
Modern Approaches to Gesture Recognition

Scott Steffes
Department of Computer Science

University of Minnesota, Morris
600 E 4th St.

Morris, Minnesota
steff298@morris.umn.edu

ABSTRACT
Gesture recognition refers to the computerized processing of
data from human actions to determine whether the data cor-
responds to a particular human-readable gesture. This data
is provided via an input device such as a camera, accelerom-
eter, or touch screen. To accomplish gesture recognition, a
computer must classify input data as corresponding to either
no gesture, or one of a list of discrete gestures determined
beforehand. Gesture recognition seeks to provide an alter-
native or supplement to traditional human-computer inter-
action (HCI) methods. Effective gesture recognition sys-
tems can allow users to intuitively specify operations that
are cumbersome to specify using a traditional mouse and
keyboard. Gesture recognition systems can also make com-
puter interaction possible for those who can not operate a
mouse and keyboard. This paper gives a brief overview of
the gesture recognition field and reviews three modern ap-
proaches to gesture recognition.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: [Interaction styles]

General Terms
Human Factors

Keywords
gesture recognition, human-computer interaction,
hidden markov models, dynamic time warping

1. INTRODUCTION
Through traditional methods of human-computer interac-

tion (HCI), it is possible for the average user to specify the
operations required to complete many useful tasks. Often,
however, the mouse and keyboard fail to make use of the
human body’s incredible expressive potential. To use most
computer programs, users must learn to express their inten-
tions using computer-friendly keyboard shortcuts and menu
structures. The field of gesture recognition seeks to improve
various aspects of HCI by leveraging the powerful human
ability to specify intent through gesture. For example, the
task of text manipulation can be made more intuitive by al-
lowing the user to specify actions using proofreader’s marks
using a pen/tablet interface [6]. Gesture recognition can
even open up new avenues of HCI that didn’t previously ex-
ist such as recognizing American Sign Language. For users
with physical disabilities, interacting with a computer via

keyboard and mouse may be extremely difficult. Gesture
recognition can allow such users to operate a computer by
decreasing the need for extremely precise movement.

Not surprisingly, producing a method of interaction capa-
ble of capturing the nuances of human gesture with a com-
puter is fairly difficult. We must look beyond traditional
input methods and employ technologies such as cameras,
accelerometers, and touch screens. In addition, we must de-
velop approaches to analyze the rich sense data coming from
these technologies. In this paper we give a brief overview
of the gesture recognition field and review three modern
approaches to gesture recognition. These approaches were
selected because they expand on commonly employed ap-
proaches, either by modifying the algorithms involved or
applying existing algorithms to new problem spaces. We
begin by describing concepts that are key to all forms of
gesture recognition then go into greater detail on the three
selected approaches.

2. BACKGROUND
To simplify the task of explaining gesture recognition ap-

proaches, we will begin by defining a set of terms commonly
used in the gesture recognition field. A gesture is a single in-
stance of captured human motion. Each gesture is typically
represented as a discrete collection of sense data. A gesture
class is a set of gestures that a user considers meaningfully
similar and, as a whole, distinct from other sets of gestures.
For example, “Sway arm horizontally from left to right” is a
gesture class that various similar gestures could belong to.
Though gesture class implementations vary greatly between
approaches, they all have some notion of a typical gesture
of that class against which new gestures can be compared.
An unclassified gesture is a collection of sense data that cor-
responds to a single unknown gesture. The core function of
a gesture recognition system is to take in unclassified ges-
tures and classify them. A pre-classified gesture is a gesture
that has been classified by a human for training purposes.
A gesture recognizer is a function associated with a partic-
ular gesture class that takes in an unclassified gesture and
returns a value indicating to what extent the unclassified
gesture matches the gesture class.

