
Zero Knowledge Compilers

John T. McCall
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

mcca0798@morris.umn.edu

ABSTRACT
Zero knowledge protocols have useful applications in cryp-
tography. They are usually designed by hand. They can be
difficult to design correctly, as zero knowledge protocols are
complex structures. Even if they are designed perfectly, a
programmer implementing them could find themselves hav-
ing trouble with the task, especially if they lack a thorough
cryptographic background. The goal behind zero knowledge
compilers is to help alleviate these concerns. Using a zero
knowledge compiler, one can simply input a proof goal and
the compiler will output an implementation of that goal in
a high level language, such as Java or C++. The compiler
also guarantees correctness of the protocol, which eliminates
the risk of subtle mistakes in either the design or the imple-
mentation of the protocol.

Keywords
Zero Knowledge Protocols, Compilers, Zero Knowledge Com-
pilers, ZKPDL, ZKCrypt

1. INTRODUCTION
Zero knowledge protocols provide a way of proving that

a statement is true without revealing anything other than
the correctness of the claim. Zero knowledge protocols have
practical applications in cryptography and are used in many
applications. While some applications only exist on a spec-
ification level, a direction of research has produced real-
world applications. One such example is Direct Anonymous
Attestation (DAA), a privacy-enhancing mechanism for re-
mote authentication of computing platforms, which has been
adopted by the Trusted Computing Group (TCG).

Traditionally, the design of practical zero knowledge pro-
tocols is done by hand. Designers use standard arguments
and tricks which can be combined and repeated in various
combinations to provide the desired, secure, protocol. There
are a few problems with this type of method. The imple-
mentations tend to be time-consuming and error-prone. Mi-
nor changes in the protocol specification often lead to major

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2013 Morris, MN.

changes in the implementation. The protocols are usually
designed by cryptographers and implemented by software
engineers. The cryptographers are not typically skilled in
implementation matters and the software engineers usually
have a hard time understanding the complexities of the zero
knowledge protocols [3].

Zero knowledge compilers help to alleviate these issues
by providing a way to automatically generate zero knowl-
edge protocols for a large class of proof-goals. They allow
developers to implement these protocols without having an
in depth knowledge of cryptography and without having to
worry about introducing security flaws in their implementa-
tions.

In sections 2 and 3, we provide background on zero knowl-
edge protocols and compilers, respectively. In section 4, we
discuss three different implementations of a zero knowledge
compiler.

2. ZERO KNOWLEDGE PROTOCOLS
Zero knowledge protocols, also referred to as zero knowl-

edge proofs, are a type of protocol in which one party, called
the prover, tries to convince the other party, called the veri-
fier, that a given statement is true. Sometimes the statement
is that the prover possesses a particular piece of information.
This is a special case of zero knowledge protocol called a zero
knowledge proof of knowledge [9]. Formally, a zero knowl-
edge proof is a type of interactive proof.

An interactive proof system is an interaction between a
verifier and a prover satisfying the following properties:

• Completeness: If the statement being proven is true,
an honest verifier, a verifier correctly following the pro-
tocol, will be convinced after interacting with an hon-
est prover.

• Soundness: If the statement is false, no prover, either
honest or dishonest, will be able to convince an honest
verifier, except with some small probability.

For an interactive proof to be a zero knowledge proof it
must also satisfy the condition of zero knowledge. A proof
is zero knowledge if any knowledge known by the prover or
the verifier before performing the proof is the same as the
knowledge known by either party after performing the proof.
In other words, no additional knowledge is gained by either
party because of the proof. Another way of thinking about
this is that the proof reveals zero knowledge [6].



2.1 Examples
Below are two examples of zero knowledge protocols. The

first is a simple example which highlights how a zero knowl-
edge protocol functions. The second is a more practical ex-
ample, proving knowledge of a Hamiltonian cycle in a graph.

