
Network Management through BitTorrent Blocking and
Bandwidth Shaping by ISPs

Gerard Van Wijk
Department of Computer Science

University of Minnesota, Morris
Morris, MN 56267

vanw0067@morris.umn.edu

ABSTRACT
Information sharing is at the heart of the Internet and in-
creasingly prevalent as we go deeper into the 21st century.
Of equal importance to Internet Service Providers (ISPs) is
the effect of traffic (broadly defined as any information sent
over the Internet) on their service. They employ several
methods to manage the flow of traffic. BitTorrent is a pro-
tocol used to share data over a network. A user will request
a file, and peers on the network who have parts of the file will
send those parts, while perhaps even receiving the parts they
(the peers) are missing. This sharing and peer collaboration
allows users to download files quickly without overwhelming
the servers where the file originated. As wonderful as this
may be, it does not come without consequences. BitTorrent
can use up a lot of bandwidth, slowing the network down
significantly for any other users.

Although BitTorrent has many legitimate uses (large con-
tent updates to computer games, sharing open-source proj-
ects, etc.) it also has an unfortunate (but not unfounded)
association with illegal file sharing. This has led Internet
Service Providers (ISPs) to find ways to mitigate, spread, or
even block BitTorrent traffic. These methods are referred
to as traffic shaping or blocking. Traffic shaping can also be
used to maintain consistent levels of service for customers,
whether it is to protect their connection from users who may
be using too much or to ensure they receive the amount of
data they pay for.

In this paper, we look at the BitTorrent protocol and
traffic shaping and blocking protocols (including the token
bucket and leaky bucket algorithms). Next we look at the
work of Dischinger, et al. who built BTTest, an applica-
tion used to detect BitTorrent blocking. They found that
approximately 8% of BitTorrent interactions are blocked by
ISPs. Then we look at the work of Kanuparthy and Dovrolis
who built ShaperProbe, an application used to detect token
buckets. They found that ISPs are generally honest about
how they implement these on their networks.

This work is licensed under the Creative Commons Attribution-
NonCommercial 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/.
.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
C.2.3 [Network Operations]: Network management

General Terms
Measurement, Performance

Keywords
BitTorrent, ISP, bandwidth, shaping, blocking, networks

1. INTRODUCTION
Information sharing is at the heart of the Internet and in-

creasingly prevalent as we go deeper into the 21st century.
Of equal importance to Internet Service Providers (ISPs)
is the effect of traffic (broadly defined as any information
sent over the Internet) on their service. They employ sev-
eral methods to manage the flow of traffic. BitTorrent is a
protocol used to share data over a network. A user will re-
quest a file, and peers on the network who have parts of the
file will send those parts, while perhaps even receiving the
parts they (the peers) are missing. This sharing and peer
collaboration allows users to download files quickly without
overwhelming the servers where the file originated. This im-
proves upon traditional downloading methods by spreading
the burden of proving the desired data from one server to
many.As wonderful as this may be, it does not come with-
out consequences. BitTorrent can use up a lot of bandwidth
(usually defined as the maximum amount of data that can
be sent over an Internet connection), slowing the network
down significantly for any other users.

Although BitTorrent has many legitimate uses (large con-
tent updates to computer games, sharing open-source projects,
etc.) it also has an unfortunate (but not unfounded) associ-
ation with illegal file sharing. This association comes from
the common use of BitTorrent clients in the piracy of media
such as music and TV shows. This coupled with the effects
of BitTorrent on network performance has led ISPs to find
ways to mitigate, spread, or even block BitTorrent traffic [1].
These methods are referred to as traffic shaping or blocking.
Traffic shaping is not necessarily associated with BitTorrent
and can also be used to maintain consistent levels of service
for customers, whether it is to protect their connection from
users who may be using too much bandwidth or to ensure
they receive the amount of data they pay for [8].

