
Intrusion Detection with
Genetic Algorithms and Fuzzy Logic

Emma Ireland
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
irela065@morris.umn.edu

ABSTRACT
Intrusion detection systems provide one way of detecting at-
tacks on systems by monitoring network activities for mali-
cious or abnormal behaviors. This paper describes two ways
of training an intrusion detection system to recognize possi-
ble attacks on a system: genetic algorithms and fuzzy logic.
I will describe an approach to using fuzzy genetic algorithms
and compare those results with results obtained using a de-
cision tree. I will then describe the results from using a
traditional genetic algorithm and compare those with the
winning entry of the KDD99 Classifier Learning Contest,
as well as with the fuzzy genetic algorithm. These results
show that the use of genetic algorithms and fuzzy logic in
intrusion detection are effective ways of detecting attacks.

Keywords
Intrusion detection, genetic algorithms, fuzzy logic, KDD99,
RLD09, computer security

1. INTRODUCTION
The CSci computer lab at the University of Minnesota,

Morris gets large numbers of login attempts that are at-
tempts at intrusion. An attacker could be trying to gain
root access to the system, which would then give them the
ability to do things like delete files of other users and change
user passwords. If the university had an intrusion detection
system (IDS), it would be possible to classify those attempts
into legitimate and illegitimate attempts to login. Then it
would be possible to block IP addresses that are generating
large numbers of attacks.

An attack on systems is a concern for many people, so it is
important to have a way to detect and analyze these attacks.
Intrusion detection systems provide one way of detecting
attacks by monitoring network activities for malicious or
abnormal behaviors and then producing reports, alerts, and
actions [6]. There are various ways of training an IDS about
possible threats. Two approaches that I will talk about in
this paper are genetic algorithms and fuzzy logic.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2013 Morris, MN.

In Section 2 I will give some background on intrusion de-
tection. I will describe the main types of networking attacks
in Section 2.1, and ways of detecting attacks in Section 2.2.
In Section 2.3 I will describe two data sets that are com-
monly used in intrusion detection. After that, in Section 2.4
I will describe the measures that are used in determining the
accuracy of an IDS. I will then provide an overview on ge-
netic algorithms in Section 3. In Section 4 I will describe the
use of a fuzzy genetic algorithm in an IDS, and in Section 5
I will describe the results of using a traditional genetic algo-
rithm. Section 6 provides some conclusions about the use of
genetic algorithms and fuzzy genetic algorithms in intrusion
detection systems.

2. BACKGROUND

2.1 Types of Networking Attacks
There are four main types of networking attacks that this

paper will address: denial of service attacks, remote to user
attacks, user to root attacks, and probe attacks. Each attack
that happens on a network can be placed into one of these
categories. [6]

Denial of service (DoS) attacks happen when an attacker
makes a machine inaccessible to a user by making it too
busy to serve legitimate requests. For example, many sys-
tems lock out a user from an account after a certain number
of failed login attempts. An attacker would be able to use
this to prevent legitimate users from logging in, by intention-
ally failing to log in enough times to lock the account [2].
Remote to user, also known as remote to local (R2L) at-
tacks happen when an attacker sends packets to a machine
over the network in order to gain access to things a local user
would have on the machine. An example is when an attacker
tries to gain access to a machine by guessing possible user-
names and passwords. User to root (U2R) attacks happen
when an attacker starts out with access on the machine and
then tries to gain root access to the system. If an attacker
has access to an account on the machine, they could poten-
tially run programs that take advantage of operating system
weaknesses to gain root access. Probe attacks happen when
an attacker examines a machine in order to collect informa-
tion about weaknesses or vulnerabilities that in the future
could be used to compromise the system. For example, the
attacker could be trying to determine what version of a soft-
ware is being run on that machine, and if that version has
a known issue then that allows them to attempt to attack
that. [6, 9]

2.2 Detection Methodologies and Rules
There are two different ways of detecting attacks: signature-

based detection and anomaly-based detection. A signature is
a pattern that corresponds to a known attack. Signature-
based detection compares well-known patterns of attacks
that are already known to the IDS against captured events in
order to identify a possible attack. It is a simple and effective
way to detect known attacks, but is ineffective against new
kinds of unknown attacks. Signature-based detection is also
called knowledge-based detection or misuse detection. [10]

Anomaly-based detection looks for patterns of activity
that are rare and uncommon. It is harder to do than signature-
based detection, but it can be an effective way to detect new,
unknown attacks. Anomaly-based detection is also called
behavior-based detection. [6]