2.1.1 The Magic Cave
The classic example for zero knowledge protocols is the

cave example. First presented in [7] and then restated in [6],
the cave example is the go-to example for learning zero
knowledge protocols.

Peggy has stumbled across a magical cave. Upon entering
the cave there are two paths, one leading to the right and
one leading to the left. Both paths eventually lead to a dead
end. However Peggy has discovered a secret word that opens
up a hidden door in the dead end, connecting both paths.

Victor hears about this, and offers to buy the secret from
Peggy. Before giving Peggy the money Victor wants to be
certain that Peggy actually knows this secret word. How
can Peggy (the prover) convince Victor (the verifier) that
she knows the word, without revealing what it is?

The two of them come up with the following plan. First,
Victor will wait outside the cave while Peggy goes in. She
will randomly pick either the right or the left path and go
down it. Since Victor was outside he should have no knowl-
edge of which path Peggy took. Then Victor will enter the
cave. He will wait by the fork and shout to Peggy which
path to return from.

Assuming that Peggy knows the word, she should be able
to return down the correct path, regardless of which one
she started on. If Victor says to return down the path she
started on, she simply walks back. If Victor says to return
down the other path, she whispers the magic word, goes
through the door, and returns down the other path.

If Peggy does not know the word, there is a 50% chance
that Victor will choose the path she did not start down.
If this happens there is no way that she can return down
the correct path. The experiment should be repeated until
Victor either discovers Peggy is a liar because she returned
down the wrong path, or until he is sufficiently satisfied that
she does indeed know the word.

This is a zero knowledge protocol because it satisfies each
of the three requirements. It satisfies completeness because
if Peggy knows the word she will be able to convince Vic-
tor. It is sound because if Peggy does not know the word,
she will not be able to convince Victor unless she was very
lucky. Finally it is zero knowledge because if Victor follows
the protocol he will not be able to learn anything besides
whether or not Peggy knows the word.

2.1.2 Hamiltonian Cycles
A more practical example is proving that one knows a

Hamiltonian cycle for a graph, without revealing what the
cycle is. Before going into the example we first need some
graph theory background. A cycle is a sequence of vertices,
two consecutive vertices in the sequence are adjacent (con-
nected) to each other in the graph, which starts and ends
at the same vertex. A Hamiltonian path, is a sequence of
vertices in which each vertex in the graph is listed exactly
once and includes all vertices of the graph. Finally, a Hamil-
tonian cycle is a Hamiltonian path which is also a cycle. In
other words it is a sequence of vertices which begins and
ends with the same vertex, and each vertex in the graph is

Figure 1: An example of a Hamiltonian cycle. The
solid line marks the path. Taken from [8].

listed exactly once (aside from the first/last vertex) [8].
For a large enough graph, finding a Hamiltonian cycle

is computationally infeasible. In fact this problem, is NP-
complete. NP-complete problems have the property that any
known solution can be efficiently verified, however there is no
known efficient way to find said solution. The time required
to solve an NP-complete problem, using currently known
methods, increases exponentially as the size of the problem
grows. Using current computing power, even moderately
sized problems can take hundreds of years to solve.

Another important definition is that of graph isomorphism.
An isomorphism, f : V (G)→ V (H), of graphs G and H is a
bijection between the vertex sets of G and H such that any
two vertices u and v of G are adjacent in G if and only if
f(u) and f(v) are adjacent in H.

Now that we have defined a Hamiltonian cycle, we can set
up the example. Here the prover, P , knows a Hamiltonian
Cycle for a graph, G. The verifier, V , has knowledge of G
but not the cycle. For P to show V that they know the cycle,
they must perform several rounds of the following protocol.

• At the beginning of each round, P constructs H, graph
which is isomorphic to G. It is simple to translate a
Hamiltonian cycle between two isomorphic graphs, so
since P knows a Hamiltonian cycle for G they must
know one for H as well.

