Overview and Comparison of Genome Compression
Algorithms

Tim Snyder
University of Minnesota, Morris
Department of Computer Science
600 East 4th St.

Morris, Minnesota
snyde479@morris.umn.edu

ABSTRACT

Genomic data is being created at a dramatically increas-
ing pace. In the past, researchers were able to rely on the
trend of cheaper storage space to store that genomic data.
However, the pace at which genomic data is being created
is increasing faster than the ability to purchase cheap stor-
age mediums. To help keep storage costs down, compres-
sion algorithms must be used to keep the size of the data as
small as possible. I will be analyzing and presenting genomic
compression algorithms for both single genomes and sets of
genomes. The single genome compression algorithms that I
will present are the Expert Model by Cao et al. and Tabus
and Korodi’s algorithm and the database compression algo-
rithms are COMRAD by Kuruppu et al. and Heath et al.’s
algorithm. Comparison of algorithms indicates that there is
room to make new algorithms to compress sets of genomes
and that compressing sets is more effective.

Categories and Subject Descriptors

E.4 [Data]: Coding and Information Theory—Data Com-
paction and Compression

General Terms
Algorithms

Keywords

genome, compression, XM, COMRAD, database, single, arith-

metic compression

1. INTRODUCTION

Kryder’s law states that every twelve months, storage ca-
pacity per dollar doubles [13]. Despite this law of comput-
ing, genome storage is becoming increasingly more expensive
because genomic data is being created at an even greater
rate. In the past, researchers were able to rely on the trend

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

CSci Senior Seminar ’12 Morris, Minnesota USA

of cheaper storage space to store the genomic data being
generated. However, certain trends in sequencing, such as
the maturation of second generation sequencing technolo-
gies, the creation of cheaper sequencing machines and the
third generation of DNA sequencing technologies, are re-
sponsible for an ever increasing number of genomes being
sequenced. These genomes are from both new species and
more individual creatures having their genomes sequenced.
This increasing rate of sequencing is outpacing Kryder’s law
even after general purpose compression algorithms are ap-
plied [9].

The genome of an organism is the DNA within that or-
ganism. DNA is comprised of nucleotides, also refered to as
bases, which can be represented by the characters A, C, G
and T for Adenine, Cytosine, Guanine and Thymine, respec-
tively. In addition to those four letters specifying specific
bases, there are letters which are wildcards and represent an
arbitrary base or set of bases such as N for a non-specified
string of bases and M for either Adenine or Cytosine. Con-
verting the physical DNA to a data file is called sequencing.
The human genome is about 3,000 megabytes of uncom-
pressed data. In comparison, the complete works of William
Shakespeare is about 5 megabytes.

This paper will present and compare four algorithms de-
signed to compress genomes. Background information and
a pair of non-genome specific algorithms will be presented
first. Then, I will present a pair of single genome compres-
sion algorithms in Section 3, Expert Model by Cao et al.
[2] and Tabus and Korodi’s algorithm [10]. Following that,
I will present a pair of database genome compression algo-
rithms in Section 4, COMRAD by Kuruppu et al. [6] and
Heath et al’s [7] algorithm. Finally, I will draw some con-
clusions from the papers presented.

2. BACKGROUND

Before we discuss the algorithms in this paper, it is nec-
essary to understand some general compression algorithms,
their performance and Markov models which appear in two
of the algorithms in this paper.

2.1 General Compression Algorithms

Compression algorithms are algorithms that will attempt
to store data in a manner that takes up less space than the
original data set. There are two kinds of compression algo-
rithms; lossy and lossless. Lossy compression loses data from
the original data set, which is fine for images and movies,
but is not acceptable for genomes. Lossless compression

keeps all of the original data, which is what is required for
genome compression since the entire set of data is what is
important when looking at genomes. General purpose com-
pression algorithms do not care about what kind of data
is being compressed aside from the format they are given
for compression. This paper will only look at compression
algorithms designed for compressing strings.

As far as efficiency is concerned, compression algorithms
can be rated in one of two ways. The first is by dividing the
size of the compressed data set by the size of the original
data set which gives the percentage of size still used. This is
referred to as a compression ratio. So, if a 500 byte file was
compressed to 250 bytes, the compression ratio would be
50%. The second way to rate compression is in the average
number of bits per character. So, assuming that the 500 byte
file was encoded using the standard 8 bits per character with
unicode, the 250 byte version would use 4 bits per character.

