
Evolutionary Artificial Intelligence in Video Games

Reed Simpson
University of Minnesota, Morris
Division of Science and Math

Computer Science Dept.
simps148@morris.umn.edu

ABSTRACT
Evolutionary algorithms are becoming increasingly useful in
numerous applications as computational resources improve
with time. As computational resources have increased, de-
mand for better quality in all aspects of video games has
likewise increased. In this paper we will provide an overview
of evolutionary algorithms, with particular attention to the
context of video game artificial intelligence. Then we will
discuss a specific type of artificial intelligence, often created
by evolutionary algorithms, called an artificial neural net-
work. Finally, we will present a number of examples in which
evolutionary algorithms have been applied to video game ar-
tificial intelligence, as well as the strengths and weaknesses
of evolutionary algorithms in this context.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—games

General Terms
Algorithms, Experimentation

Keywords
computer games, video games, artificial intelligence, game
AI, evolutionary algorithms, genetic algorithms, artificial
neural networks, neuroevolution, games, evolutionary com-
putation

1. INTRODUCTION
In the context of video games, artificial intelligence (AI)

refers to a system which controls agents in a game in a way
that makes the player feel like he or she is interacting with
an intelligent entity. Game AIs are an important compo-
nent in most video games, and their complexity can vary
considerably. This paper will discuss the use of Evolution-
ary Algorithms (EAs) in the development of game AIs, an
approach which is relatively underutilized.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
.

Although relatively simple approaches to game AI have so
far been sufficiently sophisticated, as computational power
increases the players of such games have begun to expect
more sophisticated AIs just as they have come to expect
sophisticated visuals and sound. Complex AIs are difficult
to code by hand due to the increased mental load on the
programmer, which leads to developers searching for other
avenues of managing complexity. Evolutionary Algorithms
(which will be described in Section 3) offer a potential so-
lution to this problem by shifting the bulk of the work to
the computer. The programmer initially sets up the EA,
after which the programmer need not be concerned with the
inner workings of the algorithm, only the results. This has
the effect of reducing programmer effort at the expense of
computational resources.

Throughout the history of video games, the industry has
usually put the biggest emphasis on graphics [2]. Sophisti-
cated graphics entice people to purchase the game. In re-
cent years, high-definition, three-dimensional graphics have
quickly become commonplace, and many game developers
are thus leaning towards game AIs as their next area of fo-
cus. The majority of modern game AIs do not make use
of evolutionary algorithms. Game designers prefer to use
hand-coded AIs in their games, so why use EAs? What sort
of advantages could we get from an evolutionary algorithm?

2. MOTIVATION

2.1 Better Game Playing
Some games have proven too complex for simple AI meth-

ods. For example, only recently have hand-coded AIs even
attained average human playing level in the game Go (a
board game known for the rich strategies that stem from its
simple rules) [4]. In Xin Yao’s paper [10] he says that EAs
are especially useful for complex problems because they are
less likely to get caught in local maxima (i.e. a solution that
is good, but not the best).

Even though the gaming industry does not use evolution-
ary algorithms, they recognize the need for more advanced
AI techniques. In their paper, McFarlin et al. state that,
although there is some dissension about the direction game
AI will take in the near future, it is generally agreed upon
that better AI techniques are needed, and EAs may be the
solution.

2.2 Humanlike Behavior
A video game with enemies that exhibit strategies with

obvious and exploitable flaws is less fun than one with en-



emies that behave more intelligently. While human players
may exhibit such flaws, they will often be repaired when the
player realizes their mistake, and differ from player to player.
When an AI exhibits such a flaw, it is usually repeated over
and over again, even from different entities in the game.

A term often used to describe a quality of a video game
is “immersive”. An immersive video game allows the player
to believe that the video game world is in some sense real,
tricking the mind into becoming emotionally invested in the
world in much the same way as we become emotionally in-
vested in fictional stories in other mediums, such as books
and movies.