• P commits to H, using a one-way function. The ben-
efit of using a one-way function is that when given an
input, the output is efficient to compute. The oppo-
site is not true. When given the output it should be
infeasible to compute the input. Finding two inputs
which result in the same output should also be a diffi-
cult task. A hash function is an example of a one-way
function. Since P used a one-way function, V will
have no knowledge of the input, but will still be able
to check if P changed it by comparing the outputs.



Doing this means that P cannot change H without V
finding out.

• V then randomly asks P to do one of two things. Ei-
ther show the isomorphism between H and G, or show
a Hamiltonian cycle in H.

• If P was asked to show that the two graphs are iso-
morphic, they start by revealing H to V . They also
provide the vertex translations which map G to H. V
can then verify that the two graphs are isomorphic.

• If P was asked to show a Hamiltonian cycle in H, they
first translate the cycle from G onto H. They then
reveal to V the edges of H which are a part of the
Hamiltonian cycle. This is enough for V to verify that
H contains a Hamiltonian cycle.

• In both cases V must also verify that H is the same
graph that P committed to by using the same one-way
function and comparing the outputs.

This protocol is complete because if P is an honest prover,
they can easily answer either question asked by V by either
providing the isomorphism which they have, or by applying
the isomorphism to the cycle in G to demonstrate a Hamil-
tonian cycle. This protocol is sound because if P does not
know the cycle, they can either generate a graph isomorphic
to G or a Hamiltonian cycle for another graph, but they can-
not do both since they does not know a Hamiltonian cycle
for G. With a reasonable number of rounds it is unrealis-
tic for P to fool V in this manner. This protocol is zero
knowledge because in each round V will only learn either
the isomorphism of H to G or a Hamiltonian cycle in H.
V would need both pieces of information in order to recon-
struct the Hamiltonian cycle in G. Therefore, as long as P
can generate a distinct H each round, V will never discover
the cycle in G.

3. COMPILERS
Fundamentally, what a compiler does is translate one lan-

guage into another. For example, a C++ compiler will take a
C++ program as input and will output machine code. There
are many different types of compilers: single-pass compil-
ers, multi-pass, load-and-go, debugging compilers, optimiz-
ing compilers, and many combinations of these [1].

The first compilers started to appear in the 1950s. Much
of the early work dealt with translating arithmetic formulas
into machine code. At the time compilers were notoriously
difficult to implement. For instance it took 18 staff-years
to implement the first Fortran compiler. Various languages,
programming environments, and tools have been developed
since then which make implementing a compiler consider-
ably easier.

There are two parts to compilation, analysis and synthesis.
Analysis breaks up the source into pieces and creates an
intermediate representation, usually a syntax tree, of the
program. Synthesis constructs the target program from the
representation.

It is difficult to implement a zero knowledge protocol due
to their subtleties. For this reason work has gone into devel-
oping zero knowledge compilers. A zero knowledge compiler
is a compiler which takes a proof-goal as its input language
and outputs an implementation of a zero knowledge proof.

The compilers discussed in this paper take, as input, an
abstract proof specification or proof-goal, written in lan-
guages designed specifically for this problem, and output
an implementation of the given specification in a high-level
language, usually C++ or Java.

4. ZERO KNOWLEDGE COMPILERS
Before discussing the three different zero knowledge com-

pilers we require the necessary background. First, I will go
over some mathematical concepts used in the proofs and
compilers. After that, I will talk about the common nota-
tion used to describe zero knowledge proofs. Once familiar
with that we can then begin discussing the three compilers.

4.1 Background and Notation
A group, in a mathematical sense, is a set, G paired with

an operation, �, which combines any two elements (of the
set) to form another element. A group is denoted by: (G,�).
In order for a set and operation to be a group it must meet
four requirements. The set must be closed under that op-
eration, in other words for all a, b in G, a � b must also be
in G. The operation must be associative, so for all a, b in
G, (a� b)� c = a� (b� c). There must be an identity ele-
ment, e in G, such that for every element a in G the equation
e� a = a� e = a is true. Finally, there must be an inverse
element, so for each a in G, there exists an element b in G
such that a � b = b � a = e. An example of a group is
the integers with addition, denoted (Z,+). This is a group
because addition is closed and associative in the integers, it
has an identity element (0), and each element of the integers
has an inverse (the negation of that element).

