
Static and Dynamic Types in Software Development

Emma G. Callery
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
calle052@morris.umn.edu

ABSTRACT
Recent years have seen an increase in the popularity of dy-
namically type languages, such as Groovy, bringing greater
attention to the discussion on the benefits of the different
type systems. Static type systems arguable have the benefit
that because types are checked by the compiler before run
time users may find type errors earlier. This could poten-
tially improve the readability and maintainability of code as
well as improve the software’s documentation. In contrast,
dynamic type systems argue of the benefit the provided flex-
ibility allows to users. Unfortunately most arguments made
for and against both type systems tend to come from per-
sonal opinions or personal experience. Several studies were
conducted recently in an attempt to empirically ascertain
possible benefits of type systems on software development.
One such study tried to determine the programmers’ point
of view about the trade-offs by analyzing 6,638 open source
projects written in Groovy. Two more studies performed ex-
periments to find a relationship between type systems and
software development time; to support arguments that be-
cause static type systems improve readability and documen-
tation programmers can complete programming tasks faster.
All three of these studies, which are discussed in this paper,
provide evidence for the type system discussion and sug-
gested reasons for their results.

Keywords
Static Types, Dynamic Types, Programming Languages, Java,
Groovy.

1. INTRODUCTION
Type systems are a major part of programming languages

and play important roles in software education, research,
and industry. While a great number of programming lan-
guages used in industry are statically typed (e.g.,Java), a
fair number of programs prefer to use dynamically typed
systems (e.g.,Groovy); especially for areas such as web de-
velopment. This leads to the proposed question of ”whether

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2014 Morris, MN.

one system or another, either static or dynamic, has a larger
benefit for the humans that use them”[3] than the drawbacks
that are argued by the other side.

This question has lead to a large discussion of the ben-
efits and drawbacks of each of the different type systems,
with people arguing strongly for and against both. For ex-
ample, there are some programmers that believe strongly
that the structural benefits provided by static types out-
weighs the ’tediousness’ or ’rigidity’ that programmers that
prefer dynamic types claim static types systems inherently
have. Several recent studies have been conducted to try to
determine if any of the arguments given by both sides have
any real empirical support.

This paper starts by defining static and dynamic typed
languages along with commonly argued benefits for both in
section 2. Section 3 looks at a study that analyzed past
projects to find patterns in how programmers use types.
Two more studies have tried to look for empirical evidence to
support the claim the static type systems have better trade-
offs, their studies and results are in sections 4 and 5. We
conclude by attempting to answer the proposed questions in
section 6.

2. BACKGROUND INFORMATION
This section defines static and dynamic types, as used in

this paper, along with the common arguments for both type
systems. Within this paper the only languages used are Java
and Groovy for static and dynamic languages, respectively.

2.1 Static Types
A language like Java is said to be statically typed if the

type of every variable is known by the compiler at compile-
time. For the type to be known at compile-time the pro-
grammer has to have included the information required for
the compiler to determine the type of the variable, which
is done through several options, usually via a declaration.
Static language compilers enforce these types by only al-
lowing values of the variable’s type to be assigned to the
variable (see Figure 1). This means that when the compiler
goes through the code it not only checks for syntactic errors,
but also checks for type errors.

2.1.1 Arguments For Static Types
Type checking is one benefit of static types. Since this

checking is done at compile-time, the errors are more likely
to be caught quickly and without having to run the whole
program as frequently[5]. A second common argument is
that types improve the structure of a program [3]. Better



Variable

TypeValue

Type Must belong 
to type

IS OF 

Assigned Declared

Figure 1: Diagram of Static Types and Type Check-
ing [2]

Variable

Assigned Value

Type

IS OF

Figure 2: Diagram of Dynamic Types [2]

structure is believed to help the programmer reason about
the program. The last significant argument for static types
is that the types provide a form of documentation that can
communicate to programmer [3]. When the documentation
from the types is added to the documentation written by
the programmer it will, in theory, result in a documentation
of greater quality.

2.2 Dynamic Types
A language, like Groovy, is dynamically typed if the type

of a variable is interpreted at run-time. This is because types
in dynamic languages are only associated with values [2], as
shown in Figure 2. This does not mean that a type can not
be associated with a variable, only that the language would
not require it [4]. This option leads to what is called optional
typing where the programmer is primarily responsible for
the types incorporated in the program, explained further in
section 3.

2.2.1 Arguments for Dynamic Types
Not being required to declare a type for every variable

is argued to make dynamically typed programs shorter and
therefore faster to write and read. Dynamic types are also
argued to allow greater flexibility to the programmer [3].
There are several reason for this including easier passing
of variables between different parts of a program. No spe-
cific type requirements allow for easier reuseability of part
of programs[5]. Declaring variables is considered ’adminis-
trative’ and would allow for the programmer to focus on the
more conceptual aspects of the program[3].

