
An Exploration into the Current State
of Test-First vs. Test-Last Testing

Christopher Morris Thomas

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

2013 Fall Senior Seminar

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 1 / 25

Overview Outline

Outline

1 Background

2 Current Data and Discussion

3 Method Difficulty and Test Driven Development

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 2 / 25

Background

Outline

1 Background
Software Testing
Test-Last Testing and Test-First Testing
Test Driven Development

2 Current Data and Discussion

3 Method Difficulty and Test Driven Development

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 3 / 25

Background Software Testing

Software Testing Defined

Software testing is a branch of software engineering that uses various
practices to:

identify potential malfunctions in code
demonstrate functionality of software

Testing can be done manually or done using test code.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 4 / 25

Background Software Testing

Why Do We Care About Software Testing?

In 2007, a study found that businesses spent at least 50% of their
production costs on product verification and testing.

Because of this, software businesses are constantly looking to
optimize their testing practices in an attempt to reduce costs.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 5 / 25

Background Test-Last Testing and Test-First Testing

Test-Last Testing

Test-last testing is:

writing tests after the code has been written

used in waterfall or any plan based development

considered the “conventional testing method"

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 6 / 25

Background Test-Last Testing and Test-First Testing

Test-First Testing

Test-first testing is:

writing repeatable tests before the code is written

often used to define code functionality

Often used in agile programming practices
usually used as part of a development model

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 7 / 25

Background Test Driven Development

Test Driven Development

Test driven development (TDD) is the most well known and used
test-first development model.

The original TDD method consists of three steps that are repeated
until the program is complete:

write a new failing test
write code to make tests pass
optimize the new code

Currently, TDD refers to a wide variety of different test-first methods
that are similar to the original TDD method.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 8 / 25

Current Data and Discussion

Outline

1 Background

2 Current Data and Discussion
Comparing Test Methods
Current Data
Discussion

3 Method Difficulty and Test Driven Development

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 9 / 25

Current Data and Discussion Comparing Test Methods

Comparing Test Methods

When it comes to comparing two test methods there is no one attribute
that proves one method is superior to another.

While there are many attributes that can be used to compare testing
methods, I focused on three attributes:

code coverage
total development time
code correctness

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 10 / 25

Current Data and Discussion Current Data

Kollanus Article Review Setup

In 2010, Kollanus reviewed 40 different articles that provided empirical
evidence comparing TDD to test-last development methods.

The articles were split up into three types:
controlled experiments
case studies
other

In this review Kollanus explores:
code correctness
productivity (which is similar to total development time)

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 11 / 25

Current Data and Discussion Current Data

Kollanus Code Correctness Results

In this review Kollanus found that 16 of the 22 studies stated that TDD
methods increased code correctness.

This result prompted Kollanus to conclude that TDD may increase
code correctness.

Kollanus was uncomfortable with this conclusion because 5 of the 7
controlled experiments did not find that TDD increased code quality.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 12 / 25

Current Data and Discussion Current Data

Kollanus Productivity Results

In terms of productivity Kollanus found:
11 articles that found TDD increased development time
7 articles that found TDD caused no increase in development time
5 articles that found TDD decreased development time

Kollanus concludes in this study that TDD potentially increases
development time. Though again this conclusion was uncomfortable to
Kollanus who noted that more studies overall did not find that TDD
increased development time.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 13 / 25

Current Data and Discussion Current Data

Lemos et al Study Setup

In 2012, researchers Lemos et al from the Univ. of Sao Paulo
preformed an experiment comparing test-first and test-last testing with
auxiliary functions (10-200 lines of code).

In the study, Lemos had third year computer science students with
basic test-first and test-last knowledge solve coding problems using
test-first and test-last development methodologies.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 14 / 25

Current Data and Discussion Current Data

Lemos et al Results

After the study was completed Lemos found that test-first testing:

produced 40% more code coverage than test-last testing

took 12% longer to implement than test-last testing

did not increase code correctness

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 15 / 25

Current Data and Discussion Discussion

Contradictory Studies

One large problem currently in the test-first vs test-last debate is that
many studies contradict each other.