In this paper we will first look at the BitTorrent protocol
and how it works in Section 2.1, followed by various methods
of traffic shaping and blocking in Section 2.2. Then we will



Figure 1: A graphical representation of a peer-to-peer net-
work. Modified from [7].

look at the work of Dischinger, et al. who built an applica-
tion called BTTest to detect BitTorrent blocking by ISPs in
Section3. After that we will examine ShaperProbe, a tool
built by Kanuparthy and Dovrolis to detect the presence
of a token bucket traffic shaper along a network connection
in Section 4. Both of these tools were deployed across the
Internet for anyone to use.

2. BACKGROUND
In this section we will look at BitTorrent and traffic shap-

ing and blocking. We will define relevant terms and look at
some commonly used algorithms for each.

2.1 BitTorrent
Before distribution, a file transferred using BitTorrent is

split into pieces, and each piece is split into multiple blocks.
Although blocks are the transmission unit, peers can only
share complete pieces with others. How these are divided is
irrelevant to the scope of this paper. The original provider
Q of the data then creates the metainfo file which provides
all the information necessary to download the content and
includes the number of pieces, and the IP address and port
number of the tracker, the only centralized part of the sys-
tem. A user P will download the metainfo file and contact
a tracker. Its purpose is to maintain a list of peers. A peer
is a user on the BitTorrent network that has all or part of
a specific file. The peer set is the collection of all peers on
a network with a specific file. A peer can be in one of two
states: the leecher state and the seed state. A leecher is still
downloading pieces of the content, but is sharing its com-
pleted pieces with others. In the seed state, it has all the
pieces and is sharing them with others. The user P is pro-
vided with a set of randomly selected peers, some leechers
and some seeders, by the tracker. A representation of a peer-
to-peer network can be seen in Figure 1. Peer P will now
request different pieces of the data from this set of peers. [4]

Most clients will use a rarest-first algorithm to determine
which pieces to download. Upon establishing a connection,
a bitfield message is exchanged between peers containing a

list of all the pieces a peer has. The new peer will then use
these lists to determine the rarest piece in the peer set and
request it first. Once the piece is downloaded, it sends a have
message to each peer in the peer set. Peers independently
maintain a list of the pieces each of their remote peers has
and build a rarest-pieces set containing the indices of the
pieces with the least number of copies. This set is updated
every time a remote peer announces that it acquired a new
piece, and is used by the local peer to select the next piece
to download. This ensures that the rarest piece is always the
one that is being requested and reduces the risk of missing
pieces should a peer leave the network. [4]

In Figure 1, suppose Peer E just joined the network and
is requesting pieces from each other peer. Peer A has the
entire file and Peer B is only missing pieces that Peers A
and C have. Each of these interactions (lines in Figure 1)
can be imagined as being Figure 2.

Figure 2: BitTorrent packet exchange. Taken from [1].

To decide which peers to exchange data with, a peer uses
the choking algorithm. Peer A is interested in peer B when B
has pieces of the content that A does not have. Conversely,
peer A is not interested in peer B when B only has a subset
of the pieces of A. Peer A is choked by peer B when B decides
not to send any data to A. Conversely, peer A is unchoked
by peer B when B is willing to send data to A. It should
be noted that this does not mean that peer B is uploading
data to A, but rather that B will upload to A if A issues
a data request. This algorithm gives “preference to those
peers who upload data [seed] at high rates [4].” Once per
rechoke period (usually ten seconds) the peer recalculates
how much data it receives from each of its peers. It only
sends data to a fixed number of the fastest ones for the next
rechoke period. Because not all users are required to seed,
this algorithm incentivizes seeding. A general representation
of a BitTorrent flow (a complete exchange of the BitTorrent
protocol) between two peers can be seen in Figure 2.