Before looking at genome specific algorithms, it is neces-
sary to know how effective general purpose algorithms are
for compressing genomes. One general purpose compression
algorithm that works well on repetitive text is the Limpel-
Ziv-Welch (LZW) algorithm. This seems like it would work
well on genomes since they are highly repetitive. LZW starts
with a dictionary of all possible characters as keys and val-
ues of the index in the dictionary, a dictionary being a data
structure holding key-value pairs for easy searching.

A T C | G

0.0 0.3 0.6 0.8 1.

/ \
A G

03 039 0.48 0.54 0.6
\
//V T C G

048 0.498 0.516 0.528 0.54

0

T

Figure 1: Example of Arithmetic coding with prob-
abilities of 30% for A and T and 20% for C and G.
See text for details.

range [0,1). Then by reading in data character by character,
a decimal is created by taking the number that fits the ranges
of each of the characters in the string in order. In the output
file before the decimal would be the number of characters
that are being represented.

Algorithm 2 Arithmetic coding pseudo code

Algorithm 1 LZW pseudo code
Generate dictionary

s = 1132
while file has more characters do
t=s
¢ = next character
s+= next character
if dictionary does not contain s then
put s and dictionary size in dictionary as next pair
output index of t in dictionary
s=c¢
end if
end while

It reads in a character and, if the stored string concate-
nated with this new character is in the dictionary, it repeats
this step. Otherwise, it outputs the binary for the index of
the stored string and sets the string that it is looking for
in the dictionary to the new character. By repeating this
process until there is no more input, LZW can reduce the
amount of space for a data file that has repeated patterns.
Decoding the binary is done with the same starting dictio-
nary of characters and indices and takes the binary data and
slowly adds what it finds to the decompression dictionary in
the same way that it did when compressing, except it out-
puts the characters instead of binary. Since LZW recreates
the dictionary as it decompresses, there is no need to store
the dictionary from the compressing of the file [12].

While this might seem like a good algorithm to use be-
cause genomes are highly repetitive, in practice, the LZW
algorithm actually makes genomes larger [5, 7]. Clearly, this
is not a solution to the problem of genome compression. For-
tunately, this is not the only generic compression algorithm.
Next up is arithmetic coding.

Arithmetic coding is done by taking the probability that a
given character will occur and fitting the probabilities in the

start = 0.0
end = 1.0
numChars = 0
while file has more character do
¢ = next character
newStart = start
for i = 0;i<index of ¢ in probabilities;i++ do
start+=probabilities[i] *newStart
end for
end = start+newStart*probabilities|c]
numChars++
end while
output shortest decimal between start and end
output numChars

An example of arithmetic coding in action is seen in Figure
1. The probabilities in this example are 30% for A and T
and 20% for C and G. The string being compressed is TCA,
so we start with our range of [0,1) and fit it into where
T would be in that range. This takes our range down to
[0.3,0.6). We recreate the distribution in this new range and
repeat. This will give us a range of [0.48,0.54) for the string
TC and [0.48,0.498) for the full string of TCA. Any decimal
in that range will give us a representation for TCA, so we
would want to pick the shortest binary decimal in that range
which would be 0.011111. [11]

Using arithmetic coding gives us about 2 bits per charac-
ter for genomic data which should be the baseline for other
compression algorithms. 2 bits per character makes sense
given that there are only 4 characters that are regularly
used in genomes and 2 bits has 4 possible states.

2.2 Markov Models

A Markov model is a model that allows for predictions
of the next state of a machine from its current state. In
addition, an order-n Markov model will take the current

.25

Figure 2: An example of an order-1 Markov model
with 2 characters

state and the previous n states to predict the next state. In
genomic compression, these are used to create probability
distributions for the next character for arithmetic coding.
In Figure 2.2, there is a simple order-1 Markov model on
the characters A and B. The characters in the state are
the current and previous input. Using them, we get the
probabilities of moving to a different state with the next
input. So, if the last two characters seen are both A, we
have a 25% chance of seeing an A next and a 75% chance of
seeing a B. We can feed those probabilities into arithmetic
coding to generate the decimal for compression.

3. SINGLE GENOME COMPRESSION
ALGORITHMS

Single genome compression algorithms take in a single
genome and output the compressed genome. These algo-
rithms have the benefit of being able to run on genomes as
they are generated as well as having the benefit of being
able to decompress the genome on its own without the need
for more data. I will explain two single genome compression
algorithms. The first is Expert Model by Cao et al. and the
second is Tabus and Korodi’s algorithm.

