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ABSTRACT
Prevention and detection of automated bots is an impor-
tant part of multiplayer online games. Botting is a form of
cheating that goes against game developers’ term of service.
Specifically in massively multiplayer online games, players
can bot to gain unfair benefits such as virtual resources or
to automatically battle with monsters. This forces game de-
velopers to continuously create new countermeasures against
botting. In this paper we will review the fundamentals of
botting and the current techniques used to detect it. We will
discuss the development of the following two efficient bot de-
tection techniques: Waypoint with Path Segments and Party
Play Analysis. We will then summarize our discussion of bot
detection and the importance of it.
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1. INTRODUCTION
The popularity of online gaming has increased greatly in

the last decade. Players enjoy online gaming because it in-
troduces a play style where they can compete with other
players. There are multiple online games. The most popular
games at the moment are World of Warcraft and League of
Legends, both games have attracted over a million players.
With the support of the game community, online gaming
has become a very profitable industry for game developers.
However, the community has also attracted a form of cheat-
ing known as automated botting that is used for illegitimate
gains.

The definition of automated botting, or simply known as
botting, is described as the use of a bot to play the game in
substitution of the player [8]. Botting is against most game
developers’ term of service. A bot is a software-based pro-
gram that runs a script composed of game actions. Inputting
the actions like how peripherals do to the game, the program
can play it in place of the player. Usually the actions are for
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game tasks that can easily be managed by the player, but
they do not want to commit their time to perform them.

Massively Multiplayer Online Games (MMOGs), online
games that can sustain a large number of players, are the pri-
mary targets for botting. There are a few types of MMOGs
but the most common types are Role-Playing Game (RPG)
and First Person Shooter (FPS). Both of these type func-
tion like most games do. Players are represented as a virtual
objects in the game world, and they control the object with
peripherals such as a mouse or a keyboard. The game devel-
oper introduces game contents for players to have fun and
to compete with each other. For competition wise, players
would want to obtain the best items or rank. To obtain
them though requires the player to perform time consuming
tasks. These tasks, however, could become repetitive and
boring causing players to lose interest in it. This introduces
the use of botting to perform repetitive tasks.

We can categorized the benefits of botting into two groups:
score and asset. Score is defined as the ranking or the mea-
surement of a player’s skill in the game. FPS online games
fall heavily into this category where skills are very impor-
tant. However, a player can use a bot to obtain a good score
without having the necessary skills. An example would be
the measurement of a player’s shooting accuracy. A bot pro-
gram known as an aimbot would be able to obtain a perfect
or near perfect shooting accuracy. The second category, as-
set, is when botting is used to obtain virtual resources. Some
MMOGs have implementations of a virtual economy that
allow players to trade or to gather resources in the game.
These resources are used by players to increase the value
of their assets. The common example that revolves around
asset are RPGs with crafting materials. Crafting materi-
als can be gather in the game, and the task is extensively
repetitive. Bots though, could be programmed to gather the
materials with little effort on the player’s part. These two
benefits of botting can severely harm the enjoyment in a
MMOG or its economy. If botting cannot be prevented by
game developers, the end result could be legitimate players
leaving the game, and the developers losing revenue.

This paper will review bot detection techniques as well as
describe two efficient approaches to detect bots. Section 2
defines terminology, and it will also discusses the types of
bot detection technique and their efficiency. Section 3 de-
scribes a movement analysis approach that uses waypoints
with path segments, and in Section 4 we review a party play
analysis approach. Section 5 summarize our approaches with
current detection approaches.



2. BACKGROUND INFORMATION
This section will review the terminology necessary for bot

detection techniques. We will discuss the different types of
bot detection and their efficiency.

2.1 Terminology
The following terminologies are widely used and are de-

fined in the interest of bot detection. These terminologies
may vary for each online game.

• Online Game: An online game is always running and
is played by using the game’s client. Clients are down-
loaded by players and allow them to send information
to the game. The game’s role is to accept the informa-
tion from its clients and verifies that the information
is legitimate. It then sends back information to the
clients allowing updates to their user interfaces.

• Log : Logs are archived information from activities re-
lating to the game. They consist of all the game’s
information and all the information from clients. Logs
can only be accessed by game developers and are not
accessible to the public. Bot detectors would primarily
focus on the client informations from logs. An exam-
ple of a client’s information in a log would look like
<Timestamp, Coordinate, Action> [5].