2.2 Traffic Shaping and Blocking
Traffic shaping is used by Internet service providers (ISPs)

to manage the flow of packets (the units in which information
is sent out over the Internet), maintain their bandwidth, and
optimize performance [8]. There are several different ways
this can be done, including the leaky bucket or token bucket
algorithms. Simpler shaping schemes shape traffic by some
rate of bits per second while more advanced ones will classify
the traffic and shape based on things such as port number
or protocol. Put simply, a port is a number that a packet is
assigned based on its protocol or the type of information it
contains. [1]

ISPs will sometimes inspect the contents of packets using
Deep Packet Inspection (DPI). In DPI, a packet is inspected
for certain patterns. Some examples of possible patterns are
the IP address of the origin and destination of the packet,
port number, or a particular line of code. For example, when
shaping BitTorrent traffic ISPs might look for information
coming from port 6881. This is a well known BitTorrent
port, and most clients will use this port. In the detection
of any particular protocol or type of packet, there may be
thousands of patterns to check. Once the traffic has been
identified as something the ISP wishes to block, an RST
packet is sent, which prompts the connection to reset, drop-
ping (discarding) any packets still in transit. [1, 5]

2.2.1 Token Bucket
Many ISPs offer multiple tiers of service with bandwidth

and connection speed varying between tiers. To manage
this, some ISPs make use of the Token Bucket algorithm.
The analogy of a bucket here can be confusing (especially
with the existence of the Leaky Bucket algorithm described
in Section 2.2.2) and a more useful analogy may be that
of a toll booth. Imagine the cables bringing Internet to
your block as a highway for packets to travel on, each lane
going to a different house. The middlebox (which could
be the part of the network splitting the data within a city
block or the ISP’s modem installed in a house) acts as a toll
booth, charging packets differently depending on which exit
they are taking. In order to pass through the toll, a packet
must pay a certain number of tokens, which is determined by
the packet’s size. The toll booths supply the tokens to the
packets at a certain number of tokens per second. The rate
at which tokens are supplied is determined by the customer’s
service plan. This provides ISPs with an infrastructure to
change the level of service to a particular location without
having to rewire any part of their system.

Suppose we have an Internet connection with a maximum
speed of C bits per second (bps), and this connection has
a token bucket associated with it. The token bucket has
a maximum capacity of σ tokens and generates ρ tokens
per second, with ρ < C. If we assume that one token is
worth one bit, a packet of size L bits is only allowed to
continue along the connection if the token bucket has at
least L tokens. If there are not enough tokens, the packet
will wait until there are. Once the packet is sent, L tokens
are consumed from the bucket [3].

Suppose we start with a full token bucket (σ tokens), and
we get a large burst of packets of size L bits each. k of
those packets can be sent immediately at the rate of the

maximum speed in C bps, with k = σ/L
1−ρ/C . In this formula,

the numerator simply divides the existing tokens to some of
the packets; the denominator accounts for additional tokens

Figure 3: The leaky bucket algorithm as represented on [6].

generated in the time it takes for these first packets to pass
through. After those k packets, the remaining packets will
be sent at the token generation rate ρ.

For the rest of this paper ρ will be referred to as the
“shaping rate”, the maximum speed of the connection C will
be referred to as the “peak rate”, and σ will be referred to as
the “maximum burst size”. Another way to describe a traffic
shaper using the token bucket algorithm is by specifying
that the maximum number of bits A that can be sent in any
interval of duration τ , starting with a full token bucket is:

Â(τ) = min{L+ Cτ, σ + ρτ}

The left side of the min function in this formula calculates
the maximum number of bits that the network can send in
τ seconds; the right side calculates the maximum bits that
can pass through the token bucket in τ seconds. In most
circumstances, L + Cτ should be less than σ + ρτ . In the
event that it is not, the token bucket is essentially useless
because the hardware on the network is a greater limiting
factor than the bucket.

2.2.2 Leaky Bucket
The leaky bucket algorithm operates on a First-In First-

Out queue. Packets arrive at varying rates and are placed
in the bucket (queue). Packets leak out of the bucket (are
removed from the queue and sent) at a fixed rate. If the
bucket is full or does not have room for an arriving packet,
it overflows (is discarded) [6]. Because data can be discarded
in a leaky bucket, most ISPs prefer to use token buckets [3].

