser-
vations can be made for this application. The benefit percentage from
our scheduling algorithm is up to 220%, 172% and 117% in the three
environments. Whereas, Greedy-E could achieve 176%, 128% and
87% on average and Greedy-E⇥R achieves 143%, 158% and 91%.
Similarly, Greedy-R can hardly reach the baseline benefit.

Success-Rate Comparison: Next we compared the performance
of the four scheduling algorithms in terms of the success-rate. We first
carried out the experiment using the VolumeRendering applica-
tion. As illustrated in Figure 8(a), in a highly reliable environment,
we can achieve 90% to 100% from our algorithm. In comparison,
the success-rate for Greedy-E and Greedy-E ⇥ R is 80% and
90%, respectively. The Greedy-R can achieve 100% success-rate.
In an environment where resources rarely fail, selecting the resources
regardless of their reliability values will not significantly impact the
application performance. In such a case, we tune the weight factor
↵ in Equation 8 to favor the resource efficiency value. Therefore, we
can achieve better benefit while minimizing the possibility of resource
failure during the event handling, comparing to the other three heuris-
tics. When the application is executed in a highly unreliable envi-
ronment, as the shown in Figure 8 (c), the success-rate of Greedy-E
and Greedy-E⇥R dramatically drop to 40% and 60%, respectively.
This also explains the benefit percentage drop we discussed previously.
Now our approach tunes the ↵ parameter to favor the resource reliabil-
ity. Thus, we can still reach the baseline benefit with the success-rate
of 80%. Note that failure recovery is not invoked for this experiment,

as we consider this in the next subsection. Similar observations can
be made from the moderately reliable environment, as illustrated in
Figure 8 (b). We also used the GLFS application for the success-rate
comparison. Results are demonstrated in Figure 9. The GLFS applica-
tion using our algorithm can achieve 100%, 90% and 80% in the three
computing environments, outperforming other approaches.

Scheduling Overhead and Scalability: We now evaluate the over-
head of our scheduling algorithm and compare it with the overhead of
the other three heuristics. We first used VolumeRendering appli-
cation and the results are shown in Figure 10(a). Note that the schedul-
ing overhead is not dependent on the resource reliability. As shown in
the figure, when the time constraints associated with events get longer,
our algorithm spent more time on generating the resource configura-
tion. Our algorithm scheduled the application with six service compo-
nents onto 2 emulated grid sites, each with 64 nodes, in 6.3 seconds
in the worst case. It is less than 0.3% of the application execution
time, which is 40 minutes. In comparison, the other three heuristics
only caused 1 second or less. Although our approach is several times
slower, processing applications on the resources selected by our algo-
rithm can achieve much better benefit and success-rate. The overhead
of scheduling was also measured for the GLFS application and similar
trend was observed.

Furthermore, we evaluated the scalability of our scheduling algo-
rithm and we demonstrate the result in Figure 10(b). For this experi-
ment, we simulated 640 processing nodes for a grid computing envi-
ronment that is moderately reliable. We generated a synthetic appli-
cation with the number of service components varying as 10, 20, 40,
80, and 160. Dependencies are involved in each case. We compare
our proposed algorithm with the Greedy-E ⇥ R heuristic, since it
has the most scheduling overhead among the heuristics we have con-
sidered in this paper. We have observed that the scheduling overhead
increases linearly as the number of services increases and it takes less
than 49 seconds to schedule 160 service components on 640 nodes.
This demonstrates that our scheduling algorithm is scalable.