Although no one currently knows exactly why these contradictions
occur, a few theories exist. Three potential problems in current
test-first research that could produce contradictions are:

lack of TDD method documentation
test-first conformance issues
Method difficulty

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 16 / 25

Current Data and Discussion Discussion

Method Diffuculty

Results from a Univ. of Kansas opinion study by Janzen et al:
Null Alternative

Name Hypothesis Hypothesis
O1 OpTF = OpTL OpTF > OpTL

O2 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

it was consistent within each experiment. For instance in
the CS1 and industry experiment, students were randomly
assigned to use a test-first or test-last approach, whereas in
the CS2 experiment students self-selected between the two
approaches. The early (CS1 and CS2) programmers used
the C++ programming language with simple assert state-
ments for automated unit tests, while all other programmers
used the Java programming language and JUnit. Course en-
rollments varied from over one hundred in CS1 to about 30
in CS2 and twelve to fifteen in each of the software engi-
neering and industry training courses.

3.1 Hypothesis

A formalization of the experiment hypotheses is presented
in Table 1. Hypothesis O1 examines whether all program-
mers, whether they have used the test-first approach or not,
perceive test-first as a better approach. Hypothesis O2 more
specifically examines whether programmers who have at-
tempted test-first prefer the test-first approach over a test-
last approach.

3.2 Programmer Opinion Results

Programmer opinions of the test-first and test-last ap-
proaches were measured in each of the experiments. All
programmers participating in the experiments were asked
to complete surveys at three points: prior to the experi-
ment (pre-experiment), shortly after the experiment (post-
experiment), and several months after the experiment (lon-
gitudinal). The results were analyzed statistically using the
two-sample t-test with significance at p < .05.

Figures 1 and 2 report programmer opinions of the test-
first and test-last approaches from the post-experiment sur-
veys. The results have been grouped by developer maturity.
CS1 and CS2 programmers are in the “Beginning” group,
and industry programmers and student programmers from
the software engineering courses are in the “Mature” group.
The corresponding questions ask programmers to choose:

1. which approach they would choose in the future
(Choice)

2. which approach was the best for the project(s) they
completed (BestApproach)

Beginning Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 1. Early Programmer Opinions

Mature Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 2. Mature Programmer Opinions

3. which approach would cause them to more thoroughly
test a program (ThoroughTesting)

4. which approach produces a correct solution in less
time (Correct)

5. which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

6. which approach produces code with fewer defects
(FewerDefects)

The charts illustrate that beginning programmers think
the test-last approach is better and are more likely to choose
it whereas more mature programmers think the test-first ap-
proach is better and are more likely to choose it. The lon-
gitudinal survey reported similar results with 86% of begin-
ning programmers choosing the test-last approach and 87%
of mature programmers choosing the test-first approach.

Interestingly, the percentage of programmers choosing
the test-first method is always slightly less than the pro-
grammer opinions on other desirable characteristics. In
other words, despite recognizing many valuable benefits of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Null Alternative
Name Hypothesis Hypothesis
O1 OpTF = OpTL OpTF > OpTL

O2 Op|TFTF = Op|TFTL Op|TFTF > Op|TFTL

Table 1. Formalized Hypotheses

it was consistent within each experiment. For instance in
the CS1 and industry experiment, students were randomly
assigned to use a test-first or test-last approach, whereas in
the CS2 experiment students self-selected between the two
approaches. The early (CS1 and CS2) programmers used
the C++ programming language with simple assert state-
ments for automated unit tests, while all other programmers
used the Java programming language and JUnit. Course en-
rollments varied from over one hundred in CS1 to about 30
in CS2 and twelve to fifteen in each of the software engi-
neering and industry training courses.

3.1 Hypothesis

A formalization of the experiment hypotheses is presented
in Table 1. Hypothesis O1 examines whether all program-
mers, whether they have used the test-first approach or not,
perceive test-first as a better approach. Hypothesis O2 more
specifically examines whether programmers who have at-
tempted test-first prefer the test-first approach over a test-
last approach.

3.2 Programmer Opinion Results

Programmer opinions of the test-first and test-last ap-
proaches were measured in each of the experiments. All
programmers participating in the experiments were asked
to complete surveys at three points: prior to the experi-
ment (pre-experiment), shortly after the experiment (post-
experiment), and several months after the experiment (lon-
gitudinal). The results were analyzed statistically using the
two-sample t-test with significance at p < .05.