Token buckets and leaky buckets are mostly used as blan-
ket traffic shaping, with no consideration taken into what
kind of data is being passed.

2.2.3 Net-Neutrality Concerns
There has been considerable debate regarding the legiti-

macy of traffic shaping and blocking. There have been con-
cerns that several of the methods described in this paper are
in violation of net-neutrality principles. According to these



principles, it is important that the flow of information over
the Internet be free, unhindered, and “not discriminate[d]
on the basis of source, destination, or ownership” [2].

However, most ISPs would argue that they are simply
reasonably managing their networks. The Federal Commu-
nications Commission (FCC) decided that net-neutrality is
important, but it is also important for ISPs to maintain
their quality of service. Their classification of the issue has
remained vague, so Jordan and Ghosh [2] tried to tackle the
definition of reasonable/unreasonable network management.

DPI employed in blocking BitTorrent traffic was deemed
unreasonable. This practice terminates the connection and
is applied regardless of the end-user’s wishes, both of these
factors raising red flags. Traffic shaping using a token bucket
or similar method was seen as reasonable. Although the
hardware is being forced to under-perform, the level of per-
formance being achieved was agreed upon by the end-user;
this level of transparency is what allows this practice to be
net-neutral. Although Jordan and Ghosh did not examine
leaky buckets, the fact that data can be lost would deem
this an unreasonable management practice. [2]

3. BTTEST
Dischinger, et al. built a Java based web-application called

BTTest for the purpose of studying BitTorrent traffic block-
ing practices by various ISPs. In order to maximize diver-
sity in the set of results, BTTest was promoted by word
of mouth on the Internet. Users could launch BTTest and
it would simulate communication with a BitTorrent server.
They ended up with 47,300 end-users using 1,987 different
ISPs.

3.1 Methodology
Once a user launched the application, they communicated

with a BTTest server (hosted on a network that was known
not to block BitTorrent) and a series of BitTorrent flows was
emulated. BTTest closely monitored both ends of communi-
cation, and if the flow was interrupted it checked the packets
for RST (connection reset) packets. These were considered
by Dischinger, et al. to be evidence of blocking.

BTTest used the standard BitTorrent protocol described
in Section 2.1 and would run multiple flows with different
parameters in order to determine how ISPs detect BitTor-
rent traffic. Dischinger, et al. varied three values. The
first is TCP Port: half of the flows used port 6881, which is
commonly known as a BitTorrent port. The other half used
4711, which has no associations. The second is the direction
of the flows, with half going from the server to the user,
and the other half from the user to the server. The third
is protocol: half of the flows contained BitTorrent packets,
while the other half were filled with random bytes. On each
test they ran each possible combination of these parameters
twice, for a total of sixteen flows.

By varying these parameters, they were able to determine
not only how ISPs identify BitTorrent traffic, but also if the
network connection was stable enough to be considered in
the final results. Data sent from port 4711 with random
bytes was used as a sanity check. If it was dropped, there
was assumed to be a problem with the connection and the
test was removed from the results.

BTTest would take special notice of any flows in which
an RST packet was present before all of the data was sent
back and forth. This indicates that the ISP identified Bit-

ISP # measured hosts # blocked hosts
Comcast 4397 2574

Cox 1004 508
RoadRunner 2086 50
MediaCom 120 17

Table 1: A brief summary of the results of Dischinger, et al.
More can be found at [1].

Torrent traffic and forged an RST packet to forcefully close
communication.

3.2 Results
Dischinger, et al. collected 47,318 result sets from 1,987

ISPs world-wide. Of these, 146 did not contain results for all
16 flows. Another 17 failed during at least one of the sanity
checks, and these were removed. Some users ran BTTest
multiple times. To avoid bias in the results, they only con-
sidered the first successful result set from each IP address.
After removing either duplicate or failed results, they had a
pool of 41,109 result sets.