5.4 Performance of the Failure Recovery Sch
eme

We now evaluate our proposed failure recovery scheme. The re-
sults from the VolumeRendering application are shown in Fig-
ure 11. The results show that we could further improve the obtained
benefit, while achieving a 100% success-rate, in the presence of re-
source failures. Note that there are one, three and five failures that oc-
curred during application processing in the highly reliable, moderately
reliable and highly unreliable environments. We refer to the appli-
cation execution without invoking any failure recovery as Without
Recovery. As discussed in subsection 5.1, the approach by sim-
ply scheduling multiple copies of the entire application is referred to
as With Redundancy. We denote our approach as the Hybrid
Approach. When comparing with Without Recovery, our pro-
posed hybrid failure recovery scheme can improve the benefit percent-
age to 8%, 20%, and 33%, in the three computing environments. Fur-
thermore, the success-rate is increased to 100%. The reason is that
by applying the failure recovery scheme, we incur the cost of main-
taining checkpoints and synchronizing the status of multiple service
copies. In the case where failures occur rarely, the relative improve-
ment is small because of this overhead. However, as the failures occur
more frequently, the recovery procedure is invoked more frequently.
This leads to a more significant benefit gain. Meanwhile, our scheme
always achieve 100% success-rate. We also compared our scheme
with With Redundancy. An obvious drawback for this approach
is the high overhead. Furthermore, it is hard to schedule redundant
copies to resources where an successful run with a high benefit could
be obtained, in a highly heterogeneous environment. Thus, our pro-

Figure 3: Benefit percentage of VolumeRendering
based on ↵ in three environments from [9].

where resources are generally reliable, one where resources
are generally unreliable, and one in-between the two ex-
tremes. Figure 3 shows how the choice of ↵ a↵ect the over-
all benefit, including if the system meets the baseline ben-
efit B0. The graph shows that even though ↵ corresponds
to the environment in the best cases (higher ↵ for reliable
environments, lower ↵ for unreliable environments), a hy-
brid approach is still necessary, even in the extreme cases.2

Figure 4 shows the benefit percentage of the volume render-
ing in each of the three environments, based on the three
failure-recovery techniques discussed: no failure recovery,
only replication, and the hybrid scheme with checkpointing
and replication. In all cases, the hybrid technique performs
better than the pure replication technique, and, with the
exception of the reliable environment, the hybrid technique
performs best. In addition, the hybrid technique exceeds the
baseline benefit in each case.

4. STREAM COMPUTING
As discussed in Section 2.3, a system based on stream

computing gets its data from many sources, which means
there are many parts of the system to manage. In addi-
tion, these parts of the system have many di↵erent divisions
within themselves, and these smaller divisions of the system
may or may not change the state of the larger system, and
thus need to be handled di↵erently.

The defining example of a stream computing system is
IBM’s System S. System S is a general system which could
be applied to many types of problems. The initial white
paper IBM released for System S detailed many pilot pro-
grams for the system, including processing data from radio
telescopes, analyzing data for financial markets, and moni-
toring manufactured computer chips for defects [2]. The use
of stream computing by System S allows it to tackle these
problems from multiple angles to get a more comprehensive
solution. Looking at the financial example, to predict the
direction a company’s stock’s price could move, System S
could combine the statistics from the past performance of
that stock, news reports about that company, and the im-
pact of the weather forecast on that company’s business to

2The ↵ values for 0 and 1 correspond to ignoring the e�-
ciency and reliability of the resources respectively, and the
graph shows those values get worse results.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)
S

uc
ce

ss
−R

at
e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

Time Constraints (Min)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 8. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: VolumeRendering
(a) Highly Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(a)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(b)

1 2 3 4 5
0

20%

40%

60%

80%

100%

Time Constraints (Hour)

S
uc

ce
ss

−R
at

e

Our Approach
Greedy With E
Greedy With E*R
Greedy With R

(c)

Figure 9. Success-Rate Comparison of Our Approach with Three Scheduling Heuristics: GLFS (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(a)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

180%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(b)

5 10 15 20 25 30 35 40
0

20%

40%

60%

80%

100%

120%

140%

160%

Time Constraints (Min)

B
en

ef
it

P
er

ce
nt

ag
e

Without Failure Recovery
With Application Redundancy
With Hybrid Approach

(c)

Figure 11. Benefit Percentage Comparison of Our Failure Recovery Scheme: VolumeRendering (a) Highly
Reliable Environment (b) Moderately Reliable Environment (c) Highly Unreliable Environment

posed failure recovery scheme outperforms the With Redundancy
by 6%, 8% and 12% in the three computing environments.

