
An Overview of the Current State of the Test-First vs.
Test-Last Debate

Chris M. Thomas
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

thom3706@morris.umn.edu

ABSTRACT
When it comes to software development, perhaps one of the
most important and time consuming processes is that of
software testing. In fact, early studies on software testing
estimated that it could consume fifty percent or more of
development costs for a product. Because of this, the abil-
ity to optimize testing to reduce testing costs can be very
valuable. In this paper we compare two popular methods,
test-last testing, often used in waterfall software develop-
ment processes, and test-first testing, often used in Agile
test driven software development methods, by reviewing re-
cent studies on the subject. In this review we discuss the
possible benefits of test-first and test-last testing and pos-
sible problems with the current data comparing these two
testing methods. After that, we explore other methods in
test-first testing besides test driven development, such as
behavior driven development, in an attempt to find a better
test-first testing model. In the end we discuss our results
and potential future studies to help clarify current data.

Keywords
Test Driven Development, Behavior Driven Development,
Test-First, Test-Last, Agile, Waterfall, Testing, LATEX, text
tagging

1. INTRODUCTION
When it comes to software development, perhaps one of

the most important and time consuming processes is soft-
ware testing. In fact, some early studies on software testing
estimated that it could consume fifty percent or more of
the development costs for a product [2]. Because of this,
software developers have become increasingly interested in
attempting to optimize testing to reduce development costs.

Although there are many testing methods that exist, they
can be roughly classified into two categories: test-last testing
and test-first testing. Test-last testing, used mostly in pro-
cess oriented or waterfall development, is a testing method
where testing is done after software is written to ensure that

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2013 Morris, MN.

the software is working as intended. Test-first testing, used
mostly in interval or agile oriented development, is a testing
method where tests are written before the software being
tested is written to ensure that the code to be written meets
certain requirements.

Recently, there has been much debate in the testing com-
munity about whether or not test-first or test-last testing
is superior. The goal of this paper is to attempt to give
an overview of the current state of this debate by analyzing
current research data concerning the advantages and dis-
advantages of each testing method. Because research often
lags behind current implementations, and the field of test-
first testing is currently changing due to its relatively new
implementation, this paper will also explore new test-first
methods. This paper will discuss the advantages and dis-
advantages of test-first testing versus test-last testing and
explore new test-first methodologies in an attempt to deter-
mine the applicability of each methodology.

The paper is divided into four sections. In Section 2 we
discuss what software testing is and current software de-
velopment models with their supporting testing methods:
test-first and test-last testing. In Section 3 we will provide
an analysis of the data explaining the potential advantages
and disadvantages of test-first testing compared to test-last
testing. In Section 4 we discuss issues of using test driven
development to implement test-first testing and will go over
a new test-first methodology called behavior driven devel-
opment. In Section 5 we will provide conclusions and sug-
gestions for further research in the field.

2. BACKGROUND

2.1 Software Testing
Software testing, simply defined, is a branch of software

engineering that uses a series of practices meant to either
identify potential malfunctions or demonstrate functionality
in a software system [2]. Software testing can be as simple
as running a program to see if its results look correct or can
be as complex as writing code to simulate scenarios in the
real world.

When comparing different testing methods there is no one
standard quantitative measurement that determines which
method is superior. Because of this, many different types
of measurement are used to argue that one testing method
is better then another. In this paper we will focus on three
attributes that are commonly found throughout research:
code coverage, total development time, and code correct-
ness. These three attributes are popular because they can

be quantitatively measured and are considered important
within the testing community.

Code coverage refers to the percentage of lines of produc-
tion code that are executed when a set of tests are run. For
example, if one writes a set of tests that has 70% test cover-
age, it means that 70% of the lines of production code were
executed when the tests were run. Total development time
refers to how long it takes to finish a development project.
Code correctness refers to how many errors are found within
code after it is considered finished. This is often measured
by running a very large all encompassing test set against the
participants code in the attempt to find cases where their
code fails to produce the desired result.