A commonly used approach for detecting intrusions is to
use rules. Rules are represented by if-then statements in the
following format: If (condition) then (consequence). The
condition part of the rule is composed of one or more fea-
tures, and the consequence of the rule says if it is an intrusion
or not. For example: if (duration = 1, and src bytes = 0,
and serror rate = 50) then intrusion. [4]

2.3 Data Sets
Two different data sets are used in this paper to evaluate

the performance of intrusion detection systems: KDD99 and
RLD09. KDD99 is a benchmark data set that was gener-
ated by simulating a military network environment in 1999,
and it has long been a standard data set for intrusion detec-
tion. The data was processed into five million records, where
a record is a sequence of TCP packets, between which data
flows to and from a source IP address to a target IP address.
Each record in the data set is classified as either normal or
attack activity. KDD99 uses 41 features, which are proper-
ties of a record that are used to describe the activity and
help to distinguish normal connections from attacks. [5]

In the research discussed in Section 4 [7, 8], eight of the
41 KDD99 features were used based on research done in [4].
These eight features are:

1. duration: the length of the record in seconds.

2. src bytes: the number of bytes sent from source to des-
tination. Source is the user who may or may not be
an attacker, and destination is the server being poten-
tially attacked.

3. num failed logins: the number of failed login attempts
in this record.

4. root shell: returns 1 if root shell is obtained, else it
returns 0.

5. num access files: the number of operations on access
control files. Access control files specify which users
are granted access to objects and what operations are
allowed on the objects. An example would be (Alice,
delete), which would give Alice permission to delete
the file. [11]

6. srv count: the number of connections in other records.

7. serror rate: the percentage of connections that have
“SYN” errors. When a client attempts to connect to a
server, it first sends a SYN (synchronize) message to
the server. The server then acknowledges the request
by sending a SYN-ACK to the client. The connection

is established when the client sends an ACK back to
the server. A SYN error is a failure to get an ACK
back. [13]

8. same srv rate: the percentage of connections to the
same service.

The KDD99 data set is 14 years old, and newer attack
types are not included in it because of its age. Because of
this, the authors of [7, 8] created their own data set, RLD09,
to use in their experiments. To create the data set, the au-
thors captured network data from a university in Bangkok,
Thailand. As well as normal network activity, RLD09 has
17 different types of attacks which can be classified as either
denial of service attacks or probe attacks. RLD09 uses 12
features. For further information about the features, see [7].
In the research discussed in Section 5, the authors of [6] used
only the numerical features of KDD99 (34 out of 41).

In a machine learning experiment, a common technique is
to divide the data set into two subsets, a training set and
a testing set. The given algorithm is then trained on the
training set to look for patterns. These patterns are then
verified using the test set. [14] This approach is used in [7,
8] and [6].

2.4 Determining the Accuracy of an Algorithm
Four measures are used to determine the accuracy of an

algorithm. The false negative (FN) rate is the percentage
that attacks are misclassified from the total number of at-
tack records. The false positive (FP) rate is the percentage
that normal records are classified as attacks from the total
number of normal records. The true negative (TN) rate is
the percentage that normal records are classified correctly
from the total number of normal records. The true posi-
tive (TP) rate is the percentage that attacks are classified
correctly from the total number of attack records. [7, 14]

3. GENETIC ALGORITHMS
Genetic algorithms (GAs) are a search technique used to

find solutions to problems. Operations analogous to biologi-
cal mutation, selection, and crossover are used to evolve and
improve solutions.

Possible solutions to problems can be represented in a va-
riety of problem dependent ways, such as bit strings. For
example, IDS rules can be represented as bit strings; see
Section 4.1 for more information. First, a randomly gen-
erated population of potential solutions is created. Then
mutation, crossover, and selection are applied to each gen-
eration until an acceptable solution is found or some time
limit is exceeded.

Mutation is where random bits in an individual, or pos-
sible solution, are randomly changed. Crossover is where
two individuals swap sequences of bits to form two new in-
dividuals. For example, in an IDS mutation takes the bits
of a rule and changes them to form a slightly different rule.
Crossover takes two rules and creates new rules by swapping
the bits of the old rules.