We repeat this experiment using the GLFS application and the re-
sults are presented in Figure 12. Similar observations can be made.
Our proposed failure recovery scheme can achieve 6%, 18% and 46%
more benefit comparing to that from the Without Recovery ver-
sion. It is 4%, 9% and 12% better when we compare the obtained
benefit percentage with With Redundancy.

6. Related Work
We now discuss the research efforts relevant to our work from the

areas of fault tolerance in grid computing and DAG-based real-time
scheduling in the presence of failures.

Fault Tolerance in Grid Computing: We particularly focus on
efforts that apply reliability-aware scheduling or perform failure-recov
ery. Reliability-aware scheduling has been widely studied [8, 1, 17,
12, 3]. Close to our work, Sonnek et al. [12] propose an adaptive al-
gorithm to choose the number of replicas for each task. Our work is
different because the adaptive applications we target comprise a DAG
of services. Our scheduling algorithm needs to consider the depen-
dence between the services as well as the match between the resource
capacity and the resource consumption of individual services.

Figure 4: Benefit percentage of VolumeRendering
using di↵erent fault-tolerance systems from [9]. (a)
is the highly reliable environment, (b) is the mod-
erately reliable environment, (c) is the highly unre-
liable environment.

From [5]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Introduction to Stream Computing

Uses streaming data:
Information is obtained continuously, without having to
ask for that information multiple times

Example: GPS
Static data: You ask the GPS for your location when you
need that information.
Streaming data: When your location changes, the GPS
gives you your new location.

System S – Stream Computing at IBM Research © Copyright IBM Corporation 2008

This document provides an overview of the
stream processing paradigm, surveys several of
the applications on which System S currently
runs, and describes some of the underlying
technologies. Additional details will soon be
available in a companion document.

Note that the capabilities of any product derived
from IBM Research System S would differ from
the capabilities described in this paper.

Stream Computing
Stream computing is a new paradigm. In
“traditional” processing, one can think of running
queries against relatively static data: for instance,
“list all personnel residing within 50 miles of New
Orleans,” which will result in a single result set.
With stream computing, one can execute a
process similar to a “continuous query” that
identifies personnel who are currently within 50
miles of New Orleans, but get continuous,
updated results as location information from GPS
data is refreshed over time. In the first case,
questions are asked of static data, in the second
case, data is continuously evaluated by static
questions. System S goes further by allowing the
continuous queries to be modified over time. A
simple view of this distinction is reflected in figure
1.

While there are other systems that embrace the

stream computing paradigm, System S takes a
fundamentally different approach for continuous
processing and differentiates with its
distributed runtime platform, programming
model, and tools for developing continuous
processing applications. The data streams
consumable by System S can originate from
sensors, cameras, news feeds, stock tickers, or
a variety of other sources, including traditional
databases.

System S Pilot Studies
As System S is readied for deployment, a
number of applications are being pursued.
The following provides a summary of the
pilots conducted by IBM, highlighting the
types of usage that can be supported by
System S.

Anomaly detection–One of System S’s key
strengths is the ability to perform analytics on
data-intensive streams to identify the few
items that merit deeper investigation. One
example of this use case is in the domain of
astronomy. There are a number of projects
globally that receive continuous streams of
telemetry from radio telescopes. For
example, these radio telescopes might have
thousands or tens of thousands of antennae,
all routing data streams to a central
supercomputer to survey a location in the
universe. The System S middleware
running on that supercomputer can provide a
more flexible approach to processing these
streams of data. We are working with the low
frequency radio astronomy group of Uppsala
University and the LOFAR Outrigger In
Scandinavia (LOIS1) project to develop
analytics that identify anomalous and
transient behavior such as high energy
cosmic ray bursts. We are investigating
expansion of this work to a similar effort with
the Square Kilometre Array2, with total data

rates in the range of terabits per second.
Energy Trading Services (ETS)–The ETS
pilot was developed to demonstrate to an
investment bank how System S can support
energy trading. The demonstrated system
provides energy traders with real-time
analysis and correlation of events affecting
energy markets, and allows them to make