• Trace/Tracing : A trace is similar to a log except it
does not record server information. A trace is created
from programs that record a client while it is running
and can obtain the client information. Like logs, the
information from the client are similar. They are used
by both developers and players for debugging and re-
viewing.

• Timestamp: The real time taken when information is
sent by the client or the game.

• Action: An action is an interaction the player takes in
the game. Actions can be anything the player does.
Actions can include but are not limited to: login, lo-
gout, battle, trade with other players, chat [5, 7]. An
example of actions in a FPS game would be: turning
inside the game, aiming, shooting, and being blocked
by virtual objects.

• Coordinate: A Coordinate is a set of numbers iden-
tifying where a player is located in the game, and a
movement is a set of coordinates. Coordinates are im-
portant because an action requires the game to verify
the player’s location before it can happen. An exam-
ple is that a three dimensional game would have three
dimensional coordinates, and the game must verify an
attack’s length before it can occur.

2.2 Types of Bot Detection
Bot detection techniques are classified into the three fol-

lowing types [10].

• Network-side: The majority of network-side detection
monitors the traffic of information going and coming
to the game. This type of detection constantly runs
in real time to make sure the information from clients
are legitimate. An example of a network-side approach
is that bots and players have different traffic patterns.
A detection that checks the traffic for time interval
patterns is able to determine if a client is botting.

• Client-side: Client-side detections seek to detect play-
ers who tries to use third-party programs that will af-
fect game client. If it detects a third-party program it
will report the client to the game, and the game can
block the client until further notice. This detection
attempts to run silently in the background when the
client is running.

• Server-side: Server-side detections happen entirely at
the game’s location. This detection type seeks to find
bot patterns from passed client information. Client
information can be obtained from logs or traces. Once
it determines enough information from a client, it can
determine if the client is botting.

Out of the three detection types, our focus will on server-
side detection because it is more efficient [13]. Efficiency
is defined as the least cost and the least effort for game
developers if the detection type is implemented in a real
environment.

Network-side detectors monitor between clients and the
game. There does not seem to be any advantage to this as
it is possible to monitor all activities from the server-side. In
addition, to monitor all the traffic coming and going requires
a network-side detector to run as long as the game is active.
Since the game is online and always active, this would add
extra computational power to the cost.

Client-side detectors are the most common defense be-
cause it is easy for game developers to implement. The de-
tection program is set to start up when the player starts their
client. This detection type runs on the player’s computer so
developers do not have to worry about computational power.
This way when a player attempts to start a bot program, it
can tell the game to block the client. Client-side detectors
are usually set to only report known bot programs and can
not recognize new ones. This allows new bot programs to
run undetected until developers update their detection pro-
gram. If developers decide to allow their client-side defense
to search for new bot programs, they can definitely detect
better. However, this will cause problems to players when
programs are mistakenly considered as bot programs. Given
that players are the most important part of the game, it is
assumed that developers would not risk losing them. Also,
for developers to troubleshoot incompatibility issues would
be a time consuming task.

Server-side detectors would be the best choice. Detec-
tion only happens on the game side so problems that occur
would not affect the clients. This detection type aims to find
patterns from information that has already been record by
logs and traces. It will not be able to prevent botting the
instant a bot program starts but by using archived informa-
tion to determine botting, it would cost less computational
power. Simply put, unlike network-side detectors, it would
not have to run constantly. It will run when there is enough
information to classify a client as a bot or a player. Lastly,
server-side detectors are hidden from clients allowing the as-
surance that bot programs will have a hard time trying to
counter them.

3. WAYPOINT WITH PATH SEGMENTS
In this section we will review a movement analysis ap-

proach for bot detection. This server-side approach focuses
on one important feature of bots: they all have significantly



larger movement repetitions over time in comparison to play-
ers. Bot programs have a limited number of specific move-
ments before they reach the end of the program. They will
then start from the beginning of the program and repeat the
process for a long time. Players though, do not have specific
movements and have a high variance in their movement. As
such, the authors use the feature to develop measurements
on movement repetitions from traces and logs. Then after
distinguishing a reasonable threshold on the measurements,
they can classify which trace or log belongs to a bot.