2.2 Waterfall Development and Testing
A popular software development model that was devel-

oped in the 1970’s is the waterfall software development
model, where software is developed in a series of phases. The
waterfall development model is popular because it is simple
to implement correctly and is time efficient. The first phase
in the standard waterfall model is the requirements phase,
where requirements are set by the customer or design com-
pany. Next the design phase occurs in which the product is
designed. The product is then built in the implementation
phase. The final phase is the verification phase where testing
and debugging occur [13]. The phases were set up in this
manner to have previous phases make later phases simpler
to complete. Due to the fact that these processes often put
testing at the end of development, a certain type of testing
method, test-last testing, was the only testing method that
made sense to use.

Test-last testing is currently a popular testing method and
is usually the first testing method that people tend to im-
plement. Test-last testing is the practice of writing tests
after code has been written to check the functionality of the
written code. These tests are then used by the developer to
fix their code until no further errors are found by the tests.

2.3 Agile Development and Testing
In the late 1990s, a group of software developers started

to criticize the phase-oriented waterfall model, complaining
that it was too brittle and inflexible to meet the demands
of the most customers. In response to these critiques of
the waterfall model, a new model for developing software
emerged, the agile development model. This new develop-
ment model, based on the tenets of the agile manifesto [3],
promoted the idea that all actions of development should
not occur within an ordered sequence of phases, but instead
a series of time-boxed iterations where, in each iteration, de-
velopers set requirements, design, make , and test a subset
of the end product’s core functionality based on feedback
from the previous iteration. The goal of each iteration is
to produce a demonstrable sub-product to show a customer
and to receive feedback on that sub-product. This process
is complete when the sub-product meets all the demands of
the customer and becomes the end product. Some current
development practices that are considered agile are Extreme
Programming and Scrum.

Due to the changes in Agile programming, test-last test-
ing was pushed aside in favor of a different style known as
test-first testing. In 2001, with the release of the agile devel-
opment practice Extreme Programming, the idea of test-first
testing, implemented in test driven development, started to

become popular for the first time [5]. Test-first testing is
the practice of writing tests before code has been written
and then writing code to make the tests pass. It should be
noted that since tests are written before production code,
test-first testing tends to be heavily linked to development
methods and thus the most common test-first models also
include development elements as well.

The most well known and used test-first model is that of
test driven development, or TDD for short. In the original
TDD methodology, the developer uses a series of steps to
develop his code. The series begins once all current tests
pass, or a new project is started. When this occurs, the
programmer writes a new failing test that tests the simplest
functionality the programmer wishes to add to their code.
Once the test has been written and the test fails, the pro-
grammer then writes the minimal amount of code to make
the test pass. After this step the programmer streamlines
his solution and integrates it with other parts of his code.
This series of steps repeats until the code is complete [5]. In
its current use in the field, TDD no longer has the uniform
meaning that is described above. Instead it now refers to
a loose collection of practices that roughly follow some or
all of the guidelines given above. This means that although
there is a specific definition for TDD, we can not assume
that a study used the formal definition of TDD unless the
TDD process is outlined within the study.

3. RESEARCH DATA ON TEST-FIRST VS
TEST-LAST TESTING

In this section we will attempt to obtain useful compar-
isons between test-first and test-last testing by reviewing
current research articles. We will first review three main
studies. After that we will discuss the potential issues with
summarizing the data given in the research articles and then
draw potential useful comparisons from the data.

3.1 Data
This subsection contains summaries of important studies

that will be used later in the paper to draw out important
conclusions and comparisons between test-first and test-last
testing. During this section we will make multiple references
to test-last development methods which we will refer to as
TLD.

3.1.1 Review by Kollanus
First, is a 2010 review by Kollanus [9]. In this review, Kol-

lanus reviewed forty different experiments in scientific jour-
nals, magazines, and conference proceedings that provided
empirical evidence comparing TDD to TLD. Each study was
assigned to one of three categories: Controlled experiments,
case studies, and others. Controlled experiment articles were
articles that went over a conducted controlled experiment.
Case study articles were articles that summarized received
data from a group or situation over a period of time. Other
articles were any articles that did not fit into the above cat-
egories and were either non-controlled experiments or sur-
veys. Overall there were 14 controlled experiments, 14 case
studies, and 12 studies defined as other.