A preimage, or inverse image of a function, f : A → B,
is the set of all elements a in A such that f(a) is in B. For
example, if f(x) = x2 then the preimage of {4} would be
{−2, 2} because those are all the elements which equal 4
after the function is applied to them.

A mapping φ : G → H from an additive group (G,+)
into a multiplicative group (H, ·) is called a homomorphism
if and only if for all a, b in G the following equation holds:
φ(a+ b) = φ(a) · φ(b) [3].

We will use notation described in [3] to denote zero knowl-
edge proofs. An example of this notation is as follows:

ZKP[(ω1, ω2) : x1 = φ1(ω1) ∧ x2 = φ2(ω2) ∧ ω1 = aω2]

What this means is ”proof of knowledge of w1, w2 such that
x1 = φ1(ω1), x2 = φ2(ω2) and ω1 = aω2. The convention is
that knowledge of variables listed before the colon must be
proven, whereas knowledge of all other variables is assumed
to be known by both the prover and the verifier. Another
thing to note is that this is the notation for a proof-goal, not
a protocol. A proof-goal describes what has to be proven,
and there may be several different protocols for the same
proof-goal.

4.2 Sigma-Protocols
Bangerter et al. present in [3] a language and compiler

which generates sound and efficient zero knowledge proofs
of knowledge based on Σ-Protocols.

Σ-Protocols are the basis of essentially all efficient zero
knowledge proofs of knowledge used in practice today. Σ-
Protocols are a class of three-move protocols, meaning three
messages are exchanged between the prover and the verifier



each round. First the prover, P , sends a commitment t to
the verifier, V . V then responds with a random challenge c
from a predefined set of challenges C. P computes a response
s and sends it to V who then decides whether to accept or
reject the proof.

Bangerter et al’s compiler is used to generate implemen-
tations of proofs of knowledge of preimages under homo-
morphisms. An arbitrary number of these proofs can be
combined by using the boolean “AND” and “OR” operators.
The compiler can handle the class of proof-goals consisting
of all expressions of the forms:

ZKP[(ω1, ..., ωm) :
∨∧

yi = φi(ωi)]

or

ZKP[(ω1, ..., ωm) :
∧
yi = φi(ω1, ..., ωm)∧HLR(ω1, ..., ωm)]

The first equation can be expressed as an arbitrary mono-
tone boolean formula, in other words a boolean formula with
an arbitrarily number of ∧ and ∨ symbols and has predicates
of the form yj = φj(ωj). Also, in both of the above equations
linear relations can be proven implicitly : as an example, we
can see that ZKP[(ω1, ω2) : y = φ(ω1, ω2) ∧ ω1 = 2ω2] is
equivalent to ZKP[(ω) : y = φ(2ω, ω)] by setting ω := ω2.

The input language of this compiler requires declarations
of any algebraic objects involved (such as: groups, elements,
homomorphims, and constants), assignments from group el-
ements to the group they are a part of, and definitions of
homomorphims. Once all of these have been set up, the pro-
tocol to be generated is specified in the SpecifiyProtocol [...]
block.

The compiler outputs Java code for the Σ-Protocol, which
can then be used in other applications. Alternatively the
compiler can output LATEX documentation of the protocol if
told to do so.

4.3 ZKCrypt
Almeida et al. present, in [2], ZKCrypt, an optimiz-

ing cryptographic compiler. Similar to the above language,
ZKCrypt is also based on Σ-Protocols. Using recent de-
velopments, ZKCrypt can achieve “an unprecedented level
of confidence among cryptographic compilers” [2]. Specif-
ically these developments are: verified compilation, where
the correctness of a compiler is proved once-and-for-all, and
verifying compilation, where the correctness of a compiler is
checked on each run. ZKCrypt uses these techniques by im-
plementing two compilers, one of which is a verified compiler
and the other a verifying compiler, both of which are used
when implementing a zero knowledge protocol. The verified
compiler generates a reference implementation. The verify-
ing compiler outputs an optimized implementation which is
provably equivalent to the reference implementation.