Dischinger, et al. found evidence of BitTorrent blocking
in 8.2% (3,353) of their results; most of these were located
in the United States and Singapore. 44.3% of their users
were located in North America, 26.7% in Europe,and 17.9%
in South America. 47 (0.02%) of the tested ISPs showed
evidence of blocking. These numbers indicate that a ma-
jority of the blocking came from a small number of ISPs
and that no ISP blocked BitTorrent universally. Comcast
and Cox show the greatest amount of blocked BitTorrent
interactions, as seen in Table 1.

They provide a few explanations for the lack of universal
BitTorrent blocking. Middleboxes that perform the blocking
may not be deployed over each of an ISPs network paths.
Alternatively, they may only begin to block BitTorrents as
soon as the network load reaches a certain point. Some ISPs
may even allow a certain amount of BitTorrent traffic and
block only those who pass a certain threshold.

Port number proved to be negligible in traffic identifica-
tion, with only 15.8% (530) of the blocked result sets showing
evidence of this regardless of the content or direction of the
flows. On the other hand, 99.5% (3,335) of the blocked sets
showed evidence of blocking upstream (traffic going from a
computer out to the Internet) with only 2.1% (71) block-
ing in the downstream (traffic going from the Internet to
a specific computer) direction. Finally, 98.2% (3,293) of
the blocked result sets showed blocking based on BitTorrent
messages.

From this information, Dischinger, et al. infer that ISPs
use deep packet inspection to identify users uploading Bit-
Torrent files (regardless of the port they are using) and block
these flows.

4. SHAPERPROBE
Kanuparthy and Dovrolis [3] built another tool with the

goal of detecting traffic shaping called ShaperProbe. The
primary difference between ShaperProbe and BTTest is that
ShaperProbe detects token buckets instead of forged RST
packets.



4.1 Methodology
ShaperProbe is a downloadable application that will de-

tect a token bucket on a network and then infer its charac-
teristics (the speed in bps, the size of the bucket in tokens,
and the token generation rate). The application uses an end-
to-end communication network where one end (SND) sends
packets to the other (RCV). The presence of traffic shaping
is determined by RCV.

ShaperProbe estimates the narrowest bandwidth in the
connection in bps and probes at a constant bit rate Rs = C.
Upon reception of packets, RCV timestamps them and con-
structs a timeseries (a graph which is not too different from
Figure 4) Rr(t) of the rate at which packets are received.
The timeseries is separated into intervals of size ∆ (repre-
sented by points in Figure 4). The ith interval will con-
tain all packets received in the interval [(i − 1)∆, i∆]. The
timeseries Rr(i) is estimated as the total bytes received in
interval i divided by ∆ [3].1 If there is a token bucket traf-
fic shaper on SND → RCV, there is a value at which Rr(i)
shows a significant change (referred to as a level shift and
represented by τ in Figure 4) in the rate data is received.

Their method of detection relies on numbering each inter-
val according to the rate at which data was received during
that interval. For example, the slowest interval is assigned
the number 1 and the next slowest is assigned 2. The inter-
vals remain organized chronologically. This method softens
the blow of outliers. These numbers (ranks) are calculated
online in real-time which means that at the start of each new
interval, the ranks of the previous intervals are updated.

They use τ to identify the start of a level shift if it is the
first index to satisfy three conditions and n is the number
of intervals whose received rate value have been calculated
so far.

1: All ranks to the left of τ are greater than or equal to
all ranks to the right of τ .

min
i=1...τ−1

r(i) ≥ max
j=τ+1...n

r(j)

The left side of this function calculates the lowest received
rate to the left of τ while the right side calculates the highest
received rate to the right of τ .
2: There is a minimum time duration before and after the

current rate measurement:

nL < τ < n− nR
nL is determined based on typical durations of data bursts
by ISPs and nR is a sanity check to make sure the drop is
not just a temporary variation. This helps to ensure that
the level shift is actually attributable to a token bucket.
3: There must be a significant drop in the median received

rate at point τ :

R̃r(i)
i=1...τ

> γR̃r(j)
j=τ...n

R̃r is the median of all received rates calculated so far and
γ is a suitable threshold based on “empirical observations
of ISP capacities and shaping rates in practice” (see Section
2.3 of [3]).