In this review, Kollanus focuses on three different code
quality measurements: external code quality, productivity,
and internal code quality. External code quality, as defined
by Kollanus, refers to how many errors are found in the re-
sulting code. This definition is the same as the definition for

code correctness. Because of this, we can use External code
quality as measurement of code correctness. Productivity, as
defined by Kollanus, measures multiple properties related to
how efficient the product code was to create. This includes
the measurement of total development time. Although pro-
ductivity is not strictly total development time, Kollanus
wrote her conclusions in productivity based mainly on devel-
opment time which suggests that the majority of productiv-
ity studies focused on total development time. This means
that the data given could be useful as a rough estimate of the
effectiveness of total development time. Internal code qual-
ity describes a wide set of measurements that measure code
quality from a testing and development standpoint. Code
coverage is one of these measurements but is only mentioned
briefly in a summary of one article. Because of this, we are
not able to assume that internal quality is a good estimate
for code coverage. Thus, we will be ignoring the overall re-
sults of internal code quality and focus on the summary of
the one study.

In the study, Kollanus concluded that there was weak sup-
port for improved external code quality in TDD methods
compared to TLD methods. This conclusion was based on
the fact that out of the 22 studies that focused on external
code quality, only 6 studies concluded that TDD did not
increase external code quality. However Kollanus is weary
about this conclusion because out of the 7 controlled exper-
iments that considered external code quality only 2 of them
report an increase in code quality. This was concerning to
Kollanus because the data from the controlled experiment
articles are generally more accurate than the other two types
of articles.

In terms of productivity, Kollanus suggests that TDD may
be less productive. This conclusion was drawn from 23 stud-
ies where 11 of the studies claimed that TDD decreases pro-
ductivity, 7 of the studies say that there was no difference
in productivity, and 5 studies that say there was an increase
of productivity. In this case the controlled experiment data
accurately reflects these numbers as out of the 10 controlled
experiments 2 of them claimed increased productivity, 4 of
them claim no difference, and 4 of them claim decreased pro-
ductivity. It is interesting to note that although decreased
productivity was the most common result in the review, the
majority of the studies in the review state that TDD does
not decrease productivity.

There was one study that Kollanus mentions that consid-
ered code coverage. This mention occurs in the internal code
quality section and noted that TDD improved test coverage.

3.1.2 Experiment by Lemos et al
In 2012, Lemos et. al [10] conducted a study on computer

science students to see if test-first testing would significantly
impact code coverage, code correctness, and/or total devel-
opment time in auxiliary functions (functions with 10-200
lines of code). This study used 39 third-year computer sci-
ence students knowledgeable in testing techniques. Each
student took part in two 100 minute test-first training mod-
ules and were then asked to complete coding challenges over
two sessions. In the first session, half the students used test-
first methods while the other half used test-last methods. In
the second session the students were asked to switch roles
and given a different coding challenge.

Code coverage and total development time were measured
as mentioned in Section 2. Code correctness was measured

Null Alternative
Name Hypothesis Hypothesis
O1 OpTF = OpTL OpTF > OpTL

O2 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

it was consistent within each experiment. For instance in
the CS1 and industry experiment, students were randomly
assigned to use a test-first or test-last approach, whereas in
the CS2 experiment students self-selected between the two
approaches. The early (CS1 and CS2) programmers used
the C++ programming language with simple assert state-
ments for automated unit tests, while all other programmers
used the Java programming language and JUnit. Course en-
rollments varied from over one hundred in CS1 to about 30
in CS2 and twelve to fifteen in each of the software engi-
neering and industry training courses.

3.1 Hypothesis

A formalization of the experiment hypotheses is presented
in Table 1. Hypothesis O1 examines whether all program-
mers, whether they have used the test-first approach or not,
perceive test-first as a better approach. Hypothesis O2 more
specifically examines whether programmers who have at-
tempted test-first prefer the test-first approach over a test-
last approach.