While graphics have long been thought to be the most
important component in making a video game immersive,
as graphics have rapidly improved it can be jarring to see
a highly realistic depiction of a human behaving like an au-
tomaton. An enemy player that is able to recognize a loop-
hole in its strategy and repair it, or modify its strategy over
time, would be one step closer to the goal of creating a be-
lievable illusion of an intelligent opponent. [9, 2]

2.3 Programmer Cost
Last but not least, one of the most important reasons to

use an EA is that it trades programmer work for computa-
tional work. Computational work is less valuable than pro-
grammer work, since a programmer is paid tens of thousands
of dollars per year, while a computer costs several hundred
dollars and will probably last several years. Since compu-
tational work is much cheaper than programmer work, this
is often a very good trade even if it is not especially effi-
cient. For example, trading several hours of programmer
time for several days of computation time could easily be a
good trade, if you have one or two extra computers that are
not otherwise being used.

Evolutionary algorithms can already produce results sim-
ilar to a programmer in a comparable amount of time in
some instances [5]. Additionally, computers are projected
to continue to increase in power in the foreseeable future,
which means the trade off will become more and more ef-
ficient, and will allow us to apply EAs to more complex
problems. Furthermore, as AIs become more complex the
cost of a programmer coding them by hand will scale poorly
compared to the cost of that same programmer setting up
an EA. Ultimately, the cost of setting up and running an
EA will become cheaper than coding that AI by hand.

3. EVOLUTIONARY ALGORITHMS
This paper is primarily about evolutionary algorithms ap-

plied to AI development, so some background on EAs will
be relevant to some readers. An EA is a type of algorithm
which is engineered to solve a given problem. It does this
by creating a population of “individuals”, where each indi-
vidual represents a solution to the problem1. The EA then
varies this population over time by removing poor solutions
from the population and replacing them with new individu-
als derived from the more successful solutions. Randomness
involved in the introduction of new individuals creates and

1Aside: the terms “genotype” and “phenotype” are often
used to refer to the individual that is evolved, and the solu-
tion that individual represents, respectively. Some readers
may be more familiar with these terms from other resources
on evolutionary algorithms, or from the biological terms they
are inspired from.

maintains diversity in the population, allowing it to grav-
itate towards better solutions to the original problem over
time.

An EA starts with an initially random population. Usu-
ally, EAs are organized into “generations” where each gen-
eration has a new population of individuals produced from
individuals in the previous generation. To produce the next
generation, each individual in the old generation is assigned
a number representing how good of a solution it is, i.e. its
“fitness score.” Then, individuals with high fitness (better
solutions) are selected to produce new individuals in the
new population. New individuals are produced from old
individuals in a way in which some of the old individual’s
traits and characteristics are passed down, often by means
of the mutation operation (which modifies a random part
of the individual) and the crossover operation (which com-
bines the traits of two individuals). The individuals in the
new population will be similar to the best individuals from
the previous population, but the random modifications have
a chance of producing individuals that are better solutions.
In this way, the population tends towards individuals with
high fitness.

3.1 Fitness Evaluation
The most important part of an EA is determining which

individuals in a population are better or worse solutions to
the problem that the EA is supposed to solve. Naturally, we
will want to keep the most fit solutions (the solutions that
best solve the problem) while abandoning the least fit. This
is done via a fitness function, which is intended to measure
the relative success of an individual at solving the problem.
In the context of game AIs, this is often not a “function” in
the traditional sense of the word, but rather an implementa-
tion of the individual, either on some data or in competition
against another individual, to see how well it does. This can
easily become the most computationally expensive part of
an EA, and the care put into its implementation can eas-
ily determine how quickly an EA reaches a sufficiently good
solution (or if it does at all).

The fitness function does not have to be perfect, and often
includes some noise (randomness). For example, if a set of
algorithms is produced for playing a two-player board game,
their fitness might be determined via a round-robin style
series of matches. However, if the game involves any amount
of randomness you are not guaranteed to get exact results.
Often, to simplify the calculation, instead of a round-robin
style series of matches, individuals will be paired randomly
for a smaller number of matches. This will produce more
noise but will speed the evaluation of fitness. Where the
happy medium will lie depends on the given problem, which
is one of the reasons why implementing a good EA is non-
trivial.

3.2 Selection and Reproduction
Once the fitness of each individual is calculated, it is time

to produce the next generation of individuals. This is usually
done via one or more operations which pass some traits on
to the offspring while modifying others.