Figures 1 and 2 report programmer opinions of the test-
first and test-last approaches from the post-experiment sur-
veys. The results have been grouped by developer maturity.
CS1 and CS2 programmers are in the “Beginning” group,
and industry programmers and student programmers from
the software engineering courses are in the “Mature” group.
The corresponding questions ask programmers to choose:

1. which approach they would choose in the future
(Choice)

2. which approach was the best for the project(s) they
completed (BestApproach)

Beginning Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic

% Choosing

Test-First Test-Last

Figure 1. Early Programmer Opinions

Mature Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
ha

ra
ct

er
is

tic
% Choosing

Test-First Test-Last

Figure 2. Mature Programmer Opinions

3. which approach would cause them to more thoroughly
test a program (ThoroughTesting)

4. which approach produces a correct solution in less
time (Correct)

5. which approach produces code that is simpler, more
reusable, and more maintainable (Simpler)

6. which approach produces code with fewer defects
(FewerDefects)

The charts illustrate that beginning programmers think
the test-last approach is better and are more likely to choose
it whereas more mature programmers think the test-first ap-
proach is better and are more likely to choose it. The lon-
gitudinal survey reported similar results with 86% of begin-
ning programmers choosing the test-last approach and 87%
of mature programmers choosing the test-first approach.

Interestingly, the percentage of programmers choosing
the test-first method is always slightly less than the pro-
grammer opinions on other desirable characteristics. In
other words, despite recognizing many valuable benefits of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 17 / 25

Current Data and Discussion Discussion

Discussion of Results

Due to current issues in contradictory data it is hard to make solid
conclusions.

That being said some strong trends were noticed:
test-first testing takes at least as much time as test-last testing
test-first testing tends to increase code coverage
test-first testing has at least the same code correctness as
test-last testing
test-first testing is more difficult to implement then test-last testing

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 18 / 25

Issues With Using TDD

Outline

1 Background

2 Current Data and Discussion

3 Method Difficulty and Test Driven Development
The Challenges of Test Driven Development
Things To Take Away From This Presentation

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 19 / 25

Issues With Using TDD The Challenges of Test Driven Development

Difficulty of TDD

Most the data for test-first testing comes from studies using TDD. This
means that the results have a potential to reflect properties of TDD
and not test-first testing.

Although all the trends found in the previous slide have this potential
issue, the most worrisome data point is method difficulty. This is
because many articles noted that TDD can be a hard to implement for
reasons other then test-first testing.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 20 / 25

Issues With Using TDD The Challenges of Test Driven Development

Difficulty of TDD Cont.

In a survey given to participants of a series of TDD experiments it was
noted that:

56% of participants said they had difficulty adapting to the TDD
mindset
23% of participants said that lack of upfront design was found to
be a hindrance

Another survey, given online, found that 25% of TDD programmers
admitted to frequently or always making mistakes in following the
steps of TDD. Some of these mistakes include:

writing tests that are too complex for effective TDD
forgetting to optimize their new code

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 21 / 25

Issues With Using TDD The Challenges of Test Driven Development

Discussion

these studies suggest that TDD may increase method difficulty for
test-first data.

Because of this, TDD may not be the best way to implement test-first
testing.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 22 / 25

Issues With Using TDD Things To Take Away From This Presentation

Things To Take Away From This Presentation

currently testing can be divided into test-first and test-last testing
current data on comparing test-first to test-last testing tends to
produce contradictory results over multiple studies, though a few
main trends in the data exist
TDD may not be the optimal way to perform test-first testing

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 23 / 25

Issues With Using TDD Things To Take Away From This Presentation

Questions?

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 24 / 25

Issues With Using TDD Things To Take Away From This Presentation

References

O. A. L. Lemos, F. C. Ferrari, F. F. Silveira and A. Gracia.
Development of auxiliary functions: should you be agile? An empirical
assessment of pair programming and test-first programming.
In Proceedings of the 2012 International Conferance on Software
Engineering. ICSE 2012, pages 529-539, Piscataway, NJ, USA, 2012.
IEEE Press.

S. Kollanus.
Test-Driven development - still a promising approach?
In Proceeds of the 2010 Seventh International Conference on the Quality
of Information and Communications Technology. QUANTIC 10, pages
403-408, Washington, DC, USA, 2010. IEEE Press.

D. S. Janzen and H. Saiedian.
A leveled examination of test-driven development acceptantance.
In Proceedings of 29th international conference on Software
Engineering, ICSE 07, pages 719-722, Washington, DC, USA, 2007.
IEEE Computer Society.

Thomas (U of Minn, Morris) Test-First vs. Test-Last Testing 2013 Fall Senior Seminar 25 / 25

	Background
	Software Testing
	Test-Last Testing and Test-First Testing
	Test Driven Development

	Current Data and Discussion
	Comparing Test Methods
	Current Data
	Discussion

	Method Difficulty and Test Driven Development
	The Challenges of Test Driven Development
	Things To Take Away From This Presentation