3.2 Programmer Opinion Results

Programmer opinions of the test-first and test-last ap-
proaches were measured in each of the experiments. All
programmers participating in the experiments were asked
to complete surveys at three points: prior to the experi-
ment (pre-experiment), shortly after the experiment (post-
experiment), and several months after the experiment (lon-
gitudinal). The results were analyzed statistically using the
two-sample t-test with significance at p < .05.

Figures 1 and 2 report programmer opinions of the test-
first and test-last approaches from the post-experiment sur-
veys. The results have been grouped by developer maturity.
CS1 and CS2 programmers are in the “Beginning” group,
and industry programmers and student programmers from
the software engineering courses are in the “Mature” group.
The corresponding questions ask programmers to choose:

1. which approach they would choose in the future
(Choice)

2. which approach was the best for the project(s) they
completed (BestApproach)

Beginning Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 1. Early Programmer Opinions

Mature Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 2. Mature Programmer Opinions

3. which approach would cause them to more thoroughly
test a program (ThoroughTesting)

4. which approach produces a correct solution in less
time (Correct)

5. which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

6. which approach produces code with fewer defects
(FewerDefects)

The charts illustrate that beginning programmers think
the test-last approach is better and are more likely to choose
it whereas more mature programmers think the test-first ap-
proach is better and are more likely to choose it. The lon-
gitudinal survey reported similar results with 86% of begin-
ning programmers choosing the test-last approach and 87%
of mature programmers choosing the test-first approach.

Interestingly, the percentage of programmers choosing
the test-first method is always slightly less than the pro-
grammer opinions on other desirable characteristics. In
other words, despite recognizing many valuable benefits of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Figure 1: Results for beginner programmers in
Janzen’s study

by running a set acceptance tests designed by the experi-
menter against a participant’s code. Each code entry was
then given a score based on how many acceptance tests
passed. The scores were either 0 (all test cases fail), 0.5
(some test cases fail) or 1 (all test cases pass). This style of
measuring code correctness has been used in previous stud-
ies and is called the Functional Test Set Success Level scale.

It was found that code coverage on average was 40% higher
when test-first testing was used. This percentage increase
was found to be statistically significant. Thus, it was con-
cluded that test-first methods produce higher test coverage
then test-last methods. On total development time, it was
found that test-first code took 12% longer to write then test-
last code. This result was found to be statistically signifi-
cant which lead to the conclusion that test-first methods
took longer to implement then test-last methods. In terms
of code correctness, the only difference found was that the
test-last code had one more correct implementation of code
then the test-first code. In the case of test last code correct-
ness, two submissions scored a 0, thirty-three submissions
scored a 0.5, and five submissions scored a 1. Test first
code correctness scored slightly worse with two submissions
that scored a 0, thirty-four submissions that scored a 0.5,
and four submissions that scored a 1. These results were
not found to be statistically significant and thus it was con-
cluded that test first testing had no impact on code quality
compared to test last testing.

3.1.3 Opinion Study by Janzen
In 2007 an opinion study was conducted by Janzen [7].

In this opinion study, Janzen polled participants from six
TDD experiments to determine whether they preferred test-
ing with test-first methods or test-last methods. Five of
these experiments were conducted on students at the Univer-
sity of Kansas while one of the experiments was conducted
on professional programmers from a Fortune 500 company.
Each participant was asked six questions where they had to
choose between test-first and test-last testing. The questions
were:

• which approach they would choose in the future (Choice)

• which approach was the best for the project(s) they
completed (BestApproach)

Null Alternative
Name Hypothesis Hypothesis
O1 OpTF = OpTL OpTF > OpTL

O2 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

it was consistent within each experiment. For instance in
the CS1 and industry experiment, students were randomly
assigned to use a test-first or test-last approach, whereas in
the CS2 experiment students self-selected between the two
approaches. The early (CS1 and CS2) programmers used
the C++ programming language with simple assert state-
ments for automated unit tests, while all other programmers
used the Java programming language and JUnit. Course en-
rollments varied from over one hundred in CS1 to about 30
in CS2 and twelve to fifteen in each of the software engi-
neering and industry training courses.