2.3 Groovy
Groovy[1] is a dynamic language designed for the Java

Virtual Machine, or JVM. Groovy builds on the static strengths
of Java while having additional features of dynamically typed
languages; features such as closure and support for scripts.
Groovy claims to “seamlessly integrates with all existing
Java classes and libraries” [1].

This statement means that programmers using Groovy
can also access the static types within Java while also having

the additional features found in other dynamic programming
languages. Programmers using Groovy have the option of
adding type declarations without being required to do so.
This keeps Groovy from being a static language because
this type information is not used by the compiler to check
for errors. The result is Groovy being called an optional-
type. This is important because it means that by removing
the extra dynamic features Groovy becomes a basic dynamic
replacement for Java, with type declarations being replaced
with a default. This restricted Groovy is the form of Groovy
used in the latter two studies discuses in this paper

3. PROGRAMMER PREFERENCES
This section will look at a study which attempted to de-

termine where programmers use types and what types they
used in the optional-type language Groovy.

3.1 Study on Optional Typing
Carlos Souza and Eduardo Figueiredo studied program-

mer preferences in their paper How do Programmers Use
Optional Typing? An Empirical Study. In this study Souza
and Figueiredo looked at 6,638 open source projects writ-
ten in Groovy, all gathered from Github. For each project
Souza and Figueiredo gathered the source code, the com-
mit history for the project, and the metadata for both the
source code and all programmers involved in the project.
The source code metadata included the kinds of type decla-
ration, such as whether the declaration was public, private
or protected. The programmer metadata primarily included
their past language experience, as indicated by their other
Github projects.

Looking over all of the projects Souza and Figueiredo tried
to answer several questions about the use of types in the
different projects. The questions were:

1. “Do programmers use types more often in the interface
of their modules?”

2. “Do programmers use types less often in test classes
and scripts?”

3. “Does the experience of programmers with other lan-
guages influence their choice of types in their code?”

4. “Does the size, age or level of activity of a project have
any influence on the usage of types?”

5. “In frequently changed code, do developers prefer typed
or untyped declaration?”

After collecting data from all the projects the researchers
sorted the data by different measures. The measures were
the kind of type declaration, the visibility of the declaration,
the usage of the different types and where. Also used to
sort the collected data was the size of the project in lines
of code, the age of the program along with the number and
frequency of commits. It was from this data and different
comparisons that Souza and Figueiredo attempted to answer
their research questions.

3.2 Results for Optional Typing Study
Question 1 was found to be true; variables and fields that

are public, such as constructor and method parameters and
returns, are frequently typed, see Figure 4. In addition the
visibility of the declaration is also important. Souza and



Declaration Visibility number mean median standard deviation

Public 5852 0.69 0.75 0.29

Protected 2387 0.93 1.00 0.19

Private 6023 0.43 0.40 0.32

Figure 3: Visibility of type declarations

Declaration Type number mean median standard deviation

Field 6000 0.43 0.39 0.33

Constructor Parameter 1670 0.80 1.00 0.35

Method Parameter 4867 0.67 0.86 0.36

Method Return 5881 0.68 0.75 0.31

Local Variable 5845 0.29 0.18 0.32

Figure 4: Type declaration usage

Fiqueiredo found that protected declarations are almost al-
ways typed and while public declarations are not as fre-
quently typed as protected, they are typed more often than
private declarations, see Figure 3. Though the reason for
why module interface definitions are most often typed is still
unresolved; Souza and Fiqueiredo suggest that the implicit
documentation the types provide are the main incentive as
programmers may consider documentation in these area im-
portant.

On the other hand, question 2 was found to be false. Doc-
umentation is rarely needed for test classes and scripts as
most are small and easy to understand already. Test classes
tend to have one sole purpose, and are very rarely reused.
Scripts can not be accessed by other modules so the type
being passed is most likely already known.

Unsurprisingly, question 3 was true. How a programmer
uses types in an optional language greatly reflects how that
programmer used types in other languages. Programmers
coming from a statically typed language are more likely to
add types than programmers coming from a dynamically
typed language, see Figure 5. It has been found that pro-
grammer become comfortable in whatever language they use
most frequently.

