Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000

Overview and Comparison Genome Compression Algorithms

Tim Snyder snyde479@morris.umn.edu University of Minnesota Morris

December 2, 2012

Introduction ●000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
What Are	Genomes?			

Your genome is your unique sequence of DNA Made up of 4 nucleotides abbreviated as A, C, G and T Genomes can be represented as long strings of those characters

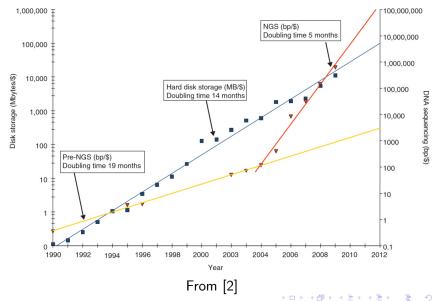
Image from [4] Human genome: 3000 MB Complete works of William Shakespeare: 5 MB

Introduction 000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
What Do	We Know?			

DNA is made up of non-coding and coding portions

Non-coding portions are often random

Coding portions are made of trios of nucleotides called codons


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00●0000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Why Do \	Ne Care?			

More genomes leads to:

- Better understanding of biology
- Better medical treatments
- Better food

) 4 (

What is a	Compression	Algorithm?		
Introduction 0000●00	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Take a set of data

Reversibly modify it

Store it and hopefully have smaller file sizes

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Why Do V	Ve Need Cor	npression Algorithr	ns?	

Make files take up less space on computers

Make file transfers faster

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
000000				

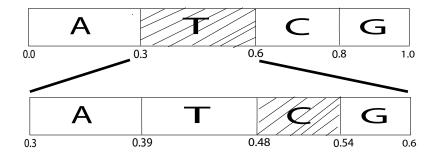
2 Arithmetic Coding

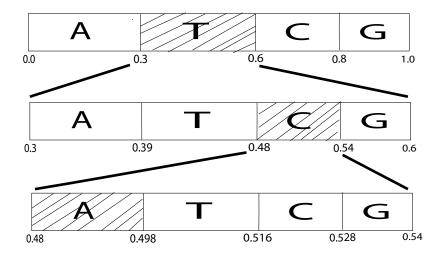
3 Tabus and Korodi's Algorithm

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000	•0000		0000	000
Arithmeti	c Coding			

Takes in probabilities for characters TCAGTGACTA A=0.3 C=0.2 G=0.2 T=0.3Creates a range for each of them Finds a decimal to represent the string based on the ranges

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000	0●000		0000	000
Compres	sing TCA			


・ロト ・四ト ・ヨト ・ヨト

æ

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000	00●00		0000	000
Compres	sing TCA			

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000	000●0		0000	000
Compress	sing TCA			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Arithmetic	Conclusions			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2 bits per character

Genomes still increasingly expensive to store

Is a baseline

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions

Introduction Still Intro

Arithmetic Coding
Arithmetic Coding

3 Tabus and Korodi's Algorithm

- Pre-encoding Steps
- Second encoding method
- Third encoding method
- Effectiveness
- COMRADCOMRAD
- 5 Conclusions• Conclusion

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions		
0000000		●0000000000000000	0000	000		
Tabus and Korodi First Steps						

Splits genome into substrings of length k

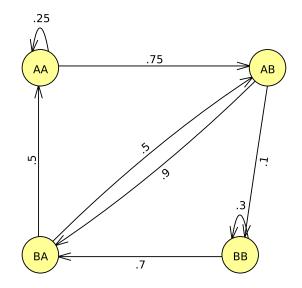
Then uses 3 different encoding methods

Best encoding method is used

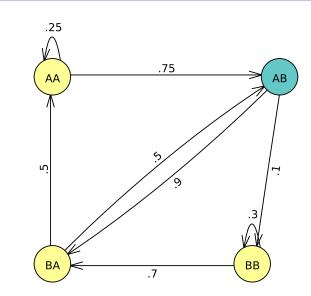
Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000		⊙●○○○○○○○○○○○○	0000	000
Tabus and	Korodi Enc	oding Methods		

- 2 bits encoding method with arithmetic coding
- Order-1 Markov model
- Compressing based off of a previous substring