1 http://www.lois-space.net/index.html
2 http://en.wikipedia.org/wiki/Square_Kilometre_Array

Data Queries Results

b) streaming data

Data Queries Results

b) streaming data

Data Queries ResultsData Queries Results

b) streaming data

Queries Data Results

a) static data

Queries Data Results

a) static data

Queries Data ResultsQueries Data Results

a) static data

Figure 1 Static data vs. streaming data: conceptual overview Visual representation of static versus streaming data from [2]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

System S

Gets data from many
different sources

Example: Predicting a
company’s stock price:

Many sources of
information:

Past performance
of the stock
Opinions of the news
on the company
Impact of the
weather forecast
on the company

Prediction changes as all
of these sources change

System S – Stream Computing at IBM Research © Copyright IBM Corporation 2008

demonstrate how streaming data sources
from outside System S can make their way
into the core of the system, be analyzed in
different fashions by different pieces of the

application, flow through the system, and
produce results. These results can be used
in a variety of ways, including display within
a dashboard, driving business actions, or
storage in enterprise databases for further
offline analysis.

Figure 3 illustrates the complete prototype
infrastructure. As shown, data from input
streams representing a myriad of data types
and modalities flow into the system. The
layout of the operations performed on that
streaming data is determined by high-level
system components that translate user
requirements into running applications.
System S offers three methods for end-users
to operate on streaming data, as follows:

SPADE (Stream Processing Application
Declarative Engine)4 provides a language
and run-time framework to support streaming
applications. Users can create applications
without needing to understand the lower-
level stream-specific operations. SPADE
provides some built-in operators, the ability
to bring streams from outside System S and

4 http://portal.acm.org/citation.cfm?id=1376616.1376729

export results outside the system, and a
facility to extend the underlying system
with user-defined operators.

MARIO (Mashup Automation with Runtime
Invocation & Orchestration)5 Users may
pose inquires to the system to express their
information needs and interests. These
inquiries are translated by a Semantic Solver
into a specification of how potentially
available raw data and existing information
can be transformed to satisfy user objectives.
The runtime environment accepts these
specifications, considers the library of
available application components, and
assembles a job specification to run the
required set of components.

Workflow Development Tool Environment,
enabling users to develop components and
applications using an Eclipse-based
Integrated Development Environment (IDE).
These users can program low-level
application components that can be
interconnected via streams, and specify the
nature of those connections. Each
component is “typed” so that other
components can later reuse or create a
particular stream. This development model
will evolve over time to directly operate on
SPADE operators rather than the base, low-

5 http://portal.acm.org/citation.cfm?id=1367497.1367602

Hurricane
Forecast
Model N

Hurricane
Forecast
Model …

Video News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

Analysis

Earnings
Moving
Average

Calculation

Hurricane
Weather

Data
Extraction

VWAP
Calculation

Weather Data

SEC Edgar

10 Q
Earnings

Extraction

NYSE
Dynamic
P/E Ratio

Calculation

Hurricane
Impact

Join P/E
with

Aggregate
Impact

Hurricane
Industry
Impact

Hurricane
Risk

Encoder

Earnings
News
Join

Hurricane
Forecast
Model 2

Hurricane
Forecast
Model 1

Hurricane
Forecast
Model N

Hurricane
Forecast
Model N

Hurricane
Forecast
Model …

Hurricane
Forecast
Model …

Video News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

AnalysisVideo News

Caption
Extraction

Topic
Filtration

Speech
Recognition

Earnings
Related
News

Analysis

Earnings
Moving
Average

Calculation

Hurricane
Weather

Data
Extraction

VWAP
Calculation

Weather Data

SEC Edgar

10 Q
Earnings

Extraction

NYSE
Dynamic
P/E Ratio

Calculation

Hurricane
Impact

Join P/E
with

Aggregate
Impact

Hurricane
Industry
Impact

Hurricane
Risk

Encoder

Earnings
News
Join

Hurricane
Forecast
Model 2

Hurricane
Forecast
Model 2

Hurricane
Forecast
Model 1

Hurricane
Forecast
Model 1

Figure 2 - Trading Example
Data streams used by a stock trading

stream computing system from [2]

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Processing Streams in System S

Streams are processed by smaller parts of the system, then
that information is processed by the larger system.