While the approaches in this paper have differing input
methods and classification algorithms, they share a common
structure. Each approach begins with a method for produc-
ing and training gesture recognizers. Such a method takes in
multiple pre-classified gestures and returns a set of gesture
recognizers, each trained for a particular gesture class. At
this point, the recognizers are ready to be applied to new

data. Given an unclassified gesture, the gesture recognizers
are applied to the new gesture, each returning a value. In the
best case, a single recognizer indicates a close match while
the other recognizers indicate poor matches. When this oc-
curs, the decision to classify is straightforward. In another
case, no recognizers indicate a close match. At this point,
the approaches differ slightly. In some approaches, the ges-
ture will be placed in the closest gesture class, running the
risk of a misclassification. In other approaches, the gesture
will be rejected, running the risk of failing to classify a ges-
ture that is, in fact, a member of one of the gesture classes.
How an approach deals with this scenario is dependent on
the problem space it is applied to. In cases where more
than one recognizer indicates a close match, more complex
sense data or a more powerful recognition algorithm may be
necessary.

3. LINEAR EVALUATION FUNCTIONS
In the simplest implementations of the above approach,

each gesture is represented as a vector of features where
each feature is a single numeric value. Geurts et al. [3]
describes an application of this approach involving the Nin-
tendo Wiimote. The Wiimote is a handheld device that
contains an accelerometer and a gyroscope. The Wiimote
returns its rotation (yaw, roll, pitch) and velocity (x,y,z)
data every 10ms. Through trial and error, the authors se-
lected four features to represent each gesture. From a set
of Wiimote measurements taken over time, a gesture was
created by taking the following 4 values:

1. the sum of the yaw data points

2. the sum of the roll data points

3. the sum of the pitch data points

4. the sum of the accelerations along the z-axis

and storing the results in a vector. It is fairly simple to
compare and average these feature vectors and, as we will
soon see, this greatly simplifies the gesture recognition task.

For their gesture recognizers, the authors represented each
gesture class as a single feature vector produced by averag-
ing the feature vectors of pre-classified gestures in that class.
For example, the yaw value of the gesture class is calculated
by taking the arithmetic mean of the yaw values of all the
pre-classified gestures in that class. To compute how well
an unclassified gesture fits in a gesture class, the authors
calculate the Mahalanobis distance between the unclassified
gesture’s feature vector and the gesture class feature vector.
The Mahalanobis distance between two vectors is similar
to Euclidean distance, but is scale-invariant, meaning fea-
tures with greater variance do not disproportionately affect
the distance measure. Mahalanobis distance also takes into
account the correlations between features. A small Maha-
lanobis distance indicates a close match between a gesture
and a gesture class. [6]

In many Wii games that encourage the user to exercise
by making large gestures, it is possible to cheat and avoid
exercise by making small gestures. This undermines these
games’ intent to promote healthy behavior. In Geurts et al.
[3], they attempt to solve this problem by designing gesture
recognizers that take into account not only the shape, but
also the size of gestures. They want to force the user to make

large gestures by not recognizing correctly-shaped small ges-
tures. To this end, their choice of features was effective. In
real-world testing their system was able to correctly identify
92% of users’ gestures. After subjecting users to strenuous
exercise, their ability to produce sufficiently large gestures
decreased and the recognition rate dropped to 63% suggest-
ing that the system was able to weed out small gestures. The
gesture set they chose was arguably easy to recognize as it
consisted of fairly distinct, simple gestures. The authors
suggest that their system would not perform well with a
larger, more complex gesture set. Because the features they
choose are simply sums of data points, the features do not
capture any temporal information about the gestures. For
example, a gesture with multiple steps would have the same
feature values regardless of the order in which the steps were
performed. Using a similar approach, Rubine [6] was able
to effectively recognize a larger set of pen/tablet gestures
using 13 features consisting of more complex mathematical
and trigonometric functions of the raw input data.