3.1 Expert Model

This subsection will explain the Expert Model algorithm
(XM) as presented by Cao et al. [2] and go over the results
of testing XM.

XM uses arithmetic coding as described above. The unique
portion is how it determines the probabilities for each of the
characters. The algorithm starts with a population of ex-
perts. An expert is anything that gives a good probability
distribution for a position in the sequence. Examples of ex-
perts are Markov models, which were described in Subsec-
tion 2.2, and a copy expert, which determines if something is
likely to be a copy. After obtaining the probabilities from the
population of experts, XM will combine the probabilities for
each of the characters and feed them into arithmetic coding
to generate the final decimal. In addition, XM weights the

Sequence | BioC | GenC | DNAC | DNAP | XM

CHMPXX | 1.684 | 1.673 | 1.671 1.660 | 1.657
HEHCMVCG | 1.848 | 1.847 | 1.849 1.834 | 1.842
HUMHBB | 1.880 | 1.820 | 1.789 1.777 | 1.751

Average | 1.783 | 1.742 1.725 1.714 | 1.694

Table 1: XM’s efficiency in bits per character. Table
based on data from [2].

experts based on how accurate they have been in the past
which is taken into account when finding the probabilities
for arithmetic coding.

Cao et al. compared XM to other genome specific com-
pression algorithms. The algorithms included BioCompress
[5], GenCompress [3], DNACompress [4] and DNAPact [1].
On one of the genomes, DNAPact performs better than XM,
but in general, the results in the paper show that XM com-
presses better on more genomes and better on average than
the other algorithms. Considering that the results are also
less than the two bits per character provided by arithmetic
coding, XM is clearly more efficient at compressing than
generic compression algorithms.

There is one rather large flaw with the paper’s description
of XM. While the paper does explain what some experts are,
it does not actually explain what experts were used to get
the compressions in Table 1.

3.2 Tabus and Korodi’s Algorithm

This subsection will explain the algorithm presented by
Tabus and Kordi (TK) [10] and go over the results of TK.

TK starts by breaking the genomic sequence into non-
overlapping blocks of equal size. Then it goes block by block
compressing them. Compressing the block happens with
three different methods and then the most efficient one of
those is chosen for storage. The first method uses a Markov
model. The second uses arithmetic coding to compress to 2
bits per base. The third and final compression method finds
an approximate match to a previously compressed block and
compresses based on the differences between them.

The details of Markov models are in Subsection 2.2 and
arithmetic coding was described previously in Subsection 2.1.
The last coding method starts by finding the previously com-
pressed block that is the closest to the block currently being
compressed. Then, it stores the differences between the two
blocks as a string, z, of 1’s and 0’s where a 1 at position i
means that they are different at position i and a 0 at po-
sition i means that they are the same at position i. Then
arithmetic coding is used to store distances for the differ-
ences. An example would be if at some index the old block
has A and the new block has G, the distance from A to G
might be 2. So there would be an arbitrary cycle between
A, C, G and T where moving from one to the next increases
the distance for the difference by 1. The algorithm then
counts up each of the substrings in z of length £ used in
both prefixes and suffixes. Using this count and the string
of differences, a probability distribution is created to create
prefixes that would compress the difference string the way
arithmetic coding would. Then another probability distribu-
tion called a universal code is created from that probability
distribution. The universal code is to make prefixes that,
while not the best in a specific probability distribution, will
be good enough over all probability distributions that could

be expected. Then we store the previous section being ref-
erenced, the universal code, the count of substrings and the
starting substring of length k.

In order to decompress, the counts and starting substring
are used to calculate the ending substring. This is possible
because the number of substrings that start with the starting
substring is either the same or one more than the number of
substrings that end with the starting substring. If the two
numbers are equal, then the ending substring must be the
same as the starting substring. Otherwise, there must be one
more substring ending in the ending substring than there are
that start with the ending substring. Then the counts, prob-
ability distribution and starting and ending substrings are
used to recreate the original string of differences. Then it
is just a matter of undoing arithmetic coding and changing
the characters from the referenced portion that was decom-
pressed earlier.

So, if we have the strings ACGTGA and ACTGGA, the
difference string would be 001100. Then we calculate the
distances which will be 1 and 3 if our cycle goes A, C, G,
T and A. We count up the substrings of the binary string
of a certain length, say 2, and using them and the starting
substring, “00”, we create a universal code. We can undo
this by taking the universal code and generating the starting
substring, substring counts and differences. The substring
counts are 2 for all substrings: “00”, “01”, “10” and “11”.
Since the count for “00” is even, we know that the ending
substring must also be “00”. If we had “00” odd instead,
then there would be another substring with an odd count
that would be the ending substring.