Mitterhoffer et al. describe two measurements, suffix ar-
ray with longest common prefix and average path segment,
for classifying bots in their algorithm [6]. We will review the
measurement of the average path segment approach. The
approach will attempt to create waypoints out of meaning-
ful clusters of coordinates. These clusters are locations that
are most traversed.

3.1 Algorithm
The algorithm takes a trace as the input and simply graphs

it in a N-Euclidean space, where N is the dimension of the
trace. Each coordinate of the trace can be treated like a
vertex. They will have connections, or edges, with the pre-
vious and next timestamped coordinate in the trace. For
example, coordinate x1 is connected to x2, and coordinate
x2 is connected to x1 and x3. The result after all the connec-
tions is a line segment from the first to the last timestamp
coordinates.

The line segment of the trace will have a lot of unnec-
essary coordinates that gives little information about rep-
etitious movement. These points may be when the player
is not moving, turning, or moves very slowly, and they are
commonly clustered together in the line segment at close
timestamps. The Ramer-Douglas-Peucker line simplification
algorithm (RPD) is used to reduce the unnecessary coordi-
nates in the line segment [6]. The RDP algorithm takes a
line segment and can produce a new line segment with con-
siderably less points [9]. The RPD algorithm removes some
coordinate points of the line segment but what is left are
the important coordinate points. The RPD simplifies the
line segment, but more importantly it removes the cluster of
points at close timestamps. The simplified line segment will
still consist of clusters, however these are cluster of points
at very different timestamps and are important for finding
repetition. Figure 1 shows an example of a simplified line
segment [6].

From the simplified line segment, the algorithm creates
waypoints from its clusters. Clusters are found by using a
custom clustering algorithm [6]. If clusters overlap, only the
bigger clusters are created into waypoints. A waypoint is
the diameter that encloses a cluster of points. Players and
bots will create waypoints while they explore the game. Bots
though, will stop exploring the game due to their repetitious
movement and come back to traverse old waypoints. This
means that bots will have a limited number of waypoints
while a player continues to create new waypoints.

A path segment is the path from one waypoint to another
waypoint, and the average path segment is the measurement
for classifying bots. The authors decided to measure the av-
erage path segment instead of average waypoints because it
was found to be more robust [6]. The average path segment
is calculated as the total path segments traversed divided by
the distinct number of path segments. After a certain time,
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Douglas-Peucker line simpli!cation algorithm.6 The 
algorithm’s output is a simpli!ed curve that resembles 
the original curve within certain tolerance levels but 
consists of fewer vertices. In this way, we eliminate 
dot clusters that occur when multiple packets arrive in 
quick succession at the same location—for example, to 
update the rotation when the mouse turns a charac-
ter. The simpli!cation helps the waypoint extraction 
algorithm concentrate on areas where the dots accu-
mulate because the character passed that point several 
times. The result is a route represented as an ordered 
sequence of dots, as displayed in Figure 1a. 

Extracting Waypoints 
When a bot takes the same path several times, dots 

of di"erent runs accumulate into clusters of high dot 
density. In our next step, we extract these clusters and 
create a waypoint around each one; this waypoint is an 
area of a !xed diameter centered on the cluster’s base. 
We choose the diameter to be as small as possible but 
large enough that, if a bot passes a waypoint location 
on a path multiple times, we count the waypoint’s area 
as passed in every run. 

To do this, we use a custom clustering algorithm 
based on the common k-means algorithm,7 in which 
cluster size is limited to waypoint size. As our proxim-
ity measure, we use the Euclidean distance because it’s 
the most accurate measure for this purpose. By con-
straining cluster growth to waypoint size, we make 
sure that a waypoint always contains all the dots of 

(a) (b) (c)

(d) (e) (f)

Figure 1. Movement data processing steps. (a) Route and dots, drawn after dot burst removal; (b) waypoints extracted from dot 
accumulations (the smaller purple rectangles mark the extracted clusters); (c) a simpli!ed path (created by connecting waypoints with 
straight lines); (d) original route removed; (e) simpli!ed path with waypoints removed; and (f) path segments showing the number of 
times they were traveled. 

Figure 1: A graph of a simplified line segment taken
from [6]. Clusters are found with a custom cluster-
ing algorithm. Each square represents a waypoint
and between each waypoint is a path segment.

bots will stop making new waypoints and they will traverse
the same path. This increase the total paths traversed while
distinct waypoints stay the same. This means the measure-
ment will increase for bots and stay low for players. They
then can then set a threshold on the measurement. The
threshold is set at a number that we know players will not
likely pass to but bots can easily.