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Second Encoding Method				

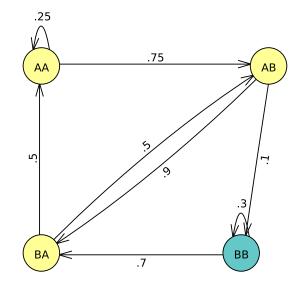

Order 1 Markov model

Uses last 2 characters to predict next

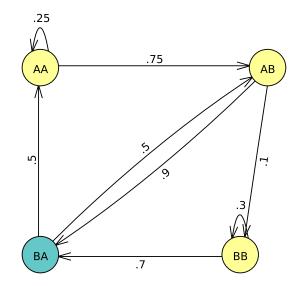

Uses arithmetic coding to compress

Introduction 0000000	Arithmetic (00000	Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions
<u> </u>	 1.1	N 4 - 1			

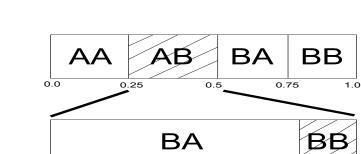
Second Encoding Method



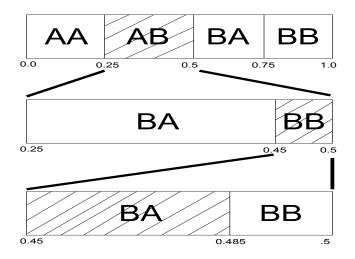
Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
String ABBA				



Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
String A	RRA			


Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
String ABBA				

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions		
0000000		○○○○○○●○○○○○○○	0000	000		
Markov Models Compress ABBA						



0.25

0.45 0.5

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
		000000000000000		

Introduction Still Intro

Arithmetic CodingArithmetic Coding

Tabus and Korodi's Algorithm Pre-encoding Steps Second encoding method Third encoding method Effectiveness

- COMRADCOMRAD
- 5 Conclusions• Conclusion

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000		○○○○○○○○○○○○○○	0000	000
Third Fn	coding Metho	bd		

Current substring:AACTGT

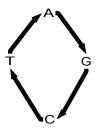
Finds the most similar previous substring and stores its index

Creates a binary string of where the two substring differ

Previous:AATGGT

Binary: 001100

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・


Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Third Encoding Method				

Previous: AATGGT Current substring: AACTGT

Stores the distance from the characters in previous substring to current one

Distances: 3 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Why Th	ree Methods?			

They perform differently on different portions

- Arithmetic works well on non-coding DNA
- Markov works well on coding portions
- Difference compression works well on repeated sections

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
0000000		○○○○○○○○○○○○	0000	000
Results				

Chromosome	bits/char		
chr1	1.641		
chr2	1.662		
chrX	1.548		
chrY	1.149		
Average	1.616		
Efficiency in bits per base			
Based on data f	from [3]		

0000000	00000	000000000000	0000	000
Database	Compression	Algorithm		

Database compression algorithms compress entire sets of data

Having more data means more information for compression

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can lead to better compression rates

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD o●oo	Conclusions
COMRAD)			

- Step 1: count all substrings of length n
- Step 2: replace the most common substring with a character
- Step 3: repeat 1 and 2 until there are not enough substrings to replace

Step 4: store final string and replacements to get there

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD oo●o	Conclusions 000
COMRAD) in Action			

Input aabcbcaabcabc Step 1 aa:2 ab:3 bc:4 cb:1 ca:2 \dots Step 3 bc \rightarrow A aaAAaaAaA

CACB Based on figure in [1]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

. . .

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 000●	Conclusions 000
COMRAD	results			

Dataset	COMRAD			
Influenza	0.43			
Hemoglobin	1.16			
Bacteria	2.26			
H. sapiens	1.44			
Average 1.10				
Table based on data				
c [4]				

from [1]

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions ●00
Conclusi	ons			

We can beat the 2 bits per character

Simple database compression works better than more complicated single genome compression

More work still needs to be done to compress genomes further

Introduction 0000000	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD 0000	Conclusions 000
Future V	Vork			

Database seems to be the way to go

More data means better compression

More complicated database algorithms might be needed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Arithmetic Coding	Tabus and Korodi's Algorithm	COMRAD	Conclusions
				000

Any questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel. Iterative dictionary construction for compression of large DNA

data sets.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(1):137-149, Jan. 2012.

L. Stein.

The case for cloud computing in genome informatics. Genome Biology, 11(5):207, 2010.

I. Tabus and G. Korodi.

Genome compression using normalized maximum likelihood models for constrained markov sources.

In Information Theory Workshop, 2008. ITW '08. IEEE, pages 261 – 265, may 2008.

Wikipedia.

Gene — wikipedia, the free encyclopedia, 2012. [Online; accessed 27-November-2012].