Scheduling the processing of a group of streams is known
as submitting a job.

Submitting a job involves checking if the job can be executed,
letting the larger system know that the job is being executed,
then processing the data.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Fault Tolerance in System S

Two major steps to submitting a job:
Checking if the user has permission to submit a job
Registering the job in the larger system and processing the data

A job may only be registered in the larger system once.

What happens if a job submission is interrupted because a failure
occurred in the system?

The smaller system does not know if the job has been registered
in the larger system.
The process cannot be restarted in a reasonable way.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Fault Tolerance in System S

Two major steps to submitting a job:
Checking if the user has permission to submit a job
Registering the job in the larger system and processing the data

A job may only be registered in the larger system once.

Implementing fault tolerance for submitting a job:
The two parts of submitting a job are split into two distinct
actions: preparation and registration.
After the permission is checked in the first action, an ID is
assigned to the job.
That ID will be used in the second action to actually register
the job (like reserving a place in line).

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Fault Tolerance in System S

Two major steps to submitting a job:
Checking if the user has permission to submit a job
Registering the job in the larger system and processing the data

A job may only be registered in the larger system once.

What happens if this new process is interrupted by a failure?
The first action doesn’t change the state of the larger system,
so it can be restarted at will.
If the second action is interrupted, the job still has an ID, and
that ID can be used to resume the process.

This isolates failures, ensures the system is always in a consistent
state, and greatly reduces the time needed to recover from a failure.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Summary

Recovery Oriented Computing techniques are implemented in
different ways for different systems:

The time-critical Volume Rendering grid system chose the right
combination of efficient and reliable resources and reinforced
that strategy with a combination of checkpointing and replication.
System S used stream computing and was separated into small
components so parts of the system could be restarted quickly.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Comparison of the Systems

The difference in fault tolerance in the two types of systems
comes from the way they solve their problems:

The grid computing systems are tightly coupled and only
communicate with the larger system, so the fault tolerant
communication mechanisms between the smaller parts
of the system are not worth the extra overhead.
The available resources for a stream computing system are
constantly changing, so it isn’t appropriate for the stream
computing system to spend time looking for good resources.

This shows that ROC techniques can be different for many
different systems.

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

Questions?

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

R. A. Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering.
In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’88, pages
65–74, New York, NY, USA, 1988. ACM.

IBM.
System S - Stream Computing at IBM Research.
http://download.boulder.ibm.com/ibmdl/pub/
software/data/sw-library/ii/whitepaper/SystemS_
2008-1001.pdf, 2008.

D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tezzlaff, J. Traupman, and
N. Treuhaft.
Recovery oriented computing (ROC): Motivation, definition,
techniques, and case studies.
Technical report, U.C. Berkley, 2002.
http:
//roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf.

http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf
http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf

Introduction Fault Tolerance and ROC Distributed Systems Conclusion

J. H. Saltzer and M. F. Kaashoek.
Principles of Computer System Design Part 2.
MIT Open Courseware.
Chapter 8, http://goo.gl/hhppt.

Q. Zhu and G. Agrawal.
Supporting fault-tolerance for time-critical events in distributed
environments.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages
32:1–32:12, New York, NY, USA, 2009. ACM.

http://goo.gl/hhppt

	Introduction
	Traditional System Designs

	Fault Tolerance and Recovery Oriented Computing
	Fault Tolerance Measurements
	Recovery Oriented Computing

	Distributed Systems
	Grid Computing
	Stream Computing

	Conclusion
	Comparing the Systems