Another index β is used to indicate the end of a level shift :
β ≥ τ and β is the last point to satisfy the first condition.
1Kanuparthy and Dovrolis note a potential error in the es-
timation of Rr(t) up to ε = ±S/∆ where S is the size of the
largest packet the network can send. They minimize this by
choosing a reasonably large ∆.

Figure 4: Active probing: Level shift detection [3].

Once a level shift has been detected, the properties of the
token bucket are estimated. The estimated token generation
rate ρ̂ is the median of the received rates after β:

ρ̂ = R̃r(i)

This is because once the bucket has run out of tokens, infor-
mation can only pass through once there are enough tokens
to let it through. At this point, information will continue to
pass at rate ρ until there is a pause that allows the token
bucket to fill.

The estimated size of the bucket σ̂ is a range based on the
number bytes sent until the τth interval, their estimate of
ρ̂, and the received rates:

σ̂ =

τ∑
i=1

[R(i)− ρ̂]∆± [R(i)− ρ̂]∆

2

This will calculate the difference between the rate at which
data was received and the estimated token generation rate
for each interval before the level shift at τ . This accounts
for tokens that are being generated at that time and only
counts the extra tokens which were not generated. Because
this is only an estimation, their range ends up being 1/2 of
the extra tokens for the lower bound and 3/2 of the extra
tokens for the lower bound.

4.2 Results
Kanuparthy and Dovrolis tested the accuracy of Shaper-

Probe on two ISPs for which they knew the shaping proper-
ties and connection speeds. One of these was a network on
Comcast with 10Mbps up (from the end-user to the Inter-
net) and 22Mbps down (from the Internet to the end-user)
shaped to 2Mbps up and 12Mbps down. Over 60 runs on this
network, ShaperProbe failed to detect traffic shaping twice.
A second network (a RoadRunner network) showed evidence
of shaping downstream with very little (if any) shaping up-
stream. Another network (an AT&T network) did not use
any traffic shaping. Over 60 runs on this network, there
were no detection errors.

They measured the results from ShaperProbe runs against
ISPs’ advertised shaping rates.

4.2.1 Comcast
Comcast uses the PowerBoost service to temporarily in-

crease bandwidth for users who are downloading or upload-
ing large files. Across their different tiers of service Shaper-
Probe detected that the most common burst sizes upstream
were 5 Megabytes per second (MBps) and 10 MBps. They



C (MBps) ρ (MBps) σ (MB) Burst
duration (s)

.4375 .125 5 16.7
.6 .25 5, 10 15.2, 30.5
1.1 .6875 10 25.8

1.8125 1.25 10 18.8

(a) Upstream

C (MBps) ρ (MBps) σ (MB) Burst
duration (s)

2.425 .8 10 6.4
2.6375 1.6 10 10.1
3.525 2.125 20 14.9
4.3 2.925 20 15.3

(b) Downstream

Table 2: Detected shaping rates from Comcast. In these ta-
bles C is the maximum bandwidth, ρ is the shaping rate, and
σ is the maximum burst size. The rows represent different
tiers of service. Modified from [3].

found the downstream rates to be 10 MBps and 20 MBps.
Under this system, users who typically experience a down-
load speed of 1.6 MBps (ρ [MBps] in Table 2.b) can get
a boost for 10.1 seconds (Burst duration [s]) to 10 MBps
(σ [MB]). Their findings match Comcast’s advertising. It
should be noted that this boost is still limited by the maxi-
mum bandwidth of the network.

4.2.2 RoadRunner
RoadRunner is an interesting case. According to Kanu-

parthy and Dovrolis, RoadRunner only advertised shaping
downstream but found no advertisement of shaping upstream.
On RoadRunner networks, ShaperProbe detected shaping
in only 6.5% of the upstream runs and 63.9% of the down-
stream runs, confirming RoadRunner’s claims. Kanuparthy
and Dovrolis operate under the hypothesis that RoadRun-
ner does not shape its upstream traffic and that they have a
6.5% false positive detection rate. This is unusual because
most ISPs tend to implement the same amount of shaping
in either direction.