3.2 Performance Evaluation
The performance was evaluated with the online game World

of Warcraft (WoW), a MMOG developed by Blizzard Enter-
tainment. A private WoW server was set up so traces could
be collected. Traces were collected from ten players and
two botting programs. A four hour trace was collected from
each player. The players consist of beginners who have never
play the game before to very experience players. They were
told to focus on battling and gathering resources so their
movements may resemble bots. The bots consist of the free
ZoloFighter Bot and the Glider Bot [6]. Two different traces
were collected from each of the bots, and each trace consisted
of a different movements provided by the bot program.

In total, fourteen traces were collected and used their al-
gorithm. Figure 2 shows the results of the average path
segments as time increases. The results showed that as time
passes, the average path segments of bots increased. All
four traces for the bots continued to increase. Players on
the other hand stayed below the average path segment mea-
surement of two. The threshold for measurement was set at
five, which detected all four of the traces within 12 to 60
minutes.

4. PARTY PLAY ANALYSIS
Party play is essentially when players party together in a

game to take on game content. Partying is often common
and it is an important part of RPGs. In RPGs, parts of
the game require partying tackle game content. Parties can
also ideally take on content that a single player can. Players



Securing Online Games

34 IEEE SECURITY & PRIVACY

and the free ZoloFighter bot (www.zolohouse.com/
wow/wowFighter), using the same template characters 
as the human players. We created two game traces per 
bot, using di!erent bot paths each time. Blizzard re-
cently sued the company that developed Glider, which 
clearly shows how seriously game providers are taking 
the botting threat (see http://forums.worldofwarcraft.
com/thread.html?topicId=14910002728&sid=1).

The WOWalyzer 
Next, we fed our traces into the WOWalyzer, a Java 
program we developed to visualize and analyze game 
traces based on the methods described earlier. As ex-
pected, the human movements looked random, with 
very few waypoints or path segments passed more than 
once; the bots, however, quickly showed repeating 
movement patterns. Depending on the length of the 
bot path and the number of enemies along the way, 
it took between 10 and 45 minutes until the beaten 
track was clearly visible from the movement graph. 

Detection based on average path segment  passes. 
Looking at the number of average path segment 
passes, the bot samples exhibited steadily increasing 
numbers, as Figure 2 shows, with the slope depend-
ing on the bot path’s length. The noticeable dip of the 
ZoloFighter sample around time 1,800 owes its shape 
to the fact that a human player took over at roughly 
packet 1,200. The goal was to purposely disrupt the 
bot path and evaluate the in"uence on our detection 
mechanism. Later, at packet 1,800, we taught the bot 
a new path, which let the number of average line seg-
ment passes rise again. In sharp contrast, the human 
samples show steadily low numbers, settling down 
below two. 

Detection based on repetitions in the waypoint 
 sequence. To measure repeated subsequences in the 
waypoint sequences, we calculated the average LCP of 
the su#x array created from the waypoint sequence. 
As Figure 3 illustrates, the bot samples show signi$-
cantly higher values than the human samples because 
they contain a lot more as well as longer repeated sub-
sequences. According to the graph, the human players 
didn’t move in repeated patterns, which kept the aver-
age LCP on a stable low level below two, sometimes 
even below one. 

Our Approach’s Accuracy 
The test results show that our technique can reliably 
distinguish between bots and humans. In general, we 
see that after a short time, the numbers for bots and 
humans start to diverge, as the bots begin repeating 
their movement pattern on their second run. The de-
tection metrics trigger a bot alert whenever the num-
ber of average path segment passes or the average LCP 
reaches a certain threshold. In our implementation, we 
set the threshold for both metrics to $ve which detects 
all bots within 12 to 60 minutes while ensuring that no 
humans are falsely classi$ed as bots. Once these values 
are reached, the trend continues, and the values never 
go back to normal as long as a bot is in control. 