Tabus and Korodi ran their algorithm on each chromo-
some of a human genome. When wildcards are included
in the genome, the algorithm does considerably better with
an average compression of 1.449 bits per base on the hu-
man genome compared to the algorithm without wildcards’
1.616 bits per base. Unfortunately, Tabus and Korodi did
not compare their algorithm to any other compression algo-
rithms, so it is impossible to draw any conclusions from this
paper alone about the algorithm’s effectiveness.

4. GENOME DATABASE COMPRESSION
ALGORITHMS

In this section, I will present genome compression algo-
rithms that, instead of taking in a single genome, take in
a set of genomes and compresses them all using knowledge
combined from the genomes. The algorithms that I will
present are COMRAD by Kuruppu et al. and an algorithm
by Heath et al. The additional knowledge from a database
compression algorithm allows for increased compression.

41 COMRAD

This subsection will go over the COMRAD algorithm and
its experimental results as presented by Kuruppu et al. [6].

From the genomes given as input, COMRAD generates a
dictionary of substrings of length L keeping track of the fre-
quencies of each substring. COMRAD will then go through
the strings to be compressed and count the number of places
where the most numerous substring can be replaced mak-
ing sure to not count overlapping instances. COMRAD re-
places the substring with the most non-overlapping counts
and stores the replacement that it made. COMRAD then
repeats the counting of substrings and replacing of them un-

Input
aabcbcaabcabce

Step 1
aa:2 ab:3 bc:4 cb:1 ca:2

Step 2
aabcbcaabcabe (no candidate)
aabcbcaabcabe (no candidate)
aabcbcaabcabe (cand cnt be:l)
aabcbcaabceabe (cand cnt be:2)
aabcbcaabcabce (no candidate)
aabcbcaabeabce (no candidate)
aabcbcaabcabce (cand cnt be:3)
aabcbcaabcabe (no candidate)
aabcbcaabcabe (cand cnt be:4)

Step 3
bc — A
aaAAaaAaA
- Step 4
aa:2 aA:2 AA:1 Aa:2
aA — B
aBAaBB
aB — C
CACB

Figure 3: Example of COMRAD in action from [6]
with L=2.

Dataset | original | RLCSA | RLZ | COMRAD
Influenza 1.97 0.43 3.10 0.43
Hemoglobin 2.07 2.16 4.13 1.16
Bacteria 2.00 5.13 2.90 2.26
H. sapiens 2.18 2.54 0.50 1.44
Average 2.06 2.22 2.04 1.10

Table 2: COMRAD’s efficiency in bits per character.
Table based on data from [6].

til all of the counts of substrings that it finds fall under a
certain threshold. Finally, COMRAD will output the final
string and the replacements that were made in order. De-
compressing from the file is rather simple. The compressed
string is read in followed by the changes made. Then the
changes are reversed one by one until the original string is
rebuilt.

An example of COMRAD on an arbitrary string is in Fig-
ure 3. In the first step, COMRAD counts the occurences of
substrings of length L = 2. COMRAD selects bc since it is
substring that occurs most frequently, in step 2, COMRAD
recounts the number of substrings of bc making sure to not
count overlaps. COMRAD replaces the substring with a
character that does not show up in the input string unless a
different substring might occur more often after the second
counting. An example where the most common substring is
not replaced at first can be seen in Figure 4. In this example,
the substring ab can be replaced in more places than aa can.
Because of this, ab gets replaces instead of aa to decrease
the size of the string by the largest possible amount.

Table 2 shows some experimental results presented by Ku-

Input
aaaaababab

Step 1
aa:4 ab:3 ba:2

Step 2
aaaaababab (cand cnt aa:1
aaaaababab (cand cnt aa:2
aaaaababab (no candidate
aaaaababab (no candidate
aaaaababab (no candidate

(

)
)

)
)
)
aaaaababab (no candidate)
ab — A
aaaaAAA

Figure 4: An example where COMRAD will replace
a substring that is not the most common substring
in the original string.

ruppu et al. RLZ is a previous algorithm by Kuruppu et al.
and uses a form of LZW. RLCSA was designed to work well
on repetitive text, but RLCSA is not designed specifically
to compress DNA [8], so it is unclear why the authors chose
that as an algorithm to compare with COMRAD. Particu-
larly troubling, most of the compression rates from RLZ and
RLCSA are worse than the 2 bits per character obtained by
arithmetic coding. RLCSA will, on average, increase the
size of the genome set from the original while RLZ doesn’t
compress the datasets on average. There is also an instance
where COMRAD fails to compress the data. The original
size of the bacteria set on which COMRAD fails to efficiently
compress is about two bits per base while COMRAD com-
presses this dataset to 2.26 bits per character. The authors
failed to explain this occurrence. However, COMRAD was
quite effective on the other datasets and on average.