ZKCrypt has four main parts to its compilation process.
They are: resolution, verified compilation, implementation,
and generation. The first phase, resolution, takes a descrip-
tion of a proof-goal, G, as input. This description is writ-
ten in the standard notation for zero knowledge proofs. G
is converted into a resolved goal Gres, in which high-level
range restrictions are converted into proofs of knowledge of
preimages under homomorphisms. The next phase, verified
compilation, takes Gres and outputs Iref, a reference imple-
mentation in the language of CertiCrypt, which is a toolset
used in the construction and verification of cryptographic

proofs. At this point a once-and-for-all proof of correctness
is done to guarantee that Iref satisfies the desired security
properties. The implementation phase also takes Gres as in-
put. However it outputs Iopt, an optimized implementation.
An equivalence checker is used to prove that Iref and Iopt
are semantically equivalent. In the final phase, generation,
the optimized implementation is converted into C and Java
implementations of the protocol.

An example of this process deals with an anonymous cre-
dential system. An anonymous credential system consists of
a collection of protocols to issue, revoke, and prove posses-
sion of credentials. IBM’s Idemix system is an anonymous
credential system which uses Camenisch-Lysyanskana (CL)
signatures. Such a signature on two messages m1,m2 con-
sists of integers e, v and A in Z∗

n, which means in the group
of integers 1 through n, satisfying Z = Rm1

1 Rm2
2 SvAe, where

R1, R2, S, and Z are quadratic residues mod n where n = pq
and p, q, (p− 1)/2, and (q − 1)/2 are all prime. Both p and
q are large numbers, at least 100 bits in length. This makes
n secure from brute force attacks. An integer is a quadratic
residue mod n if it is congruent to a perfect square mod n.
For example since R1 is a quadratic residue we know that
there exists some integer x such that x2 ≡ q mod n. Find-
ing a square root mod n is difficult to do without knowing
the values of p and q.

Suppose that a user has a signature on his name, m1, and
his birthday, m2. When authenticating to a server, the user
might be willing to reveal his name, but not his birthday.
However, the server might require him to show that he was
born after some date b. To satisfy both parties, the user
will reveal m1 and A, and then give a zero knowledge proof
of knowledge that he knows m2, e, v such that (e, v, A) is a
valid CL-signature on (m1,m2). This will be our proof-goal.
Stated in the standard notation for zero knowledge proofs,
it looks like this:

ZKP[(m2, v, e) :
Z

Rm1
1

= Rm2
2 SvAe ∧m2 ≥ b]

Below is the input of the ZKCrypt compiler for this proof-
goal. The code was taken from [2]. The first two blocks,
Declarations and Inputs, declare all the variables that will
be used in the protocol. The variables whose values need to
be proved are declared as private, all the other variables are
declared as public [2].

The final block is where the proof-goal is specified. It
will be proved using a ΣGSP-protocol, which is a type of
Σ-protocol used to prove knowledge of preimages under ar-
bitrary exponentiation homomorphisms. More about ΣGSP-
protocols can be found in [2]. The first thing defined in this
block is the homomorphism, φ, which takes three integers
as input and outputs an integer in Z∗

n. Next the maximum
challenge length is specified. This is the maximum challenge
length which can be used safely by the homomorphism. Fi-
nally, a relation is defined. The relation is what we are trying
to prove. Upon inspection of the relation given in the ex-
ample, we can see that it does indeed match the proof-goal
given above.