Declaration 
Type Background Number Mean Median Standard 

Deviation

Field
Static 
Both

Dynamic

782
3183
2035

0.56
0.43
0.38

0.52
0.39
0.36

0.35
0.34
0.29

Constructor 
Parameters

Static 
Both

Dynamic

224
991
455

0.83
0.80
0.80

1.00
1.00
1.00

0.33
0.35
0.34

Method 
Parameters

Static 
Both

Dynamic

662
2694
1511

0.73
0.67
0.65

0.91
0.84
0.83

0.34
0.36
0.37

Method 
Returns

Static 
Both

Dynamic

764
3205
1912

0.73
0.66
0.68

0.85
0.75
0.74

0.30
0.32
0.29

Local 
Variables

Static 
Both

Dynamic

798
3230
1817

0.39
0.28
0.25

0.31
0.17
0.14

0.36
0.32
0.30

Figure 5: Type declaration usage by programmer
background

Declaration 
Type

Project 
Type number mean median standard 

deviation

Field Mature
Other

221
5779

0.53
0.43

0.48
0.39

0.27
0.33

Constructor 
Parameter

Mature
Other

172
1498

0.83
0.80

1.00
1.00

0.30
0.35

Method 
Parameter

Mature
Other

222
4645

0.69
0.67

0.78
0.86

0.29
0.37

Method 
Return

Mature
Other

222
5659

0.72
0.68

0.79
0.75

0.24
0.32

Local 
Variable

Mature
Other

223
5622

0.32
0.29

0.22
0.17

0.28
0.32

Figure 6: Type declaration usage by project matu-
rity

Declaration 
Type

Project 
Type number mean median standard 

deviation

Public Mature
Other

223
5629

0.72
0.69

0.76
0.75

0.24
0.29

Protected Mature
Other

183
2204

0.88
0.94

1.00
1.00

0.21
0.19

Private Mature
Other

221
5802

0.53
0.43

0.48
0.40

0.26
0.32

Figure 7: Type visibility usage by project maturity

Souza and Figueiredo initially believed that as time goes
on and the projects grow and mature, the maintenance of
projects becomes more difficult. This leads programmers to
use more types as a means to make code more readable. A
mature project was defined as “a project that is 100 days old
or more and has, at least, 2K LoC [Lines of Code] and 100
commits.”[5] The data gathered to try to answer question,
shown in Figures 6 and 7, however, showed that this was
not the case. Souza and Figueiredo thought that maybe the
data they gathered could not “actually correlate to the need
for maintenance” or if the data could work “programmers
might not have the opportunity or desire to make their code
more maintainable” [5].

Question 5 probably has the biggest debate attached to it.
That being the argument that types, acting as a form of doc-
umentation, could make frequently changed code easier to
change. Others argue that untyped code, being simpler, can
be changed faster. It is this latter argument that Souza and
Figueiredo found evidence for. They found that as changes
in a file increase in frequency, 65% of the mature projects
showed a preference for the use of untyped declarations.

Overall this means that programmers are influenced by
the type system that they are use to. Generally, program-
mers mostly type the definitions of a modules interface more
frequently than anything else. Types are more likely omitted
when programmers have to make changes to pieces of code.
This means that the debate of static vs dynamic types needs
to be looked at more closely to determine an actual benefit
to one type system over the other.

4. STATIC VS DYNAMIC TYPE SYSTEMS
This section discusses the 2011 study and results of An-

dreas Stuchlik and Stefan Hanenberg’s study Static vs. Dy-



namic Type Systems: an Empirical Study About the Rela-
tionship between Type Casts and Development Time [6]. The
study was designed for the argument that, in simple pro-
gramming tasks, the existence of type declarations leads to
a reduction of development time. The reasoning behind this
hypothesis is that including type declarations should lead
to better development times, through types improving the
program structure and the programmers’ understanding.

4.1 Experiment
The study had 21 subjects who were asked to complete

two equivalent sets of programming tasks, with five pro-
gramming tasks in each set. One set of tasks would be
completed using Java and the other set using the restricted
form of Groovy from section 2.3. The subjects were split
into two groups, as evenly as possible; one group started
by completing one set of tasks in Groovy then completed
the other tasks in Java, the other group did the reverse. It
should be noted that, all subjects were familiar with Java,
but none had used Groovy. Each of the five tasks within
a set had varying numbers of type declarations required to
successfully pass the associated tests. Also associated with
each task was the expected lines of code(LoC). However the
number of declarations match between sets.

All subjects were given both sets of tasks, though only one
set of tasks were explained in the study’s paper, and here,
for simplicity.

Task 1(declarations:1,LoC:5)
This task requires the subject to write a method that
receives a ’player’ object and ’goal’ object as its param-
eters. The method should cause values within each
object to increase if an aspect of the ’player’ object
matches a condition.

Task 2(declarations:2,LoC:9)
Similar to task 1, the subject is required to write a
method that takes a ’player’ object and a ’goal’ object
as parameters, along with an additional ’kick’ object.
If the ’player’ object matches a specific condition then
a value in both the ’player’ and ’goal’ objects is in-
creased.

Task 3(declarations:2,LoC:5)
For task 3 subjects needed to write a method that
takes two separate ’player’ objects and increases the
corresponding instance variable for both objects.