4. GESTURE RECOGNITION USING
DYNAMIC TIME WARPING

4.1 Representing a Gesture as a Time Series
While representing a gesture as a vector of features is suf-

ficient for some gesture recognition scenarios, it is sometimes
helpful, and arguably more intuitive, to represent a gesture
as a list of measurements taken over time. This type of rep-
resentation is known as a time series. A common form of
time series data seen in gesture recognition is the output
from an accelerometer. At regular intervals, an accelerom-
eter measures and reports its velocity in 1, 2, or 3 dimen-
sions. Each measurement taken individually reveals little
about the motion it came from, but the measurements orga-
nized chronologically as a time series produce a rich motion
profile. [1]

Gesture recognition using time series is considerably more
complicated than gesture recognition using feature vectors
for a number of reasons. Producing a gesture class represen-
tation against which unclassified gestures can be compared is
non-trivial. Unlike feature vectors, there is no standard way
to find the average of a set of time series. For this reason,
Fu et al. [2] calculate the distance between an unclassified
gesture and a gesture class by first calculating the distances
between the unclassified gesture time series and each of the
pre-classified gesture time series for that class and then tak-
ing the arithmetic mean of those pairwise distances. While
this is computationally costly, it simplifies the problem to
calculating the distance between pairs of time series.

To illustrate common problems encountered when calcu-
lating the distances between time series, we will start with a
naive approach, enumerate the problems with that approach
and propose solutions to those problems.

Given two time series (A,B), a naive approach to calcu-
lating the distance D between them is:

D =
n∑

i=1

|Dist(Ai, Bi)|

where n is the length of the longest series, Ai is the ith ele-
ment of A, Bi is the ith element of B, and Dist() calculates
the distance between two elements. This method has several
problems. First, if A and B are not of the same length it

Table 1: An example warping matrix and warp-
ing path aligning the time series A = [1, 2, 2, 4, 5] and
B = [1, 1, 2, 3, 5, 6]. The warping path is highlighted.
Adapted From [2].

1 0 0 1 5 21 46

2 1 1 0 1 10 26

2 2 2 0 1 10 26

4 11 11 4 1 2 6

5 27 27 13 5 1 2
1 1 2 3 5 6

is not clear what should be done with the elements of the
longer series that do not have corresponding elements in the
shorter series. Second, it is not guaranteed that the first
element of a time series marks the start of the gesture. It is
possible that one gesture starts after the other with a certain
number of “noise” elements at the beginning. To correctly
compare the gestures, it is then necessary to shift one of
the gestures so that the beginnings are aligned. Third, it is
possible that the gestures are performed at different speeds.
In many gesture recognition scenarios, we would consider
two very similar gestures performed at different speeds to
be instances of the same gesture class. It is then necessary
to scale one gesture so that it appears to occur at the same
speed. Finally, it is possible that the speed of the gestures
could vary in different ways at different points. For instance,
the first half of one gesture could be relatively fast while the
second half of that gesture could be relatively slow. In this
scenario, scaling in a uniform way will not produce a suc-
cessful alignment.

4.2 Dynamic Time Warping
Dynamic Time Warping (DTW) attempts to address the

issue of varying speeds in comparing time series by allow-
ing the time series elements of a gesture to be scaled and
positioned to produce the best possible match with (low-
est possible distance from) another time series. A solution
to the problem of aligning time series is discussed in section
4.3. DTW begins by computing a warping matrix consisting
of the distances between every item in one series and every
item in the other series. Table 1 shows the warping matrix E
of two simple time series. Each entry in the warping matrix
Ei,j is the result of Dist(Ai, Bj). How the distance between
entries is calculated is application dependent.