3.1 Hypothesis

A formalization of the experiment hypotheses is presented
in Table 1. Hypothesis O1 examines whether all program-
mers, whether they have used the test-first approach or not,
perceive test-first as a better approach. Hypothesis O2 more
specifically examines whether programmers who have at-
tempted test-first prefer the test-first approach over a test-
last approach.

3.2 Programmer Opinion Results

Programmer opinions of the test-first and test-last ap-
proaches were measured in each of the experiments. All
programmers participating in the experiments were asked
to complete surveys at three points: prior to the experi-
ment (pre-experiment), shortly after the experiment (post-
experiment), and several months after the experiment (lon-
gitudinal). The results were analyzed statistically using the
two-sample t-test with significance at p < .05.

Figures 1 and 2 report programmer opinions of the test-
first and test-last approaches from the post-experiment sur-
veys. The results have been grouped by developer maturity.
CS1 and CS2 programmers are in the “Beginning” group,
and industry programmers and student programmers from
the software engineering courses are in the “Mature” group.
The corresponding questions ask programmers to choose:

1. which approach they would choose in the future
(Choice)

2. which approach was the best for the project(s) they
completed (BestApproach)

Beginning Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 1. Early Programmer Opinions

Mature Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 2. Mature Programmer Opinions

3. which approach would cause them to more thoroughly
test a program (ThoroughTesting)

4. which approach produces a correct solution in less
time (Correct)

5. which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

6. which approach produces code with fewer defects
(FewerDefects)

The charts illustrate that beginning programmers think
the test-last approach is better and are more likely to choose
it whereas more mature programmers think the test-first ap-
proach is better and are more likely to choose it. The lon-
gitudinal survey reported similar results with 86% of begin-
ning programmers choosing the test-last approach and 87%
of mature programmers choosing the test-first approach.

Interestingly, the percentage of programmers choosing
the test-first method is always slightly less than the pro-
grammer opinions on other desirable characteristics. In
other words, despite recognizing many valuable benefits of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Figure 2: Results for Mature programmers in
Janzens study

• which approach would cause them to more thoroughly
test a program (ThoroughTesting)

• which approach produces a correct solution in less time
(Correctness)

• which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

• which approach produces code with fewer defects

(FewerDefects)

The results were divided between a beginner group (stu-
dents within their first few programming classes) and a ma-
ture group (students nearing undergraduate graduation and
professionals). The results for the beginner group can be
seen in Figure 1 and the results for the mature group can be
seen in Figure 2. Each graph shows the distribution of all
of the participants answers to the six questions where each
question is referenced by its bold keyword. With the data
given in the figures on the choice question, Janzen was able
to conclude that beginner programming students have a sta-
tistically significant preference toward using test-last testing
while more mature programming students and industry pro-
fessionals showed a preference toward using test-first testing
though preference was not found to be statistically signifi-
cant.

3.2 Understanding Contradictions
Many summaries of TDD research [5, 6, 8, 9] have noted

that studies that compare test-first to test-last testing tend
to contradict one another. Kollanus points out that arti-
cles in her review contradicted other articles which made
it hard to make sound conclusions from the research given,
especially on the subject of productivity. The amount of
contradictions concerned Kollanus enough that she noted
the amount of contradictions as a potential confounding fac-
tor for her results. Contradictions also existed between our
review by Kollanus and our experiment by Lemos et al. Al-
though both articles seem to agree that code coverage is
increased with test-first methods neither study seems to to-
tally agree on the attributes of code correctness or total
development time. Since contradictions occur often in the

results of our study we considered it to be important to ex-
plore some current theories on why these contradictions ex-
ist. In particular we will be exploring two potential causes:
method difficulty and improper study implementation/ doc-
umentation.

Method difficulty is considered a potential confounding
factor when comparing test-first and test-last testing [5,
8]. In particular, there is concern that test-first testing may
be more difficult for beginning coders than test-last testing.
This is a concern because most study data comes from two
sources with very different skill levels: industry profession-
als and college students. In the study by Janzen, figures
1 and 2 show very different results between beginning and
mature programmers. In particular, beginner programmers
did not report an overall beneficial experience with test-first
testing compared mature programmers. This suggests that
beginning coders may not be getting all the benefits from
test-first methods that the more mature coders received. If
this is the case, then any summary method with mixed re-
sults between beginning and advanced programmers has a
potential to have contradictory results.