Declarations {

Int(2048) n;

Zmod*(n) z, R_1, R_2, A, S;

Int(1000) m_1, m_2, e, v, b;

}



Inputs {

Public := n, z, R_1, A, S, R_2, b;

ProverPrivate := e, m_2, v;

}

SigmaGSP P_0 {

Homomorphism(phi: Z^3 -> Zmod*(n):

(e,m_2,v) |-> (A^e*S^v*R_2^m_2));

ChallengeLength := 80;

Relation(

(z*R_1^(-m_1)) = phi(e,m_2,v) AND m_2 >= b);

}

ZKCrypt and the previous compiler are fairly similar. In
fact, they were implemented by a couple of the same re-
searchers. Both compilers make use of Σ-protocols, both
compilers utilize proofs of preimages under homomorphisms,
and both compilers allow an arbitrary number of these proofs
to be combined using boolean“AND”and“OR”. Despite the
similarities, ZKCrypt does many things that the previous
compiler does not. For instance, ZKCrypt can take a wider
variety of proof-goals, including ΣGSP-protocols, which are
not supported by the previous compiler. Also, ZKCrypt has
multiple stages of compilation and the correctness of the
process is verified after each stage. The compiler presented
in [3] has also been proven correct, but not as rigorously.

4.4 ZKPDL
Meiklejohn et al. provide a language called the Zero-

Knowledge Proof Description Language (ZKPDL) [5]. This
language makes it much easier for both programmers and
cryptographers to implement protocols. The authors aim
to enable secure, anonymous electronic cash (e-cash) in net-
work applications.

Similarly to the language above, ZKPDL makes use of
Σ-Protocols. However, ZKPDL does not implement them
directly. Instead, they make use of the Fiat-Shamir heuris-
tic [4], which transforms Σ-protocols into non-interactive
zero-knowledge proofs. This is done by hashing the prover’s
first message to select the verifier’s challenge.

The authors also provide an interpreter for ZKPDL, im-
plemented in C++, which preforms one of two actions de-
pending on the role of the user. On the prover side it outputs
a zero knowledge proof. On the verifier side it takes a proof
and verifies its correctness. Regardless of the role of the
user, the program given to the interpreter is the same. The
interpreter also performs a number of optimizations includ-
ing precomputations, caching, and translations to prevent
redundant proofs.

Two types of variables can be declared in this language:
group objects and numerical objects. Group generators can
also be declared but this is optional. Numerical objects can
either be declared in a list of variables or by having their type
specified by the user. Valid types are: element, exponent,
and integer.

A program written in this language is split into two blocks:
a computation block, and a proof block. Both blocks are
optional, if the user is only interested in the computation
they can just write that. Alternatively, if the user has all
the computations done they can just write the proof block.

The computation block can be further split into two blocks:
the given block and the compute block. In the given block
the parameters are specified as well as any values which
are necessary for the computation that the user has already

computed. The compute block carries out the given com-
putations. There are two types of computations: picking a
random value, and defining a value by setting it equal to the
right-hand side of an equation.

The proof block is made up of three blocks: the given
block, the prove knowledge of block, and the such that block.
In the given block the proof parameters are specified as well
as any inputs known publicly to both the prover and the
verifier. The inputs known privately to the prover are speci-
fied in the prove knowledge of block. In the such that block
the relations between all the values are specified. The zero-
knowledge proof will be a proof that all these relations are
satisfied. Below is an example program written in ZKPDL,
taken from [5].

computation: // compute values required for proof

given: // declarations

group: G = <g, h>

exponents in G: x[2:3]

compute: // declarations and assignments

random exponents in G: r[1:3]

x_1 := x_2 * x_3

for(i, 1:3, c_i := g^x_i * h^r_i)

proof:

given: // declarations of public values

group: G = <g, h>

elements in G: c[1:3]

for(i, 1:3, commitment to x_i:

c_i = g^x_i * h^r_i)

prove knowledge of:

exponents in G: x[1:3], r[1:3]

such that: // protocol specification

x_1 = x_2 * x_3

In this example, the authors are proving that the value x1
contained within the commitment c1 is the product of x2 and
x3 which are contained in c2 and c3 respectively. Because
both blocks are optional, they are considered independent
from each other, so a few lines are repeated between the two.