After the warping matrix is calculated, the DTW algo-
rithm selects the element matchings that have the lowest
overall distance. These matchings are called the warping
path. The warping path describes how the elements of one
time series should be scaled and positioned to produce the
best possible match with the other series’ elements. In Ta-
ble 1, the first element of series A is matched with the first
and second elements of series B. This is analogous to the
first step in gesture A being performed twice as quickly as
the first step in gesture B. Similarly, the second and third el-
ements of series A are matched with the third element of se-
ries B. This is analogous to the second step in gesture A be-
ing performed half as quickly as the second step in gesture B.
The distance measure returned by DTW given two gestures
is the sum of the distances in the warping path. In Table 1,
the DTW distance between the two time series is four. [8]

Figure 1: Adding Uniform Scaling to DTW

Part a shows DTW applied to the entirety of both time
series. In b and c, the portion of the top line that does not
have vertical lines connecting it to the bottom line represents
noise data that has been excluded from DTW by Uniform
Scaling. Adapted from [2]

4.3 DTW Practical Considerations
For reasonably long time series, computing the entire warp-

ing matrix and the warping path can be very computation-
ally costly. Each warping matrix requires M × N distance
calculations where M and N are the lengths of the two time
series. In addition, a warping matrix must be calculated
between the unclassified gesture and each pre-classified ges-
ture. To reduce the number of calculations required, the
approach described in Fu et al. [2] attempts to avoid calcu-
lating distances that are likely to be very high.

Used by itself, DTW is able to scale and align similar ges-
tures that differ greatly in scale and are significantly mis-
aligned. Unfortunately, this requires calculating a warping
matrix that covers every element in both time series. In
addition, when one series has significant noise at the be-
ginning or end, DTW will match that noise to points at
the beginning or end of the other series (Figure 1.a). To
avoid these issues, the approach described in Fu et al. [2]
first uniformly scales and shifts one gesture to find the best
match without DTW and cuts off any time series elements
that don’t have corresponding elements in the other gesture
(Figure 1.b). DTW distance is then calculated between the
aligned gestures (Figure 1.c).

After two time series have been aligned by uniform scal-
ing, it is unlikely that any portion of the time series will
need to be shifted or scaled by a significant amount. For
this reason it is only necessary to calculate elements of the
warping matrix Ei,j where |(i − j)| < l where l is a prede-
termined maximum difference between time series positions.
The ideal value of l depends on how much local variation in
scale is present in the two time series. If l is too large, there
will be many unnecessary distance calculations and if l is
too small, DTW may miss some warps that would decrease

the final distance measure. For example, if an element in
one time series has a very low distance from an element in
the other time series 6 positions away, this beneficial warp
will be missed if l is 5 or less. By uniform scaling and then
selecting an appropriate value of l, the number of required
distance calculations between time series elements can be
drastically reduced.

5. RECOGNIZING COMPLEX GESTURES
WITH HIDDEN MARKOV MODELS

While DTW is able to recognize complex sets of gestures,
the gesture class representation used in DTW makes clas-
sification computationally costly. Calculating the distances
between numerous time series and taking their average is
often costly, despite the aforementioned performance opti-
mizations. A Hidden Markov Model (HMM) is a gesture
class representation that makes it possible to condense infor-
mation from multiple pre-classified gesture time series into a
single model against which unclassified gestures can be com-
pared. HMMs are commonly employed in gesture recogni-
tion [7, 9] as well as in similar fields of study such as speech
recognition [5].

5.1 Time Series Quantization
In the gesture recognition scenario we described for DTW,

the time series consisted of continuous variables measured at
discrete time steps. This means that these time series had
a discrete number of elements and that each element con-
tained one or more continuous measurements. As we will
soon see, it is difficult to apply HMMs to continuous mea-
surements. For this reason, most HMM applications quan-
tize sensor measurements into a discrete alphabet of events.
For example, the three-dimensional continuous output from
an accelerometer could be simplified and encoded in a series
of three symbols where the symbols correspond to “upward
or downward motion” , “rightward or leftward motion”, and
“forward or backward motion” respectively. This would give
us a discrete alphabet of 9 observable events.