Our testing shows that it takes WOWalyzer less 
than two seconds to process four hours of gaming 
time on a single-core, 1.6-GHz Pentium-M. How-
ever, we propose using a sliding window of two hours 
to make the approach scale well; the time consump-
tion of some processing steps rises at a quadratic rate. 
A shorter observation window also improves the ap-
proach’s results for scenarios in which a human player 
plays for a while before switching over to a bot in 
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Figure 2. Average path segment passes. As bots only move on a precon!gured path over and over again, they keep passing the same 
segments, so this number rises. Humans rarely manage to move multiple times in the same pattern.

Figure 2: The average path segments for their performance evaluation. As assumed, the average way points
of bots continue to increase as time increases. Zolo Fighter Bot B had a sharp drop at 1200 time packets
because a player took over until at 1700 time packets. [6].

usually party to social, to have fun, and to compete in hard
content for high rewards. Bot programs take partying as
an advantage and use it to gain benefits. Developed by
Ah Reum Kang et al. this section reviews a party play
analysis approach that attempts to distinguish bots from
players through parties [4].

This approach considers the feature that bots will always
attempt to gain benefits, and they will use partying to their
advantage. In comparison to players, bots compose parties
for an entirely different goal. They will always party to-
gether to reap benefits. The benefit that bots are interested
in would be assets as described in Section 1. The major
assets are items, gold, and experience points. A RPG’s re-
sources can be gathered all around the game’s maps. The
majority of resources are guarded by monsters that must be
defeated before they can be gathered. When a monster is
slain and a resource is gathered by a player, they will receive
experience points, gold, item, and the resource. If this event
is taken in a form of a party, all the assets will have to be
divided between the party. As such, it is better for a sin-
gle player to obtain assets by themselves. For bots though,
the majority of them will be programmed to do only a spe-
cific sequence of tasks; either to kill monsters or to gather
resources. Being programmed to do multiple tasks may be
too hard or inefficient for bots. Hence it is easier for bots
with different tasks to party up and gain assets together.

The algorithm of this approach will focus on the actions
taken in parties. Using logs provided by the game, it at-
tempts to create rules to classify bots. The algorithm will
go as follow:

1. Distinguish outlier parties from the party log and use
the outlier parties to find potential bots from them

2. Find the significant actions from rankings of players
and rankings of potential bots

3. Create rules to classify bots base on the significantly
actions

4.1 Algorithm
Knowing some difference between bot and player parties,

the authors assume the following:

1. The duration of bot parties is larger than normal par-
ties.

2. Bots will most likely be in a party of two; one that
gathers and the other kills monsters.

These assumptions will be used to denote parties, whom are
outlier parties, as potential bot parties [4]. To start, the
algorithm will find outlier parties from party logs acquired
from the game. Party logs should have duration of parties
and party actions recorded. Party actions are actions taken
while partying. Finding the outlier parties is an easy task,
since they figure that players have short term goals, they will
disband their parties when their goals are met. Bots though
will party for a large time doing repetitive tasks. The al-
gorithm simply graphs the cumulative distribution function
(CDF) of party duration, and find a reasonable point in time
where player parties will likely disband. Figure 3 gives an
example of a CDF. From the figure it shows that most par-
ties do not last longer than four to five hours, which can be
the cut off for separating outlier parties from regular parties.

After distinguishing outlier parties, they want to find out
which outlier party is more likely to be bot parties. Using as-
sumption two from above, they figure that having more than
two bots in a party is inefficient and having a bot party of
one is unnecessary [4]. Figure 4 shows two pie graphs of the
numbers in parties at different time. This figure shows that
long duration parties consist of two and it follows with their
assumption. The players within these parties are denoted as
potential bots.

To obtain rules to classify bots, the algorithm will attempt
to find significant actions in both the actions from the po-
tential bots and the regular players. A significant action is
an action that changes as time increases. A ranking for their
actions is created for each group. The ranking is a list that
defines which actions occurs more. The algorithm will look
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Fig. 1. Bot detection based on user behavior analysis.

Fig. 2. The cumulative distribution function of party duration.

4. Results

NCsoft, Inc., maintains forty-three servers dedicated to AION, and is capable of hosting nearly 240,000 concurrent users.
About 12,000 players log into a server, and about 74,000,000 logs are recorded per day. AION’s in-game log contains
information on the party, legion (guild), hunt, trade, harvest, and chat activities of users [23]. We found 63,092 parties
in a seven days’ worth of logs.