The other problem that has plagued summary papers of
test-first testing is the lack documentation and conformance
of TDD methods in studies. Kollanus, in her review paper,
acknowledges a frustrating lack of information in many stud-
ies on how TDD was implemented. Most articles, claimed
Kollanus, had perhaps one or two lines describing their TDD
methodology or only claimed that they used TDD. Consid-
ering that TDD can be implemented in many ways, this lack
of documentation for TDD implementation creates a prob-
lem in accurately comparing two studies. This is an issue be-
cause multiple TDD methods may not preform equally, caus-
ing potentially contradicting results. This problem could be
avoided if studies documented their TDD process. Another
problem with TDD studies is that very few confirm their
participants correctly implemented TDD [5]. For example,
in the study by Lemos et. al, the researchers acknowledged
that one of their confounding factors was that they only
asked students to write tests before code, thus a variety
of different test-first methods might have been used within
the study making its data less conclusive. Overall the lack
of documentation of how researchers specifically planned to
implement TDD in their study and their lack of some sort
of monitoring of whether the implementation was actually
occurring greatly reduces the credibility of the experiment
being done and allows for contradictory results to occur.

3.3 Conclusion
Due to current issues in contradictory data it is hard to

make solid conclusions about the advantages and disadvan-
tages of using test-first testing instead of test-last testing.
That being said, current trends exist within the research
that allow us to guess some of the traits of test-first meth-
ods compared to test-last methods. One result which was
very clear in the research was that of code coverage. The
results from Lemos et al and Kollanus suggest that test-
first testing tends to produce more code coverage compared
to test-last testing. This seems to be a fairly uncontested
conclusion as [8, 5] reached the same conclusion and no con-
tradictions were found in other articles. Another convincing
trend that has occurred is that test-first testing seems to
be harder to implement than test-last testing. This trend
is apparent from the results in Janzen and also from stud-

ies [1, 4] which will be discussed in the next section. Al-
though these trends seem to be clear, the rest seem to be
more muddled. Code correctness, for example, seems to
have only a vague trend that agrees that test-first meth-
ods do not have worse code quality than test-last methods.
The debate about whether or not test-first testing produces
better code correctness though has yet to be resolved due
to conflicting data. Another muddled trend is that of total
development time. Currently, the only thing that can be
concluded on this topic is that test-first likely takes at least
as much time as test-last methods to implement though it
is unclear if test-first methods take significantly longer than
test-last ones.

4. DIFFICULTY AND TDD
Due to TDD’s popularity, almost all test first testing stud-

ies claim to have been done using TDD. Because of this,
the data for test-first testing has the potential to reflect an
attribute of TDD that is not an attribute of test-first test-
ing. Although all the results found in the previous section
have the potential to contain this issue, one particular re-
sult seems to suggest it may be a attribute of TDD and not
test-first testing. This attribute is the difficulty of test-first
testing.

4.1 Studies noting TDD difficulty
In 2012 Hammond et al did a summary paper on the cur-

rent state of TDD. In this paper Hammond et al states that
“TDD remains deceptively simple to describe but deeply
challenging to put into practice effectively” [5]. Hammond
et al defended their claim by summarizing several studies
briefly that showed the complexity of TDD. In this section
we will take a more in-depth look at some of the studies
Hammond et al used to draw their conclusion. We will then
discuss in the next section why these studies prove that the
complexity is caused by the design of TDD and not test-first
testing.

One of the studies that Hammond et al summarizes is
the opinion study by Janzen. In particular Hammond fo-
cuses on a quote from Janzens study: “They found that
while some programmers saw the benefits of the test-first
approach, several of the programmers had the perception
that it was too difficult or too different from what they
normally do”. This quote refers to an interesting relation
found between the choice and best approach category. It
was noted by Janzen that in every experiment, there were
more people who thought test-first was the best approach
than people who would choose to implement test-first test-
ing. When Janzen looked into why this phenomena had
occurred he found multiple statements in the comment sec-
tion that claimed the difficulties of implementing test-first
methods (which in this study was TDD).