5.2 Markov Model Basics
Though Markov Models (MMs) are typically applied to

gesture recognition in the context of Hidden Markov Mod-
els (HMMs), to simplify our later explanation of HMMs, we
will begin by explaining the features of a basic MM and show
how it can theoretically be applied to gesture recognition.
The first step in describing an MM is defining a list of states
S. In the case of Figure 2, S = {S1, S2, S3}. Each state in
the model corresponds to a discrete observable event. There
must be a state for all of the events we might observe. Next,
we must define a matrix of state transitions A. The dimen-
sions of A are n x n where n is the number of states in the
model (the size of S). Each element in A, aij , corresponds to
the probability of transitioning to state j given that we are
currently in state i, P (Sj |Si), in other words, the probabil-
ity of observing event j given that we just observed event i.1

1It is worth noting that the probability of transitioning to
a particular state only depends on the current state of the
model. This is known as the Markov Property. In models
that do not exhibit the Markov Property, the probability of
transitioning to a particular state can depend not only on
the current state of the model, but also on previous states
of the model.

Figure 2: A Basic Markov Model

Taken from [5].

Finally, the initial probability of starting in a particular state
P (Si) is given by the vector π, where πi is the probability
of starting in state i.2

Given a MM, we would like to calculate the probability of
a particular sequence of states (a time series of events) occur-
ring under that model. For example, we would like to calcu-
late P (S3, S3, S1, S2, S3|π,A). To calculate this probability,
we simply multiply together the probability of the initial
state followed by the probability of the next state given the
previous state and so on until we reach the final state. This is
given by P (S3)×P (S3|S3)×P (S1|S3)×P (S2|S1)×P (S3|S2).
The probability of each transition P (Sj |Si) is given by the
corresponding entry in the transition matrix aij . The proba-
bility of this state sequence is then: π3×a33×a31×a12×a23.

To train an MM to recognize a particular gesture class we
need to create a transition matrix such that only series of
states corresponding to gestures in that gesture class will re-
ceive a relatively high probability. For example, if we wanted
to define a gesture class that only contains gestures with the
state sequence {S1, S2, S3}, we would use this transition ma-
trix A and initial probability vector π

A =

0 1 0
0 0 1
0 0 0

π = {1, 0, 0}

Given this model, the state sequence {S1, S2, S3} will receive
a probability of 1 while all other state sequences will receive a

2The rows of A must sum to 1 and π must sum to 1.

probability of 0. This is a very strict MM. In most cases, the
MM will be set up to allow some variation in the unclassified
state sequences. For example if we change the transition
matrix to

A =

0 1 0
0 0.2 0.8
0 0 0

the model will allow for state sequences that remain in S2

for more than one time step, but the calculated probability
of that state sequence will decrease the more instances of S2

are present in the time series. For example

P (S1, S2, S2, S3) = P (S1)× P (S2|S1)× P (S2|S2)× P (S3|S2)

= π1 × a12 × a22 × a23
= 1× 1× 0.2× 0.8

= 0.16

and P (S1, S2, S2, S2, S3) = 1×1×0.2×0.2×0.8 = 0.032. The
probability returned reflects how closely the gesture repre-
sented by the state sequence matches the gesture class rep-
resented by the model. It is worth noting that this probabil-
ity does not indicate the probability that the state sequence
corresponds to the gesture. Probabilities returned by all
but the simplest MMs are very small and are only useful
for comparison with probabilities returned by other MMs
applied to the same state sequence. For example, given a
single time series, a returned probability of 0.0001 could in-
dicate a close match if all other MMs returned significantly
smaller probabilities.

5.3 Hidden Markov Models
Using Markov Models, we are severely limited in our abil-

ity to model gestures. Because the probability of observing
an event can only be dependent on the previous event, many
complex event sequences can not be trained into MMs. Hid-
den Markov Models are an extension of MMs with expanded
recognition capability. In a HMM, there is an underlying
Markov Model, but this MM is defined not in terms of events
coming from our sensing technology, but in terms of the ide-
alized steps of the gesture. This model is considered hidden
because we can not directly observe the steps of the gesture
from the sense data. To connect the states of the underlying
MM and the events we observe, we create a set of observ-
able value probability distributions B. B can be created in
a number of ways. If the raw sense data has been quantized
into events, Bi is a vector where Bij represents the probabil-
ity of observing event j in state i P(j|Si). If the raw sense
data has not been quantized and is instead a continuous
measurement, Bi is a function that returns the probability
of observing a particular continuous measurement in state i.