Selection is where individuals that have better fitness are
chosen to be parents. The fitness of an individual is speci-
fied by the fitness function, which determines the quality of
a particular individual. For example, in an IDS the fitness
measures how well a rule classifies records as either attacks
or normal activity. Selection combined with a fitness func-
tion directs the search towards an effective solution. [1]

Figure 1: Illustration of fuzzy rule used to find the
degree of certainty of a record being an attack. Also
see Algorithm 1. This is used in [7, 8].

a=1 b=3 c=5 d=7

0.5

1.0
Degree of
Certainty

Data value

0

If b < data < c then
certainty = 1.0

If a < data < b then
certainty = (data - a)

 (b - a)

If c < data < d then
certainty = (d - data) = (7-6) = 0.5

 (d - c) (7-5)

Algorithm 1 Fuzzy Algorithm that is based on an algo-
rithm used in [7, 8], but a few corrections have been made.
Also see Figure 1.

if b ≤ data ≤ c then
certainty = 1.0

else if a < data < b then
certainty = (data − a)/(b− a)

else if c < data < d then
certainty = (d− data)/(d− c)

else
certainty = 0.0

end if

4. USING FUZZY GENETIC ALGORITHMS
The IDS used in [7, 8] is able to identify normal network

activity as well as attacks using a fuzzy genetic algorithm.
This kind of algorithm is able to learn to recognize new
attacks.

4.1 Fuzzy Logic Rules and Algorithm
Attacks on systems do not always have a fixed pattern, so

fuzzy logic is used to detect patterns that have a behavior
that is between normal and unusual. Fuzzy logic rules are
similar to the rules described in Section 2.2, except that
consequence is a certainty factor. For example, if (duration
= 6) then (the degree of certainty of the record being an
attack is 0.5).

To find the degree of certainty of a record being an at-
tack, a trapezoidal shape was used in [7, 8]; this is shown in
Figure 1. The trapezoidal shape has four parameters: a, b, c,
and d. Algorithm 1 calculates the certainty of a record being
an attack.

An example of using the fuzzy logic approach is: suppose
that the feature is duration, and suppose it is 6 seconds, so
then data = 6. Suppose that a = 1, b = 3, c = 5, d = 7.
Because data (6) is between c and d, then the degree of
certainty of it being an attack is equal to

d− data

d− c
=

7 − 6

7 − 5
= 0.5.

The four parameters a, b, c, and d are encoded into blocks
of binary strings, where each block is a feature with values

Algorithm 2 Fuzzy GA that is based on an algorithm used
in [7, 8], but a few corrections have been made.

for each rule do
for each record do

for each feature do
certainty = fuzzy(); // Algorithm 1
total = total + certainty;

end for
if total > threshold then

class is attack;
else

class is normal;
end if

end for
compare the predicted result with actual result
find A, B, α, and β
// A is the total number of attack records. B is the
total number of normal records. α is the total number
of attack records correctly identified as attack. β is the
total number of normal records incorrectly classified as
attack.

end for
calculate fitness
//create next generation
preserve best()
crossover()
mutation()

between 0 and 7. A rule has one block for each of 12 features
followed at the end by a marker indicating the type of attack.
An example of this is shown in Figure 2. The authors of [7,
8] compute the degree of certainty for each of the 12 blocks,
and if the sum of those is greater than a threshold, then it
will be declared as an attack.

4.2 Algorithm Overview
The algorithm in [7, 8] first randomly generates rules.

Then the rules are improved in the training phase, which
can be seen in Algorithm 2, which describes the fuzzy ge-
netic algorithm that is used. One record (either an attack
or normal activity) is passed into a rule. Each feature in a
record is matched to one block of the rule. The parameters
of each block measure the degree of certainty of an attack
using the trapezoidal fuzzy rule shape. The sum of the de-
grees of certainty from each block are then compared with
a threshold to determine if the record represents an attack
or normal behavior.

The fitness function to be maximized in Algorithm 2 is:

fitness function =
α

A
− β

B

where A is the total number of attack records, B is the total
number of normal records, α is the total number of attack
records correctly identified as attack, and β is the total num-
ber of normal records incorrectly classified as attack.

A population size of 10 was used for each generation. The
two best individuals from the present generation are pre-
served for the next generation. The other individuals in the
new generation come from mutation and crossover.

Figure 2: A rule with 12 blocks of features used in [7, 8].

010 011 100 101 010 011 101 111 DoS
a=2 b=3 c=4 d=5 a=2 b=3 c=5 d=7

Block 1 Block 12 Type

Algorithm 3 This algorithm was used to identify attacks
and normal activity in [7].

if dos rule = yes or probe rule = yes then
This record is an attack;

else
This record is normal;

end if

4.3 Experimental Design and Results
A variety of experiments were run in [7, 8]. Two experi-

ments used just RLD09, and three experiments used KDD99
and RLD09 together.