Another study that Hammond summarizes is an exper-
iment survey by George and Williams [4]. In the study,
multiple programming professionals from John Deere, Role-
Model Software, and Ericsson participated in an experiment
comparing TDD to waterfall development. In this study a
9 question survey was given out asking programmers what
they thought about TDD and what was difficult with TDD.
In this survey 56% of the professionals noted that they had
difficulty adapting to the TDD mindset when participating
in the study. In addition 23% of the participants noted that
they felt that the lack of upfront design in TDD was more

of a hindrance than a help.
The last study Hammond summarizes in this portion of

the paper is an online survey done by Aniche and Gerosa [1].
In the survey, 218 TDD programmers of differing skill levels
were surveyed about their TDD practices and mistakes. In
the survey, it was found that TDD was not easy to follow
as about 25% of the programmers admitted to frequently or
always making mistakes in following the traditional steps of
TDD. Two examples of these mistakes include: forgetting
to clean up their code after a test passes and writing tests
that are too complex for effective TDD.

4.2 Discussion
The data above shows fairly strong evidence that TDD

is at least somewhat difficult to implement but none of the
data above shows that test-first testing is the problem. In
the first study, Janzen reveals that test-first methods, in the
form of TDD, were difficult for some people to implement.
In the second study, George and Williams reveal that 56% of
the participants found the TDD mindset hard to adapt while
only 23% of the participants found testing before designing
as a problem, suggesting that something other then test-first
testing caused difficulty for at least 33% of the participants.
The third study showed that programmers had trouble im-
plementing the steps of TDD, which has nothing to do with
testing before designing. With these studies in mind, diffi-
culty in using TDD does not seem to be directly linked with
test-first testing.

One potential issue with TDD that is brought up by many
developers is that it fails to explain how to write good test-
first tests. This is best represented in a quote from Dan
North’s article [11]: “While using and teaching agile prac-
tices like test-driven development (TDD) on projects in dif-
ferent environments, I kept coming across the same confu-
sions and misunderstandings. Programmers wanted to know
where to start, what to test and what not to test, how much
to test in one go, what to call their tests, and how to under-
stand why a test fails.” In this quote Dan North expresses
his and other coders frustration with TDD and its failure to
specify how and what tests should be written. This prob-
lem is also mentioned in articles [8, 12]. Currently there is
no empirical evidence that this could be the cause of the
TDD difficulty, but it is currently suspect by knowledgeable
experts in the field [12, 8, 11].

5. EVOLUTIONS OF TDD: BDD
New test-first methods are starting to appear in the agile

community that contain some of TDD’s main tenets but are
different enough from TDD that they are starting to receive
their own names and classifications. These new methods are
starting to appear because many developers are not satisfied
with the current implementation of TDD. In this subsection
we will discuss one of these popular TDD spin-offs, behav-
ior driven development, which was developed to combat the
problem noted in the previous paragraph.

Behavior Driven Development, or BDD for short, was cre-
ated by Dan North as a substitution for TDD that helps
the user determine what to test and how to test it. The
main difference between BDD and TDD is that TDD fo-
cuses on testing the code itself while BDD focuses more on
testing a code’s intended behavior. In order to do this, BDD
users start by considering their code’s intended functional-
ity. They then write sentences that use their native language

to define what they want their code to achieve. These sen-
tences are then converted from the programmers native lan-
guage to tests in a standard testing language using various
programming tools and methods that have been developed
specifically for BDD [12, 11, 5]. This differs from TDD be-
cause the focus is no longer on testing new features but on
defining what these new features should do. This shift in fo-
cus and use of native language to define problems, according
the Dan North, is what makes BDD simpler to implement
[11]. However, there have not been enough studies done to
check this hypothesis.