Individuals are selected from the population based on fit-
ness score, as described in the previous section. The most
fit individuals are copied (with or without modifications)
into the next generation. Copying the most fit individuals
directly from one generation to the next safeguards against



Figure 1: A diagram depicting the two basic mech-
anisms of evolutionary algorithms [3].

backtracking to worse solutions. Some EAs will allow indi-
viduals with higher fitness to produce many offspring, with
the number of offspring each individual produces propor-
tional to its relative fitness.

Mutation is the most basic mechanism of EAs, and also
the most vital. Some EAs are implemented using only mu-
tation, especially when computational power is limited. Es-
sentially, some part of the individual is randomly modified.
In Figure 1, one can see an example of mutation being per-
formed on a tree structure in the lower half of the figure.
Trees like this are often used to represent numerical expres-
sions. In this case, the tree on the left represents the expres-
sion x+ (2 ∗ 3). The letter x in this context might represent
a constant, a variable, or a function that returns a number.
When mutation is performed on this tree, a random subtree
is selected (depicted in bold) and then replaced with a new
randomly grown subtree (shown in bold in the tree on the
right). The end result of the mutation, the tree on the right,
represents the expression x+ (x+ (3 ∗ z)).

Crossover is the process of combining parts of two differ-
ent individuals into a new individual with traits from both
parents. In Figure 1, an example of crossover is depicted in
the upper half of the figure. The two trees on the left, rep-
resenting the numerical expressions x+(2∗3) and (x+2)∗z
respectively, create two new trees each of which contains
parts of both parents. In this case, the subtrees outlined in
bold have been swapped, so each child has the main tree sec-
tion from one parent and the bolded subtree from the other.
This particular crossover operation produces two offspring,
but many crossover operations produce only one child, or
randomly selects one to add to the population.

Crossover can be difficult to implement in a reasonable
way, since the two individuals may be wildly different. One
way of avoiding this problem is by implementing markers of
some kind which identify analogous sections of each individ-
ual, so they can be interchanged more easily.

Figure 2: An example of the ANNs that control each
individual robot in NERO[9].

4. ARTIFICIAL NEURAL NETWORKS
One common type of EA is one that produces an Artificial

Neural Network (ANN). The principles of ANNs are inspired
by biological neural networks, or brains, in the sense that
ANNs are made of interconnected nodes (neurons) which
produce results based on the weighted connections between
the nodes.

The input into a Neural Network comes from a set of
“input” nodes. In the context of game AIs, the input nodes
take data directly from the game environment, in the form
of numerical data such as distance to a wall, distance to an
enemy, or current health. The output from an ANN comes
from one or more output nodes, which are used to determine
a course of action. For example, in Figure 2 the input nodes
are shown on the left of the image and the output nodes are
shown on the right.

Each node takes values from one or more inputs, performs
some operation with them, and sends a value to that node’s
output. Any number of nodes can take one of their inputs
from a node’s output. In this way, values propagate through
the ANN until they reach the output nodes.

4.1 Transfer Function
Once a node has inputs, it must calculate its output value.

It does this by means of a special function called a transfer
function. This function is usually the same across all nodes,
but takes into account both the inputs of the node and a set
of weights specific to that node (depicted in Figure 3). An
example of a basic function is given below:

output = f(
n∑

j=1

weightj ∗ inputj − threshold)

Where the function f is some function predefined by the
programmers. Usually, f is a sigmoid function. A sigmoid
function is a type of function which converts any real number
to a number within a set range, as seen in Figure 4. In the



Figure 3: A diagram of a typical node in a Neural
Network

Figure 4: A standard sigmoid function (Wikipedia).

example in Figure 4, the range is between 0 and 1. The
function f may also be a gaussian function (popularly known
as a bell curve). The function can be evolved, but is usually
fixed by the programmer, as are all of the examples discussed
later in this paper.

4.2 Topology and Weights
Often, both the topology (i.e. structure, number of nodes

and node connections) and the weights of an ANN are evolved,
but it is possible to use a fixed topology and just evolve the
weights. ANNs can often change their weights dynamically,
a process which falls under the domain of machine learning
rather than EAs. If the topology of the ANN is evolved, evo-
lution and learning can be combined. In the examples pre-
sented in this paper that incorporate ANNS (namely, NERO
and Wolfenstein 3D) both the topology and the weights are
evolved together, so further discussion of machine learning
is beyond the scope of this paper. ANNs are often very ef-
fective, but can be computationally expensive, especially for
more complex networks [10, 3].