4.3.1 Experiments using Only RLD09
The experiments using only RLD09 that [7] performed

used a total of 16,000 records of normal activity and 10,500
records of attack activity. Of the attack records, 4,000 were
denial of service attacks and 6,500 were probe attacks.

In the first experiment, the fuzzy genetic algorithm was
used to create separate denial of service and probe detection
rules. Both of the denial of service and probe rules were then
used together in the testing process to identify attacks from
the testing data set; this is shown in Algorithm 3. 10,000
records were used for the training set and all 26,500 records
were used for the testing set. (The authors of [7] really
should not have reused the training data in the testing set
because it inflates their results.)

To evaluate the accuracy of the fuzzy genetic algorithm,
detection rate (DR) was used. Detection rate is defined in [7,
8] as the percentage of normal and attack activity correctly
classified from the total number of data records. The de-
tection rate of DoS attacks in training was 91.64% and the
detection rate of probe attacks in training was 94.79%. The
detection rate of the testing data set increased to 97.92%.
Results from this experiment are in Table 1.

In the second experiment, [7] pulled some types of attacks
out of the training set and kept them for unknown data
testing. This was to test that the fuzzy genetic algorithm
could detect unknown attacks. In this experiment, seven
tests were run. For each test case there were 13 attack
types plus normal activity that were in the training data
set. Three attack types were used for the unknown testing
data set. For example, test case 1 used the training data
set that does not have Advance Port Scan, Ack Scan, and
Xmas Tree, which are all probe attacks. These three attacks
were then used for the testing data set. Table 2 shows the
results from the fuzzy genetic algorithm and a decision tree
algorithm, which is another common algorithm for classifi-
cation problems. For further information on decision trees,
see [12], and for further information on the types of denial
of service and probe attacks, see [9]. When compared with
the decision tree algorithm, the fuzzy genetic algorithm has
a higher detection rate in all cases except 5 and 7, however,
no information on statistical significance was given.

Table 2: Unknown attack experiment, using only
the RLD09 data set [7].

Test Unknown Decision Fuzzy GA
Case Attacks Tree DR (%) DR (%)
1 Adv Port Scan (Probe) Avg = Avg =

Ack Scan (Probe) 98.33 100
Xmas Tree (Probe)

2 HTTP Flood (DoS) Avg = Avg =
IP Scan (Probe) 88.4 95.30
Null Scan (Probe)

3 Smurf (DoS) Avg = Avg =
Port Scan (Probe) 97.65 99.15
Connect Scan (Probe)

4 UDP Flood (DoS) Avg = Avg =
Host Scan (Probe) 46.65 99.80
UDP Scan (Probe)

5 Jping (DoS) Avg = Avg =
Syn Scan (Probe) 99.70 98.75
Fin Scan (Probe)

6 UDP Flood (DoS) Avg = Avg =
RCP Scan (Probe) 70.35 98.15
Fin Scan (Probe)

7 HTTP Flood (DoS) Avg = Avg =
RCP Scan (Probe) 99.94 97.50
Fin Scan (Probe)

Table 3: KDD99 and RLD09 results from the first
experiment in [8].

Data set Attack Normal FP(%) FN(%) DR(%)
KDD99 160,117 39,337 0.13 1.55 98.72
RLD09 10,500 16,000 1.14 3.39 97.97

4.3.2 Experiments using Both RLD09 and KDD99
The authors of [8] also ran experiments that used both

the RLD09 data set and the KDD99 data set in order to
compare how the fuzzy genetic algorithm would perform on
both. They used a subset of the KDD99 data set for both
the training data set and testing data set.

The first experiment used the fuzzy genetic algorithm to
classify normal activity and attacks from both data sets.
The authors of [8] first trained and tested the fuzzy genetic
algorithm (Algorithm 2) with the KDD99 data set. There
were 6 different types of denial of service attacks and 4 dif-
ferent types of probe attacks. The detection rate of the
KDD99 data set was 98.72%. Then 26,500 records of the
RLD09 data set were used as the training set. The detec-
tion rate was 97.97%. The results of this experiment are
shown in Table 3.

The next experiment used the fuzzy genetic algorithm to
classify types of attacks in the KDD99 data set. They used
the KDD99 training set, with 158,597 records of denial of

Table 1: Results from Experiment 1, using only RLD09 [7].