To produce a HMM to recognize a gesture class, we not
only have to specify S, A, and π, we also must specify a
set of observable value probability distributions B, one for
each state in S. We would like to find weightings of A, B,
and π that maximize the probabilities returned when that
HMM is applied to members of a particular gesture class.
This can be accomplished using the Baum-Welch method.
The method takes in a set of pre-classified gestures and pro-
duces a set of weightings that maximize the probability re-
turned for those gestures. If the pre-classified gestures are
sufficiently representative of the gesture class, the resulting
HMM will also return relatively high probabilities for un-
classified gestures that are members of that gesture class. A

more detailed explanation of the Baum-Welch method can
be found in Rabiner [5]. Given an HMM trained to recognize
a particular gesture class, calculating the probability of an
unclassified gesture is much less straightforward than doing
so with a MM. This calculation involves not only the proba-
bility of a particular state sequence, but also the probability
of observing each event in it’s corresponding state. In addi-
tion, we can not simply follow the event sequence given to
us; instead, we must produce our own state sequence that
maximizes the returned probability. For example, given an
event sequence, we could remain in S1 for each event. It
is more likely, however that we can get a greater probabil-
ity by transitioning to different states to consume different
events. To illustrate how HMM probabilities are calculated
and how we might find the optimal state sequence for a
particular event sequence, we will imagine a scenario where
only 2 events can be observed: U corresponds to an upward
motion and D corresponds to a downward motion. Given a
two-state MM:

A =

[
0 1
1 0

]
π = {1, 0}

we will now describe an observable value probability distri-
bution for each state.

U D
B1 0 1
B2 1 0

For this gesture class, only a downward motion is allowed
in S1 and only an upward motion is allowed in S2. We will
now try to find the optimal state sequence given the event
sequence: {D,U}. We could try remaining in S1 for both
events (S1, S1). This probability is

P (D,U) = P (S1)× P (D|S1)× P (S1|S1)× P (U|S1)

= π1 ×B1D × a11 ×B1U

= 1× 1× 0× 0

= 0

This is not likely the correct state sequence. Instead we
could try starting in S1 for the first event, then transitioning
to S2 for the second event (S1, S2). This probability is

P (D,U) = P (S1)× P (D|S1)× P (S2|S1)× P (U|S2)

= π1 ×B1D × a12 ×B2U

= 1× 1× 1× 1

= 1

We have likely found the optimal state sequence for the ob-
servation sequence. Though this is obviously a rather con-
trived example, it illustrates how HMM probabilities are
calculated. At each time step, we take into account the
probability of arriving at the current state given the previ-
ous state as well as the probability of observing the current
event in the current state.

For longer time series with more observable events, the
task of finding an optimal state sequence becomes extremely
complicated. To find the optimal state sequence we could try
all possible state sequences and choose the one that produces
the highest probability given the observation sequence. Un-
fortunately, this approach has a time complexity of O(sn)

where s is the number of states in the model and n is the
length of the observation sequence. The Viterbi algorithm
as described in Rabiner [5] is able to find an optimal state
sequence with a time complexity of O(n× s2).