ZKPDL is significantly different from the previous two
compilers shown. The most notable difference being that it
is not directly based on Σ-protocols, but instead uses the
Fiat-Shamir heuristic. Also, ZKPDL was implemented for
the purpose of being used in electronic cash applications and
as such has a rich library of e-cash operations. However, due
to its specialization ZKPDL does not support as wide of a
variety of proof-goals as ZKCrypt.

5. CONCLUSION
Zero knowledge protocols are becoming more and more

important in today’s society. Because they can be highly
complex and take a while to implement, it is important that
there are efficient and secure ways of implementing them.
In this paper we discussed three zero knowledge compilers
and their associated input languages. Each of these com-
pilers hopes to aid in the implementation of zero knowledge
protocols by offering a way for developers to easily generate
an implementation of a given proof-goal.

5.1 Current State and Future Work
Currently, all three of the compilers presented in this pa-

per have been implemented in some form. The compiler



outlined in [3] has native support for two groups and al-
lows users to define their own groups. Future features of the
compiler includes supporting efficient proofs in other group
types, as well as the automatic transformation of the gener-
ated Σ-protocols into non-interactive zero knowledge proofs.

ZKCrypt has been implemented and applied to several
cryptographic problems, including electronic cash and deni-
able authentication. Future work for the ZKCrypt compiler
includes verifying the last stage of the compiler chain, code
generation. With this verified, the whole compilation pro-
cess will be verified correct.

ZKPDL has also been implemented and has been applied
to problems such as electronic cash and verifiable encryp-
tion. Future work being considered for ZKPDL includes
adding more cryptographic primitives, such as: encryption,
signatures, and hash functions. Another interesting possibil-
ity would be the analysis of ZKDPL programs by providing
automatic verification of protocols and the ability to identify
security errors. Work is also being done to increase perfor-
mance on multicore architectures by analyzing dependencies
among expressions evaluated by the interpreter.

5.2 Acknowledgments
I would like to thank Elena Machkasova for all of her hard

work helping me to write this paper. I would also like to
thank Brian Goslinga for proofreading this paper.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

principles, techniques, and tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[2] J. Bacelar Almeida, M. Barbosa, E. Bangerter,
G. Barthe, S. Krenn, and S. Zanella Béguelin. Full
proof cryptography: Verifiable compilation of efficient
zero-knowledge protocols. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 488–500, New York, NY, USA,
2012. ACM.

[3] E. Bangerter, T. Briner, W. Henecka, S. Krenn, A.-R.
Sadeghi, and T. Schneider. Automatic generation of
sigma-protocols. In Proceedings of the 6th European
Conference on Public Key Infrastructures, Services and
Applications, EuroPKI’09, pages 67–82, Berlin,
Heidelberg, 2010. Springer-Verlag.

[4] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London, UK,
UK, 1987. Springer-Verlag.

[5] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and
A. Lysyanskaya. Zkpdl: A language-based system for
efficient zero-knowledge proofs and electronic cash. In
Proceedings of the 19th USENIX Conference on
Security, USENIX Security’10, pages 13–13, Berkeley,
CA, USA, 2010. USENIX Association.

[6] A. Mohr. A survey of zero-knowledge proofs with
applications to cryptography.

[7] J.-J. Quisquater, L. Guillou, M. Annick, and T. Berson.
How to explain zero-knowledge protocols to your
children. In Proceedings on Advances in cryptology,
CRYPTO ’89, pages 628–631, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

[8] Wikipedia. Hamiltonian path — wikipedia, the free
encyclopedia, 2013. [Online; accessed
14-November-2013].

[9] Wikipedia. Zero-knowledge proof — wikipedia, the free
encyclopedia, 2013. [Online; accessed
1-November-2013].