Attack Normal Total Records FP (%) FN (%) DR (%)
DoS Training 1499 8501 10000 1.46 47.50 91.64

Probe Training 2496 7504 10000 1.83 15.38 94.79
Testing 10500 16000 26500 1.13 4.10 97.92

Table 4: Results for KDD99 with Certain Attacks.
10 tests were run in total, 5 are shown here. [8]

Test Attack Type FP(%) FN(%) DR(%)
1 Back DoS 85.33 0.00 16.56
2 Smurf DoS 0.76 0.10 99.73
3 Neptune DoS 0.15 0.34 99.75
4 Portsweep Probe 6.40 0.00 93.66
5 Satan Probe 0.74 3.75 99.22

Table 5: Results for RLD09 with Certain Attacks.
17 tests were run in total, 6 are shown here. [8]

Test Attack Type FP(%) FN(%) DR(%)
1 HTTP Flood DoS 0.36 3.5 99.46
2 Smurf DoS 0.02 0 99.98
3 UDP Flood DoS 11.06 0 89.59
4 Fin Scan Probe 2.58 0 97.50
5 IP Scan Probe 13.01 16.4 86.89
6 Syn Scan Probe 0.65 4.2 99.24

service attacks and 1,500 records of probe attacks. Ten tests
were run, and Table 4 shows the accuracy of detecting some
of the cases. The results showed that the detection rate of
eight out of ten cases were greater than 93%. There were
only two cases that had low detection rates, one of which is
case 1 in Table 4. The two low detection rates were 16.56%
and 15.58%, both of which were denial of service attacks.

The final experiment that was run used only the RLD09
data set with the fuzzy genetic algorithm to classify types of
attacks. 17 tests were run, and Table 5 shows the accuracy
of detecting some of the cases. The results showed that the
detection rate of 15 out of 17 cases were greater than 97%.
Again, there were only two test cases that had low detection
rates, cases 3 and 5 in Table 5. The two low detection rates
were 89.59% (denial of service), and 86.89% (probe).

5. USING GENETIC ALGORITHMS
The authors of [6] used a genetic algorithm to develop an

IDS. They didn’t explain their research that well and left a
lot of things out, so I will just be describing their results.

The KDD99 data set was used in the experiments. Stan-
dard subsets of the set were used for training and testing.
The training set had a total of 494,021 records, 396,741 of
which were attacks. The test set had a total of 311,029
records, 250,436 of which were attacks. Table 6 shows the
distribution of each type of attack, as well as normal activity,
that were in the training and test sets.

The results from running the genetic algorithm are shown
in Table 7. Detection rate is defined in [6] as the ratio be-
tween the number of correctly detected intrusions and the
total number of intrusions. Denial of service attacks had the

Table 6: Training and testing records used in [6].

Training Testing
Normal 97,280 60,593
DoS 391,458 229,853
R2L 1,124 16,189
U2R 52 228
Probe 4,107 4,166
Total Attacks 396,741 250,436
Total Records 494,021 311,029

Table 8: Accuracy of the GA in [6].

Predicted
Actual Normal Attack
Normal TN: 42,138. 69.5% FP: 18,455. 30.5%
Attack FN: 12,528. 5% TP: 237,908. 94.9%

highest detection rate at 99.4%. A high detection rate on
denial of service attacks isn’t surprising because there were a
lot of denial of service records used compared with the other
types of attacks. The accuracy of the genetic algorithm is
shown in Table 8. The true negative rate was 69.5%. The
false positive rate was 30.5%. The false negative rate was
5%. The true positive rate was 94.9%.

The authors of [6] compared their results (Table 7) with
the winning entry of the KDD99 Classifier Learning Con-
test [3], which can be seen in Table 9. The winning entry
used a decision tree algorithm. The winning entry had a
higher detection rate for normal activity, probe attacks, and
remote to user attacks. The authors of [6] found that they
had a better detection rate for denial of service and user to
root attacks than the winning entry. For the winning entry,
the detection rate of denial of service was 97.1%, and for
user to root it was 13.2%. In [6] the detection rate of denial
of service was 99.4% and for user to root it was 18.9%. The
authors of [6] provide no information about the statistical
significance of these improvements.

The detection rate (as defined in Section 4.3 and [8]) of
the traditional genetic algorithm in [6] was 90% (see Tables 8
and 6). This means that it correctly classified 90% of the test
records. The detection rate of the fuzzy genetic algorithm
in [8] was 99% (see Table 3). The fuzzy genetic algorithm
in [8] is not the same as the traditional genetic algorithm
in [6] with fuzzy logic added to it, but it can be said that
the system in [8] is better than [6] however it was built.