COMRAD is a simple algorithm which works well on most
of the data sets given in the paper, but in certain cases,
COMRAD makes the dataset larger. Algorithms that were
used in the paper to compare to COMRAD could have been
better chosen since one of them was not specific to genome
compression and both of them were either worse or not con-
siderably better than the standard 2 bits per character com-
pression scheme.

4.2 Heath’s Algorithm

This subsection explains the algorithm presented by Heath
et al. [7] and goes over their results.

Their algorithm starts by using a sequence alignment ap-
plication called MUSCLE to align the sequences with a ref-
erence genome. The algorithm then determines the most ef-
ficient way to transform the reference genome to the current
genome with the five operations of insertion, replacement,
deletion, insertion after replacement and deletion after re-
placement, examples of which are in Figure 5. Insertions are
noted with an index and the string of bases that is added
starting at that index. Replacements are noted with the
starting index and the string of bases that replace the string
in the original sequence. Deletions are noted with the start-
ing index and how many bases are being deleted. Insertion
after replacement and deletion after replacement are replac-

Position 140 143

Reference ..
ot [T[6[A[T[A]T]

Position 150 155

Reference
rarget (][[T[A[T]

Insert (140, GA) Delete (151, --)
(a) Insertion (b) Deletion
Position 160 165 Position 170 173

Reference
Target -7 AIA|T

Replace (161, GAA)

Reference -.
Target [A[G[A[T[A]T

Rplinst (170, AGA)

(c) Replacement (d) Insertion after replacement

Position 180 185
Reference
Target [A]-[-[T[A]T]
delRpl (180, A--)

(e) Deletion after replacement

Figure 5: Examples of genome changes. Copied
from [7]

bzip2 | DNAC | GenCom | binary | Huffman

Mito | 0.966 | 0.761 0.861 0.975 0.988

H3N2 | 0.972 | 0.762 0.987 0.963 0.973

Table 3: Heath et al.’s algorithm’s efficency in pro-
portion of space saved using Huffman coding (Huff-
man) and without using Huffman coding (binary).
Table based on data from [7].

ing the base at the given index and then deleting or inserting
the appropriate string following the index. While it is pos-
sible to do the algorithm without the last two of those five
editing operations, Heath et al. argue that without them,
there is ambiguity since an insertion at a given index and
a replacement at the same index could mean two different
things depending on the order that they are resolved in de-
compression and resolving this problem increases the com-
plexity of the algorithm unnecessarily.

This algorithm uses a generic compression algorithm called
Huffman coding. Huffman coding is a special case of arith-
metic coding and allows for a table of the characters and
bit strings that would represent them to be created. The
instructions and position for differences between the current
genome and the reference, but not the bases, are combined
into a single 32 bit integer since the maximum size of a
human chromosome does not exceed 250 million base pairs
which fits into 29 bits. The new ints and the base pair strings
are then compressed with Huffman coding and then both the
compressed data and the Huffman table are written to disk.
However, according to the authors, there are some instances
where a base pair string will be shorter using the standard 2
bits than using their own Huffman codes, so the algorithm
will check for those cases and note when they would hap-
pen before the string being stored as either the standard
compressed string or the string from their Huffman code.

As seen in Table 3, Heath et al. compared their algorithm

to standard compression software as well as two DNA spe-
cific compression algorithms, DNACompress and GenCom-
press. The algorithms were run on datasets of mitochon-
drial DNA, labeled “Mito” in the table, and H3N2 DNA, the
influenza A virus. In the table, the algorithm labeled bi-
nary was their algorithm without the last stage of Huffman
coding. The algorithm labeled Huffman is their algorithm
including the final stage of Huffman coding. The values in
the table are the proportion of the space from the original
datasets that was saved, so 0.9728 means that the new files
saved 97.28% of the original’s size, or that they took up
only 2.72% of the room of the original. On the two genomes
tested, this algorithm does significantly better than DNA-
Compress but only on the Mitochondrial genome does it do
better than GenCompress and does slightly worse on the
H3N2 genome.