4.2.3 AT&T
Kanuparthy and Dovrolis found no mention on AT&T’s

website of traffic shaping. However, 10% of ShaperProbe
runs on AT&T networks detected traffic shaping. In their
paper they say that these were “probably mis-diagnosed as
shaping.” Upon further investigation, however, they found
that about a third of the positive detections had very similar
shaping rates. Of these, they found that 80% came through
MediaCom networks. This could indicate that these are not
false-positives after all and although AT&T does not prac-
tice traffic shaping, other ISPs that it serves (such as Me-
diacom) could practice traffic shaping. These ISPs receive
Internet service from AT&T and redistribute this service.

5. CONCLUSIONS
In this paper, we examined network management pro-

tocols employed by ISPs, particularly BitTorrent blocking
and traffic shaping protocols. We looked at the work of
Dischinger, et al. who built BTTest, an application used

ISP Upstream% Downstream%
Comcast 71.5 (34874) 73.5 (28272)

RoadRunner 6.5 (7923) 63.9 (5870)
AT&T 10.1 (8808) 10.9 (7748)

Table 3: These results from [3] show percentage of runs that
detected traffic shaping.

to detect BitTorrent blocking. They found that approxi-
mately 8% of BitTorrent interactions are blocked by ISPs.
It is interesting to note that Comcast implemented BitTor-
rent blocking in 2007 [2], Dischinger, et al. conducted their
study in 2008, and it was concluded by Jordan and Ghosh
in 2010 that this kind of traffic blocking is unreasonable. I
ran BTTest on a Comcast network on November 25, 2012
and found no evidence of BitTorrent blocking.

Next we looked at the work of Kanuparthy and Dovrolis,
who built ShaperProbe, an application used to detect token
buckets. They found that ISPs are generally honest about
how they implement these on their networks. This is likely
because token buckets are regarded as reasonable network
management and their effects are agreed upon by the end-
user.

6. REFERENCES
[1] M. Dischinger, A. Mislove, A. Haeberlen, and K. P.

Gummadi. Detecting bittorrent blocking. In
Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement, IMC ’08, pages 3–8, New York,
NY, USA, 2008. ACM.

[2] S. Jordan and A. Ghosh. A framework for classification
of traffic management practices as reasonable or
unreasonable. ACM Trans. Internet Technol.,
10(3):12:1–12:23, Oct. 2010.

[3] P. Kanuparthy and C. Dovrolis. Shaperprobe:
end-to-end detection of ISP traffic shaping using active
methods. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement, IMC ’11, pages
473–482, New York, NY, USA, 2011. ACM.

[4] N. L. E. K. Legout, Arnaud and L. Zhang. Clustering
and sharing incentives in BitTorrent systems. ACM
SIGMETRICS Performance Evaluation Review,
35(1):301–312, 2007.

[5] P. Piyachon and Y. Luo. Efficient memory utilization
on network processors for deep packet inspection. In
Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications
systems, ANCS ’06, pages 71–80, New York, NY, USA,
2006. ACM.

[6] Wikipedia. Leaky bucket — Wikipedia, The Free
Encyclopedia. http://en.wikipedia.org/w/index.
php?title=Leaky_bucket&oldid=517425558, 2012.
Online; accessed 10-October-2012.

[7] Wikipedia. Peer-to-peer file sharing — Wikipedia, The
Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=

Peer-to-peer_file_sharing&oldid=507261462, 2012.
Online; accessed 10-October-2012.

[8] Wikipedia. Traffic shaping — Wikipedia, The Free
Encyclopedia. http://en.wikipedia.org/w/index.
php?title=Traffic_shaping&oldid=514675409, 2012.
Online; accessed 10-October-2012.