The cumulative distribution of party duration (shown in Fig. 2) shows that 0.3% of all parties last longer than 12 h, which
we judged to be bot parties. 22% of the parties lasted fewer than ten minutes, and these were excluded from analysis (their
extremely short durations were probably due to system errors).

To be able to discriminate bot parties from the others, we examined the party members according to party duration.
Fig. 3 presents the relative proportions of parties of a certain size for a given party duration. First, chart (a) shows the
average proportion of party sizes for all parties. Charts (b) to (f) show the proportions for given durations: for instance,
chart (b) shows parties whose durations are between ten minutes and three hours. As we illustrate, using the pie charts,
normal (human) parties show similar sizes. Outliers, however, showmarkedly a differentmakeup: the fraction of 2-member
parties is much higher in chart (f) and somewhat higher in chart (e) than for the other charts. This is highly consistent with
our hypothesis that bots form parties in groups of two so that one can protect the other while it is harvesting or hunting for
items.

This is further corroborated by our analysis of the purposes for the actions of the parties. Fig. 4 illustrates the proportion
of main action logs embedding the purposes of the party according to the party duration, showing that normal parties have
a similar makeup in the purposes of party play.

The ratio of ‘Getting Race Point’ (race points can be earned when defeating another player in the combat) log in normal
parties is over 5%. The ratio of ‘Harvesting Item’ log in normal parties is below 2%, whereas it is around 3% for the outlier
parties. Also, the ratio of ‘Quest Completion’ log in outlier parties is much lower than that of normal parties. This strongly
supports that the completion of difficult quests is characteristic of human parties, not bot parties. Even ‘Instance Dungeon

Figure 3: A CDF graph from their performance
evaluation [4].

for the most difference in terms of rank change as time in-
creases for regular actions and for potential bot actions [4].
An example is if questing was on the top ten actions taken
by regular players at three hours while it is above the fifty
rank at 12 hours, it would be considered as a significant
action.

The algorithm takes the top significant actions and sets a
threshold for each of them to create a rule base. Thresholds
are set depending on how important the action is to the
game, and how it appears on the ranking. Actions may vary
for each game so a reasonable threshold should be set for
each action. Using this rule base, party logs can be taken
from the game and run all the players through it to classify
bots.

4.2 Performance Evaluation
A.R. Kang et al. / Computers and Mathematics with Applications 65 (2013) 1384–1395 1389

Fig. 3. The average number of party members.

Fig. 4. The main purpose action logs.

Entrance’ log (recorded when a player goes to a special place to complete difficult quests) and ‘PvP’ logs (recorded when
a player attacks other players) are not found. It shows that game bots rarely if ever interact with other player groups, and
practically are interested only in harvesting items and trading them. By contrast, the purposes of normal parties are diverse:
getting race points, quest completion and instance dungeon entrance are all commonly found. The purposes of outliers are
limited to hunting, harvesting, gathering materials and crafting. Our analysis thus strongly suggests that the purposes of
normal parties and outliers are indeed different. We also cross-checked against the ‘Bot Detection’ log recorded internally
at NCsoft. As shown in Fig. 4, the agreement is high: parties lasting over 12 h, designated as bots by our method, are highly
likely to have been determined to be bots by the company as well. Next, we studied distinctive features in themain purpose
action logs of normal parties and outliers, and discovered the main purpose of bot parties.

To compare the diversity of actions of bot parties and normal parties, we investigated the top seven action logs according
to party duration and derived the entropy index that expresses the diversity of action logs. Fig. 5 shows the top seven
behavior logs of each group according to party duration as pie charts. As shown in the charts, there is no significant difference
between chart (a) and the other charts, except for charts (e) and (f) in the ratio of the top seven logs. We observed that the
distribution of action logs is biased to the top 2 logs of ‘Getting Experience’ log and ‘Getting Item’ log in the outlier parties.
While the sum of the percentages of the ‘Getting Experience’ log and ‘Getting Item’ log in the normal parties are up to 26%,
they are 51% and 49% in charts (e) and (f), respectively.

Figure 4: Pie graphs at three hours and twenty-four
hours. At twenty-four hours two player parties were
the majority [4].
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Fig. 8. The most frequent logs by normal user.

Fig. 9. The distinguishable logs at outlier user.