Each input into a node has a weight, and the input is mul-
tiplied by this weight before the modified inputs are added
together. Essentially, an input with a higher weight has a
larger influence on the output of the node.

5. EXAMPLES
In the effort to explore the potential abilities of evolu-

tionary algorithms, many researchers have implemented this
technique in various ways. In this section, we will explore
three interesting applications of evolutionary algorithms to
video game AI. Whether the evolution occurs in game at
play time, as in the first example, or the AI is evolved be-
forehand and tested in the game, as in the second and third
examples, all of the following examples are successful imple-
mentations of EAs to the task of making a game AI.

5.1 NERO
NERO is a game designed from the ground up to incorpo-

rate evolutionary ANNs. In it, the player trains a team of
robots to fight opponents autonomously. Each robot is con-
trolled by an ANN, the topology of which is evolved based
on event weights provided by the player (not to be confused
with the edge weights evolved by the ANN, which are also
evolved) .

Each potential event, such as hitting an enemy or being
hit by an enemy, has a weight provided by the player. The
fitness score is calculated by multiplying the number of oc-
currences of each event by the weight of that event. For
example, if the player chooses to reward robots who charge
straight at an enemy, then robots will receive a higher fitness
score the longer they stay near an enemy. By combining this
with a negative weight for being hit by an enemy, a robot
may develop a preference for remaining at a certain distance
from the enemy, as this will provide a balance between the
two weights.

Unlike the other two examples in this section, NERO does
not divide its populations into generations. Instead, evo-
lution occurs in real-time. Every n seconds, a parameter
set by the player, two individuals with high fitness are se-
lected. Then, a new individual is created by performing
both the crossover and mutation operations (as described in
Section 3.2). The new individual replaces an old individual
with low fitness. The process of selecting two individuals
and creating a new individual is depicted in Figure 5. Be-
cause the fitness score is calculated in real-time, the new
individual is protected for a short time from being replaced
so its fitness score can stabilize.

As evidence of the success of the experiment, the authors
present the speed with which the robots adapt to weights
presented by the user. Starting from a random neural net-
work (the default) it takes the robots an average of 99.7
seconds to develop seeking behavior with the appropriate
weights. This is a relatively simple behavior, but the authors
also demonstrated the ability for the game to quickly evolve
complex behaviors by manually controlling a hostile robot
and training the robots to find alternative paths to avoid
being shot. This took only 2 minutes, again with the proper
choice of weights. This successfully demonstrates that neu-
ral networks can be evolved quickly and in real-time, a result
that could be used to make games more dynamic and less
predictable. [9]

5.2 Robocode
Robocode is a competition where contestants submit a

java program to control virtual tanks which fight each other
autonomously. One of the first, and most successful, contes-
tants not programmed directly by a human is described by
Sipper et al. in GP Robocode: Using Genetic Programming



Figure 5: The reproduction model for the au-
tonomous robots in NERO[9]

while (true) {
TurnGunRight(INFINITY); //main code loop

}
OnScannedRobot() {

MoveTank(< EA#1 >);
TurnTankRight(< EA#2 >);
TurnGunRight(< EA#3 >);

}

Figure 6: Robocode player’s code layout

to Evolve Robocode Players [8]. This player was developed
for the Haiku-bot challenge, a division of the competition
restricting code size to four instances of a semicolon (which
can be interpreted as four lines of code). The code con-
sisted of a main loop which rotated the gun of the tank.
When an enemy tank was spotted, the code triggered an
OnScannedRobot event, which caused the tank to execute a
series of commands: move tank forward, rotate tank, and
rotate gun (see Figure 6). The input values for each of these
commands were numerical expressions like those described
in Figure 1. Because the fire command was implemented as
a function with a numerical return value, it could be placed
at any point in any of the three evolved numerical expres-
sions just like a numerical constant.