5.4 HMMs in Practice
When applying HMMs to real-world scenarios, their de-

sign typically differs from the theoretical description. While
in theory, the states of the underlying MM should corre-
spond to the steps of the gesture, in practice, defining those
steps is not straightforward. In addition, HMMs with more
states tend to return lower probability values, so to com-
pare the output of a set of HMMs with different numbers of
states, a method for normalizing the returned probabilities
is required. For these reasons, most HMM gesture recogni-
tion implementations use the same number of states for each
HMM. While one would think that having a set number of
states would be problematic as different gestures have differ-
ent numbers of steps, in practice the Baum-Welch method
can usually produce effective recognizers as long as the num-
ber of states is within a reasonable range, typically between
2 and 8. Because of this disconnect between the theoretical
and practical function of states, mapping the weightings of
A and B produced by the Baum-Welch method to how a hu-
man would describe a gesture class is rarely straightforward.
Most often, researchers do not attempt to analyze exactly
how a particular HMM recognizes a gesture class. Instead,
they focus on selecting the optimal number of states for all
the HMMs and producing useful pre-classified gestures for
training.

5.5 Comparison with DTW
The recognition accuracy of DTW and HMMs is heavily

dependent on a number of factors including the quality of
the training examples and the distinctness of the the ges-
ture classes. Despite this, some general trends have been
observed. Kogan et al. [4] note that while the accuracy
of the algorithms tends to improve with more pre-classified
gestures, DTW can significantly outperform HMMs when
the number of pre-classified gestures is very low (5 or less).
With a sufficiently large number of noise-free pre-classified
gestures, the accuracy of the two methods is approximately
equal. If there is considerable noise in the pre-classified ges-
tures, HMMs outperform DTW. For an in-depth analysis of
these algorithm’s performance in varying recognition scenar-
ios, see Kogan et al. [4].

6. CONCLUSION
In this paper we have described three common approaches

to gesture recognition: namely, Linear Evaluation Func-
tions, Dynamic Time Warping, and Hidden Markov Models.
We have described what is common between the approaches
and how they differ. We have also briefly highlighted the ad-
vantages and disadvantages of each approach. With this ba-
sic introduction to the field, one can see how the seemingly
intelligent feat of gesture recognition can be accomplished
fairly successfully with statistical and mathematical models.
The three approaches described in this paper are among the
most commonly employed, but they are by no means the
only approaches being researched today. The basic gesture
recognition structure we described in section 2 provides a
basic framework for thinking about gesture recognition to
which a broad range of algorithms can be applied.

7. REFERENCES
[1] D. Ashbrook and T. Starner. Magic: A motion gesture

design tool. In Proceedings of the 28th international
conference on Human factors in computing systems,
CHI ’10, pages 2159–2168, New York, NY, USA, 2010.
ACM.

[2] A. W.-C. Fu, E. Keogh, L. Y. Lau, C. A.
Ratanamahatana, and R. C.-W. Wong. Scaling and
time warping in time series querying. The VLDB
Journal, 17(4):899–921, July 2008.

[3] L. Geurts, A. Van Woensel, and V. V. Abeele. No
sweat, no fun: Large-gesture recognition for computer
games. In Proceedings of the 4th International
Conference on Fun and Games, FnG ’12, pages
109–112, New York, NY, USA, 2012. ACM.

[4] J. Kogan and D. Margoliash. Automated recognition of
bird song elements from continuous recordings using
dynamic time warping and hidden markov models: A
comparative study. Journal of the Acoustical Society of
America., 103(4), Apr. 1998.

[5] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. In
A. Waibel and K.-F. Lee, editors, Readings in speech
recognition, pages 267–296. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990.

[6] D. Rubine. Specifying gestures by example.
SIGGRAPH Comput. Graph., 25(4):329–337, July 1991.

[7] T. Schlömer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a Wii controller. In
Proceedings of the 2nd international conference on
Tangible and embedded interaction, TEI ’08, pages
11–14, New York, NY, USA, 2008. ACM.

[8] P. Senin. Dynamic time warping algorithm review.
Technical Report CSDL-08-04, Department of
Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, Dec. 2008.

[9] T. Westeyn, H. Brashear, A. Atrash, and T. Starner.
Georgia Tech gesture toolkit: Supporting experiments
in gesture recognition. In Proceedings of the 5th
international conference on Multimodal interfaces,
ICMI ’03, pages 85–92, New York, NY, USA, 2003.
ACM.