6. CONCLUSION

6.1 Summary
In this paper we talked about and compared two common

test methods: test-first testing and test-last testing. Within
this discussion we reviewed current research in the field in
an attempt to make conclusions about the advantages and
disadvantages of test-first and test-last methods. In this
part of the paper we were somewhat able to conclude that
test-first testing increases code coverage, is more difficult
to implement, has at least as much code correctness, and
takes at least as long to develop as test-last testing. These
conclusions must be considered weak though as we noted
that studies were very contradictory to one another due to
various factors including method difficulty and poor study
design/documentation. We also discussed how there seems
to be evidence that being harder to implement is not a prob-
lem with test-first testing but with TDD, the way test-first
testing is usually implemented. We concluded by exploring
a new test-first method, BDD, that had the potential to fix
this issue with TDD.

6.2 Suggested Further Research
For people who are looking to increase clarity in the de-

bate between test-first and test-last testing there are a few
studies that would be quite useful in its current state. One
helpful study that could be implemented is a summary study
of TDD and test-first testing articles which are divided up by
participant coding expertise to see if participants with dif-
ferent programing experience achieve differing results. An-
other useful study that could be implemented would be to
compare the new BDD method against TDD to see if par-
ticipants find BDD simpler to implement than TDD. Also
any new research on the debate that has a well documented
TDD method and has some way to confirm that participants
followed this method would increase the amount of credible
data on TDD.

7. REFERENCES
[1] M. F. Aniche and M. A. Gerosa. Most common

mistakes in test-driven development practice: Results
from an online survey with developers. In Proceedings
of the 2010 Third International Conference on
Software Testing, Verification, and Validation
Workshops, ICSTW ’10, pages 469–478, Washington,
DC, USA, 2010. IEEE Computer Society.

[2] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In 2007 Future of Software
Engineering, FOSE ’07, pages 85–103, Washington,
DC, USA, 2007. IEEE Computer Society.

[3] K. B. et al. Manifesto for agile software development,
2013. [http://agilemanifesto.org/ ; accessed
17-November-2013].

[4] B. George and L. Williams. An initial investigation of
test driven development in industry. In Proceedings of
the 2003 ACM symposium on Applied computing, SAC
’03, pages 1135–1139, New York, NY, USA, 2003.
ACM.

[5] S. Hammond and D. Umphress. Test driven
development: the state of the practice. In Proceedings
of the 50th Annual Southeast Regional Conference,
ACM-SE ’12, pages 158–163, New York, NY, USA,
2012. ACM.

[6] T. Hellmann, A. Sharma, J. Ferreira, and F. Maurer.
Agile testing: Past, present, and future – charting a
systematic map of testing in agile software
development. In Agile Conference 2012, AGILE 13,
pages 55 – 63, 2012.

[7] D. S. Janzen and H. Saiedian. A leveled examination
of test-driven development acceptance. In Proceedings
of the 29th international conference on Software
Engineering, ICSE ’07, pages 719–722, Washington,
DC, USA, 2007. IEEE Computer Society.

[8] V. Kettunen, J. Kasurinen, O. Taipale, and
K. Smolander. A study on agility and testing
processes in software organizations. In
PGood/Questionableroceedings of the 19th
international symposium on Software testing and
analysis, ISSTA ’10, pages 231–240, New York, NY,
USA, 2010. ACM.

[9] S. Kollanus. Test-driven development - still a
promising approach? In Proceedings of the 2010
Seventh International Conference on the Quality of
Information and Communications Technology,
QUATIC ’10, pages 403–408, Washington, DC, USA,
2010. IEEE Computer Society.

[10] O. A. L. Lemos, F. C. Ferrari, F. F. Silveira, and
A. Garcia. Development of auxiliary functions: should
you be agile? An empirical assessment of pair
programming and test-first programming. In
Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 529–539,
Piscataway, NJGood/Questionable, USA, 2012. IEEE
Press.

[11] D. North. Introducing BDD, 2006.
[http://dannorth.net/introducing-bdd/; accessed
25-November-2013].

[12] M. Soeken, R. Wille, and R. Drechsler. Assisted
behavior driven development using natural language
processing. In Proceedings of the 50th international
conference on Objects, Models, Components, Patterns,
TOOLS’12, pages 269–287, Berlin, Heidelberg, 2012.
Springer-Verlag.

[13] Wikipedia. Waterfall model — wikipedia, the free
encyclopedia, 2013. [Online ; accessed
17-November-2013].