Table 6

Bot detection rule.
Rule-base

Getting experience log >= 34% and getting race point
log <= 1.69% and sitting log <= top 10 and using item
log <= 1.19% and quest completion log <= 0.16%
and start volplane log >= top 34 and party member = 2 and party duration >= 600 s

volplane technique, normal characters want to move faster from a high altitude zone to a low altitude zone, whereas game
bots hunt in flat places, so they use the running technique instead of the volplane technique.

The ranking of ‘Harvesting Item’ log is 10th in outliers that aim to sell materials gained from harvesting and 20th in
normal parties. The rankings of ‘Sitting & Standing’ log certainly reflect the features of game bots. Game bots use the rest
function of sitting and standing frequently to recover physical health and mental health. Game bots use the rest function
periodically even in unnecessary situations. On the other hand, normal users also take a rest when the player’s power is low
or there is no monster to hunt.

Through multi-step analysis on party-action logs, we identified significant classifiers that distinguish online game bots
from normal users. We also built the rule-base by setting the threshold value of each significant classifier. The rule is shown
in Table 6. We can detect hunting bots using the detection rule.

To evaluate the proposed framework, we compared the bot detection results from our rule basewith internal monitoring
rules and the banned account lists provided by the game company. As listed in Table 7, we identified 49 bots by applying
our classifying rules among 52,377 party-play users. The first column indicates the number of users detected as bots from
our rule base. The second column indicates the number of users who have detection code among our detected users. The
third column indicates the number of users who are banned from the company among our detected users. The detection
log is recorded by internal monitoring rules when users perform abnormal actions. Even though the internal rules leave the
detection log on every single abnormal action, they fail in detecting game bots detected by our rule base. The accuracy rate
of bot detection by the proposed framework is 95.92% (47/49).

In Fig. 10, the comparison results are displayed using a Venn diagram. The users detected by our rule base do not overlap
completely with the ones detected by internal monitoring rules. Especially, the red area of the diagram represents the
number of the bots that are not detected by the internal monitoring rules but detected by our rule-base and finally are

Figure 5: The rank representation of the top signif-
icant actions from potential bots. It is unsure what
the bot detection action is from the authors [4].

The performance for this approach was tested in the MMOG
game Aion [4].The game developer, NCsoft, Inc. permitted
the use of their logs for this performance evaluation, with
the addition of also verifying the accuracy of their approach.
Seven days worth of party logs were obtained, and 63,092
parties were extracted from them. As seen in Figure 4, these
are the graphical representation of the party logs [4]. As as-
sumed, when party duration increases, party of two is shown
to be the majority. The significant actions for regular players
and for potential bots are shown in Figure 5 and Figure 6.
The ranking of each shows the top significantly actions ob-
tained from each of the group. From these data, classifiers
were created as seen in Table 1. Classifiers were set at rea-
sonable thresholds depending on an action’s rank and the
importance of it to the game. The rule base shows that bots
took advantage of sitting still to regenerate health points
before going back to battle. The quest completion became a
classifier because bots have no need to participate in quests
from the game. Taking these classifiers and applying them
to 52,377 players they were able to classify 49 bots.

To evaluate their accuracy, NCsoft, Inc. compared the
classified bots to their internal detection tool’s data, and
also attempt to confirm the authors’ findings [4]. Details of
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Fig. 6. Entropy according to party duration.

Fig. 7. The most frequent logs by normal user.

overall. These logs are recorded when gamers are hunting, which is the basic action in MMORPGs. In contrast, the rankings
of ‘Getting Race Point’ log and ‘Using Item’ log are reduced in outliers. This implies that the outliers composed of game bots
do not act to gain race points; since users can buy rare items and upgrade their positions with race points, it is natural that
game bots, who do not find them useful, rarely work to earn them. In addition, ‘Creating Item’ and ‘Combining Item’ logs
have different rankings in charts (e) and (f). This means that outlier groups are categorized into two groups based on their
jobs.When users create items through harvesting or extracting, ‘Creating Item’ log is recorded.When users directly combine
various materials to produce items, ‘Combining Item’ log is recorded. Game bots can use diverse methods such as hunting,
harvesting, gathering materials, and crafting. The cheater who uses a game bot program can choose the job that determines
the main action for achieving game money or items in the bot program. Although they have various options in selecting
their jobs, for reasons of efficiency they commonly assign a particular job to the game bots. This results in some outliers
harvesting, thus showing a high frequency of ‘Creating Item’ log, and others combining items, showing a high frequency of
‘Combining Item’ log. Fig. 8 illustrates the proportion of the most frequent logs by normal users according to party duration.
The ratio of ‘Getting Experience’ log increases from 15% in normal parties to 35% in outlier parties. The ratio of ‘Getting Item’
log increases from 10% in normal parties up to 15% in outlier parties. This implies that game bots focus on getting game
money and items while human players do not.