Sipper et al. chose to carry a population size of 256. They
chose three high-scoring, hand coded players from previ-
ous competitions. In each generation, each individual plays
three rounds against each of the three benchmark players.
Three competitors were chosen because previous experiments
indicated that evolutionary algorithms developed against a
single opponent did not generalize to other opponents[7, 8].

As with all evolutionary algorithms, choice of fitness algo-
rithm is crucial to determining the success of the evolution-
ary algorithm. As Sipper et al. explain in their paper [7],
their goal was to succeed in the scored Robocode tourna-
ment, so they chose to adopt the scoring function used in
the tournament itself:

FractionalScore =
PlayerScore

P layerScore+AdversaryScore

This fitness function proved unhelpful early in the evolu-
tionary run, as very poor players would not score any points
and thus earn a score of 0 (zero). This was fixed by adding
a small positive constant ε to the function:

FractionalScore =
ε+ PlayerScore

ε+ PlayerScore+AdversaryScore

This solved the problem by giving a higher score (non-zero)
to the players that best avoided their opponent (and thus
prevented their opponent from getting a higher score). This
is an excellent example of how the choice of a fitness function
can have a dramatic effect on the speed of an evolutionary
algorithm.

The most successful AI, after 400 or so generations, was
submitted to the competition. It placed third of 27 con-
testants. Sipper et al. make the argument that placing
third fulfills their initial goal of making an algorithm that is
human-competitive by holding its own against human play-
ers. They estimated their algorithm took around 256 hours
of computation per evolutionary run, a time which they split
between 20 computers to save time. [7, 8]

5.3 Wolfenstein 3D
Wolfenstein 3D is a game released in 1992 for DOS. The

game itself features a rather simplistic state-based AI. In
Evolving a Better Adversary: A Case Study in a German
Castle, McFarlin et al. describe their evolutionary AIs de-
signed to be used in place of the default AI[5]. In effect,
they use Wolfenstein 3D as a testing ground for evolved
ANN-based game AI.

To determine the fitness of an individual, McFarlin et al.
simply kept track of the amount of damage inflicted by the
individual. This has the benefit of rewarding individuals
that remain alive long enough to inflict more damage.

The average time for a human player to complete the level
with the default AI was 117.20 seconds, with a standard
deviation of 13.28. To determine the merit of the final ANN,
this number was compared with the time for a human player
to complete a level populated with enemies controlled by the
ANN. The average time to complete the level for the best
evolved ANN was 141.04, with a standard deviation of 23.68.

The goal of this experiment was not to produce AI models
that were more difficult to beat than the default AI. Rather,
the goal was to demonstrate that the process of creating such
AIs could be automated. In fact, the authors made a point
of suggesting that future research in this field investigate
methods for automating the creation of AIs that fall within
a certain skill range, such as ”good for beginners.”

6. CURRENT ISSUES
Historically, game developers have rarely made use of ex-

perimental techniques such as evolutionary AIs. Although
evolutionary AIs have much potential, they have yet to see
much use in the video game industry because they can be
problematic in several ways. Techniques used in coding AIs
by hand have been honed by many programmers over the
years, while EAs are relatively untested. In this section, we
present a number of problems that can occur when imple-
menting an EA, or concerns a developer might have about
using an EA. In addition, we also present some potential
solutions to these problems and concerns.



6.1 Computational Cost
Although EAs trade programmer effort for computational

effort, this trade is not very efficient. Setting up an EA may
take less work than coding an AI by hand, but it still takes
a nontrivial amount of work. Moreover, even a relatively
simple EA can take days to compute on a standard com-
puter, and if the programmer does not have something else
to do in the meantime nothing is gained. The usefulness of
EAs is impeded by the fact that they are computationally
expensive, and the problems we wish to solve with them
are already complex. For game AI, this means that sim-
ple AI can already be made efficiently using hand coding
techniques, and complex AI is very time consuming.

This problem is the easiest to solve: we must simply use
faster computers. As computer performance is scheduled
to continue to increase, this problem will essentially solve
itself. One could argue that as computers increase in power,
we will also want to implement more complex EAs. If this
is the case, then more research will have to be done to make
EAs more efficient.