6. CONCLUSIONS
The fuzzy genetic algorithm that was used in [7, 8] had

a higher detection rate than a decision tree algorithm in
most cases, and it was good at detecting unknown attacks.

Table 7: Results for GA Experiment in [6].

Predicted
Actual Normal Probe DoS U2R R2L % Correct
Normal 42138 1421 15835 486 713 69.5
Probe 398 2963 654 2 149 71.1
Dos 921 432 228489 1 10 99.4
U2R 146 21 8 43 10 18.9
R2L 11191 578 3398 141 881 5.4

% Correct 76.9 54.7 92.0 6.4 50.0

Table 9: Results for the Winning Entry of the KDD99 Classifier Learning Contest.

Predicted
Actual Normal Probe DoS U2R R2L % Correct
Normal 60262 243 78 4 6 99.5
Probe 511 3471 184 0 0 83.3
Dos 5299 1328 223226 0 0 97.1
U2R 168 20 0 30 10 13.2
R2L 14527 294 0 8 1360 8.4

% Correct 74.6 64.8 99.9 71.4 98.8

It had a higher detection rate than the traditional genetic
algorithm that was used in [6]. The genetic algorithm in [6]
had a high detection rate for denial of service attacks. When
compared with the winning entry of the KDD99 Classifier
Learning Contest, it was shown to have a better detection
rate for both denial of service and user to root attacks. This
paper showed that the use of genetic algorithms and fuzzy
genetic algorithms in intrusion detection are effective ways
of detecting attacks.

7. REFERENCES
[1] R. Borgohain. FuGeIDS: Fuzzy Genetic paradigms in

Intrusion Detection Systems. CoRR, abs/1204.6416,
2012.

[2] CERT. Denial of Service Attacks.
http://www.cert.org/tech tips/denial of service.html,
2001. [Online; accessed 26-October-2013].

[3] C. Elkan. Results of the KDD99 Classifier Learning
Contest. http://cseweb.ucsd.edu/ elkan/clresults.html,
1999. [Online; accessed 27-October-2013].

[4] T. P. Fries. A fuzzy-genetic approach to network
intrusion detection. In Proceedings of the 2008
GECCO conference companion on Genetic and
evolutionary computation, GECCO ’08, pages
2141–2146, New York, NY, USA, 2008. ACM.

[5] S. Hettich and S. D. Bay. KDD Cup 1999 Data.
http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 1999. [Online; accessed
12-October-2013].

[6] M. S. Hoque, M. A. Mukit, and M. A. N. Bikas. An
Implementation of Intrusion Detection System Using
Genetic Algorithm. CoRR, abs/1204.1336, 2012.

[7] P. Jongsuebsuk, N. Wattanapongsakorn, and
C. Charnsripinyo. Network intrusion detection with
Fuzzy Genetic Algorithm for unknown attacks. In
Information Networking (ICOIN), 2013 International

Conference on, pages 1–5, 2013.
[8] P. Jongsuebsuk, N. Wattanapongsakorn, and

C. Charnsripinyo. Real-time intrusion detection with
fuzzy genetic algorithm. In Electrical
Engineering/Electronics, Computer,
Telecommunications and Information Technology
(ECTI-CON), 2013 10th International Conference on,
pages 1–6, 2013.

[9] K. Kendall. Intrusion Detection Attacks Database.
http://www.ll.mit.edu/mission/communications/
cyber/CSTcorpora/ideval/docs/attackDB.html, 1999.
[Online; accessed 26-October-2013].

[10] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung.
Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications,
36(1):16 – 24, 2013.

[11] Wikipedia. Access control list — Wikipedia, The Free
Encyclopedia, 2013. [Online; accessed
26-October-2013].

[12] Wikipedia. Decision tree — Wikipedia, The Free
Encyclopedia, 2013. [Online; accessed
26-October-2013].

[13] Wikipedia. Transmission control protocol —
Wikipedia, The Free Encyclopedia, 2013. [Online;
accessed 26-October-2013].

[14] S. X. Wu and W. Banzhaf. The Use of Evolutionary
Computation in Knowledge Discovery: The Example
of Intrusion Detection Systems. In S. Dehuri and S.-B.
Cho, editors, Knowledge Mining using Intelligent
Agents, volume 6 of Advances in Computer Science
and Engineering, chapter 2, pages 27–59.
WorldSciBook, Dec. 2010.