For the analysis of details of action logs, we included 6 action logs, namely discriminant classifiers. These are not major
action logs, but are important in distinguishing between bots and normal parties because their rankings or ratios change
drastically in outliers. We check the rankings of the other action logs that are discriminant classifiers according to party
duration, as shown in Fig. 9.

The ranking of ‘Quest Update’ log drops from 10th in normal parties to below 40th. This means that completing quests
is not performed frequently in outliers. Through completion of difficult quests or missions, normal parties upgrade their
level and are qualified to install stigma, which can add special skills. We recognized that the ranking of ‘Start Volplane’ log
in outliers falls below 30th. On the other hand, the ranking of ‘Start Volplane’ log in normal parties remains around 10th.
When characters glide in a high altitude zone by using acceleration, the ‘Start Volplane’ log is recorded. While using the

Figure 6: The rank representation of the top signif-
icant actions from players. [4].



Rules
Getting experience log >= 34%

Getting race point log <= 1.69%
Standing and sitting log <= top 10 rank

Using item log <= 1.19%
Quest completion log <= 0.16%

Start volplane log >= top 34 rank
Party member = 2 and party duration >= 600

Table 1: Bot rule base for classifying [4]. Volplane
is a flying ability unique to the game Aion.

how their internal detection tool is unknown because NCsoft,
Inc. did not permit it. Out of the 49 bots detected, 26 were
detected by the internal tool. From the 23 bots undetected,
NCsoft were able to verify that 21 were bots and 2 were false
positives. In all, the algorithm had a 95.92% accuracy for
detecting bots. More importantly, this algorithm was able
to detect bots that the internal tool did not. This shows that
this approach is a potential tool to help increase detection
of bots.

5. CONCLUSION
Bot detection is important part of online gaming and is a

potential tool for preserving fairness in a game. An online
game’s main purpose is to introduces fun and competitive
contents for players. Without a defense technique to protect
the fairness of a game though, bots can literally alter the
economy of a game or take away the fun and competitive-
ness for players. Games would lose their purpose causing
legitimate players to leave the game. This is an issue for
game developers whose revenue comes from their players.
This paper focused on the fundamentals of botting and bot
detection in online gaming. We reviewed two different types
of server-side detection approaches. Server-side bot detec-
tions were the main focus in this paper because they can be
implemented with the least cost.

Server-side detection are starting to become more imple-
mented by game developers. This type of detection is im-
portant because developers do not include anything on the
client side thus players problems do not occur. Additionally,
server-side approaches aims at finding features that distin-
guishes bots from players. The server-side approaches re-
viewed in this paper were a movement analysis approach
and a party-play analysis approach. We showed that bots
can be efficiently detected by these approach and that they
have the potential to help bot detection in online games.
There are more interesting approaches that has also been
developed that we did not review but are worth mentioning.
Mishima et al. introduces an approach focusing on specific
battling actions [5]. Chow et al. introduces an approach
that integrates CAPTCHAs into minigames to remove im-
mersion [1].

As of now, the most common type of bot defenses are im-
plemented as client-side types. For game developers, client-
side defensive approaches essentially take the least effort to
implement. Common approaches usually revolve around the
game’s detection or prevention method that is required to
be started when the client runs. These detection methods
either make sure bot programs are not being run or they
are interactive detections within the game. Examples of bot
defenses that detect bot programs is WoW’s Warden [2]. An

example of interactive detection is the use of CAPTCHAs to
check if a client is botting [3]. These detection approaches
run on the player’s hardware and cost relatively low in com-
putational power for developers. However, the problems
that arise from these type of detections decreased their ef-
ficiency. For defense approaches like the Warden, there are
always incompatibility issues with programs that are not
bot programs. For interactive detections like CAPTCHAs,
they interrupt players in the game too much to be worth
implementing. These problems drive up the cost for game
developers in terms of customer support and troubleshoot-
ing.
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