6.2 Speed and Reliability
For simple applications, it’s easier to have a human pro-

grammer hand code an AI than implement an EA. For com-
plex applications, the EA may not terminate in a reasonable
amount of time. In addition, even though programmer time
is more expensive than processor time, the current state of
EAs is that they are often not reliable enough to let them
run completely unsupervised. This problem, compounded
with the amount of time it takes for an EA to terminate,
means that it is often more efficient to code the AI by hand.
[5, 6, 1]

Many speed and reliability issues can be improved, if not
entirely remedied, by changing how the EA is set up initially.
For example, the choice of fitness function can have dramatic
effects on the speed of an EA, and a poor fitness function
can easily cause an EA to spin out and not go anywhere
useful. Fundamentally, this problem will only be improved
by a better understanding of EAs that comes from more
research on this topic.

6.3 Transparency
Game developers like to be able to see how their AIs work

internally to make sure they won’t do anything unexpected.
ANNs, in particular, are difficult to understand by direct
observation. Essentially, the results of an EA are defined by
what they do, not how they do it. This makes game devel-
opers uncomfortable, probably because they cannot predict
how an AI will behave in an untested situation. [5, 1]

This may improve with our understanding of EAs, but it
is unlikely to ever be perfect. It is fair to point out, however,
that it is difficult to completely avoid unpredictable behav-
ior with traditional AI techniques, especially as complexity
increases. The fear that an AI might encounter an unex-
pected situation and perform erratically could be mitigated
by making the AI be adaptable. If the expectation is that
the AI acts as a human would, it would be understandable
if it behaved poorly in a new situation but learned from its
mistakes over time.

7. CONCLUSION
Evolutionary AIs are a useful tool in game AI. They are

comparable, and in some ways superior, to human programmed

AI. This technique has been very useful in developing AIs
to play complex games, and will likely continue to be useful
in this regard.

Despite huge computational advances, EAs still suffer from
insufficient computational resources. On the other hand, as
computational resources increase, the effectiveness of EAs
will scale extremely well compared to other methods of al-
gorithm development [5, 4]. Researchers have already found
many useful applications for EAs in game AI, and we ex-
pect the utility of this approach to increase in proportion to
computational power.

8. REFERENCES
[1] S. Bakkes, P. Spronck, and J. van den Herik. Rapid

and reliable adaptation of video game AI.
Computational Intelligence and AI in Games, IEEE
Transactions on, 1(2):93 –104, june 2009.

[2] S. Cass. Mind games [computer game AI]. Spectrum,
IEEE, 39(12):40 – 44, dec 2002.

[3] N. Kohl and R. Miikkulainen. 2009 special issue:
Evolving neural networks for strategic decision-making
problems. Neural Netw., 22(3):326–337, Apr. 2009.

[4] S. M. Lucas, P. Rohlfshagen, and D. Perez. Towards
more intelligent adaptive video game agents: a
computational intelligence perspective. In Proceedings
of the 9th conference on Computing Frontiers, CF ’12,
pages 293–298, New York, NY, USA, 2012. ACM.

[5] D. McFarlin and P. Todd. Evolving a better
adversary: A case study in a german castle. In
Artificial Life, 2007. ALIFE ’07. IEEE Symposium
on, pages 229 –235, april 2007.

[6] S. Rahnamayan, H. Tizhoosh, and M. Salama.
Opposition-based differential evolution. Evolutionary
Computation, IEEE Transactions on, 12(1):64 –79,
feb. 2008.

[7] Y. Shichel, E. Ziserman, and M. Sipper.
GP-Robocode: Using genetic programming to evolve
robocode players. In M. Keijzer, A. Tettamanzi,
P. Collet, J. van Hemert, and M. Tomassini, editors,
Genetic Programming, volume 3447 of Lecture Notes
in Computer Science, pages 143–143. Springer Berlin /
Heidelberg, 2005.

[8] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel.
Designing an evolutionary strategizing machine for
game playing and beyond. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 37(4):583 –593, july 2007.

[9] K. Stanley, B. Bryant, and R. Miikkulainen. Real-time
neuroevolution in the NERO video game. Evolutionary
Computation, IEEE Transactions on, 9(6):653 – 668,
dec. 2005.

[10] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423 –1447, sep 1999.