Unfortunately, this algorithm was not designed for genomes
with more base pairs than there are in the human genome.
Heath et al.’s algorithm could be improved by replacing the
Huffman coding step with an arithmetic coding step since
Huffman coding is at best arithmetic compression. It is also
a bit strange that they do not rate their algorithm’s effi-
ciency in bits per character since bits per character is the
standard way to measure efficiency for genomic compression.

5. CONCLUSIONS

Most of the algorithms within this paper used bits per
character as their measure for compression efficiency. How-
ever, Heath et al.’s algorithm was measured by the percent-
age of space saved in comparison to the original and the
number of bases in the genomes being compressed is not
given, so I could not get the compression rate into bits per
character. In addition, Heath et al.’s algorithm is the only
one which did not compress the human genome. Because
of these two things, it is impossible for any conclusions to
be drawn from the data for comparing to other algorithms
presented in this paper.

The other algorithms are easier to compare, fortunately
(see Table 4). XM reduced a human genome to 1.7513 bits
per base, TK reduced a human genome down to 1.449 bits
per base and COMRAD reduced a set of human genome
down to 1.44 bits per base. XM did not compress nearly as
effectively as either COMRAD or TK, it is clear that XM
will not solve the problem of compressing genomes like TK
or, in most cases, COMRAD.

Despite comprable compression rates on the human genome,

TK is far more intricate than COMRAD. Unfortunately for
COMRAD, there was a genome dataset which was increased
when COMRAD tried to compress it. While TK is unable
to have genomes larger than 2 bits per character, it does
seem like it would be able to get near the compression rates
of COMRAD whose average is over 20% less than TK’s only
run. The future of genome compression algorithms seems to
be for databases since the single genome compressing TK is
far more complicated than the dataset compressing COM-
RAD.

Acknowledgements

I would like to thank Peter Dolan for being my advisor,
Nic McPhee for teaching the course, and Elena Machkasova,
Chad Seibert and Jay Lapham for giving feedback.

XM TK | COMRAD
Human | 1.7513 | 1.449 1.44
Average | 1.6940 | 1.449 1.10

Table 4: Algorithms that gave bits per character
compression rates on human genomes and averages
over all data give. TK was only run on the human
genome, so the two numbers are the same.

6. REFERENCES

[1] D. Boulton and C. Wallace. The information content
of a multistate distribution. Journal of Theoretical
Biology, 23(2):269 — 278, 1969.

[2] M. D. Cao, T. Dix, L. Allison, and C. Mears. A simple
statistical algorithm for biological sequence
compression. In Data Compression Conference, 2007.
DCC 07, pages 43 =52, march 2007.

[3] X. Chen, S. Kwong, and M. Li. A compression
algorithm for DNA sequences and its applications in
genome comparison. In Proceedings of the fourth
annual international conference on Computational
molecular biology, RECOMB ’00, pages 107—, New
York, NY, USA, 2000. ACM.

[4] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress:
fast and effective DNA sequence compression.
Bioinformatics, 18(12):1696-1698, 2002.

[5] S. Grumbach and F. Tahi. A New Challenge for
Compression Algorithms: Genetic Sequences.
Information Processing & Management, 30, 1994.

[6] S. Kuruppu, B. Beresford-Smith, T. Conway, and
J. Zobel. Tterative dictionary construction for
compression of large DNA data sets. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 9(1):137-149,
Jan. 2012.

[7] A.-p. H. Lenwood S. Heath and L. Zhang. A genome
compression algorithm supporting manipulation. In
9th Annual International Conference on
Computational Systems Bioinformatics (CSB 2010)
Proceedings, volume 9, pages 38 —49, august 2010.

[8] J. Siréns. Run-length compressed suffix array, Nov.
2012.

[9] L. Stein. The case for cloud computing in genome
informatics. Genome Biology, 11(5):207, 2010.

[10] I. Tabus and G. Korodi. Genome compression using
normalized maximum likelihood models for
constrained markov sources. In Information Theory
Workshop, 2008. ITW °08. IEEE, pages 261 —265,
may 2008.

[11] Wikipedia. Arithmetic coding — Wikipedia, the free
Encyclopedia, 2012. [Online; accessed
26-September-2012].

[12] Wikipedia. Lempel - Ziv - Welch — Wikipedia, the
free Encyclopedia, 2012. [Online; accessed
25-September-2012].

[13] Wikipedia. Mark Kryder — Wikipedia, the free
Encyclopedia, 2012. [Online; accessed
20-October-2012].