Task 4(declarations:4,LoC:13)
Task 4 requires subjects to write a method for storing
a value between two ’player’ objects that match on a
specific condition.

Task 5(declarations:8,LoC:25)
Task 5 requires subjects to write a method to replace
one ’player’ object with another ’player’ object, such
that the second ’player’ object now has the values of
the first ’player’ object and the first has the values of
the second.

The assumption in the design of this study was that “the
higher the number of type [declarations] is, the larger is the
difference in development times for the statically of dynam-
ically typed code.” [6]. It was important to note that all
the tasks are trivial, and did not require any other software,
such as an API.

Lowest Time 
Results Sum Task 1 Task 2 Task 3 Task 4 Task 5

Group A __ Groovy __ __ __ __

Group B Groovy Groovy __ Groovy __ __

Figure 8: Statistically significant positive impact re-
sults for shortest time between Group A (Groovy
first) and Group B (Java first)

4.2 Results
For the subjects that started by using Groovy first, only

task 1 showed a statistically significant positive impact for
the dynamically type language, Groovy. The subjects that
started using Java first showed significant positive impact
of Groovy, for both tasks 1 and 3 as well as the sum of
all tasks. None of the other tasks showed any significant
positive impact, for both groups. See Figure 8 for results.

For both groups, no significant positive impact was found
for the static type system for any task. Additionally, the
amount of time saved ranged from 8 minutes to 37 minutes,
for all tasks, though the median of the summed development
times for the statically typed task was less than 100 minutes.
This can not be explained just by the time taken to write
the type casts, and suggests that type systems have some
kind of complexity beyond this.

It should be noted that these results only concern trivial
programming tasks, and would not apply to non-trivial task.
The authors argue that “as soon as we speak about non-
trivial programming tasks, no positive impact [of dynamic
types] can be measured.” Though they do not point to a
study that could actually answer this statement, the authors
do suggest that further studies need to be conducted in order
to verify their hypothesis.

5. INFLUENCE OF STATIC TYPES
This section looks at the 2012 study conducted by Stefan

Hanenberg, Clemens Mayer, Romain Robbes, Andreas Ste-
fik, and Eric Taner in their paper An Empirical Study of the
Influence of Static Type Systems on the Usability of Undoc-
umented Software [3]. This study looked into the argument
that types act as a form of documentation, as a benefit of
static type systems. The study argues that if there is no
other form of documentation present and variables are not
typed, it should take a programmer longer to complete a
task than if the variables are typed.

The researcher came up with two null hypotheses, the first
stating that,

The development time for completing a program-
ming task in an undocumented API is equivalent
when using either a static type system of a dy-
namic type system.[3]

Because this hypothesis only accounts for the design of the
API as a whole, a second null hypothesis was included:

There is no difference in respect to development
time between static and dynamic type systems,
despite the number and complexity of type dec-
larations in an undocumented API. [3]



Both hypotheses were used so that if either hypothesis is
rejected by the data, insight can be gained on the relative
benefits and consequences of both type systems.

In the case of this study an undocumented API means
that the interfaces used by the subjects had no documen-
tation available to tell what exactly the interfaces did and
which parameters needed to be passed to the methods within
the API. It should be noted that the dynamic API used in
this study was made by taking the static API and removing
the type annotation; replacing them with the Groovy de-
fault, def. This posses a potential problem with the study
methodology in that this does not use any of the possible
features of dynamically typed languages.

5.1 Experiment
The experiment designed for this study had 27 subjects

that had experience with the statically typed language, Java,
but had no experience with the dynamic language Groovy
(restricted as described in section 2.3). For this the authors
simply introduced the subjects to Groovy as ”a Java version
where all declarations of variables, parameters, etc. only
required the keyword def.” [3]

While a learning effect was a potential issue to the validity
of the experiment; this experiment design has already been
applied to other studies successfully[3]. In addition there are
valid approaches for statistically analyzing the data fairly.
So long as the learning effect is less than the effect caused
by the language then the measures can still be used to de-
termine the effect of the language[3].

As with the study in the sections above, subjects were
separated into two groups, as evenly as possible, and each
group was asked to complete the same five programming
tasks. The five tasks were completed in one language using
one undocumented API before completing the five tasks in
the second language with another API. Group one (called
GroovyFirst) would complete the first set of assigned tasks
using Groovy and then complete the tasks using Java. The
other group (called JavaFirst) did the same tasks but did
the tasks in Java first.

The tasks were designed to vary in difficulty and the num-
ber of type declarations required for classes within each lan-
guage.

Task 1
This task was classified as being of easy difficulty and
only asked to return an instance of a specific class.
This required only one type to be identified and taking
only one line of code to write.

Task 2
This task was also considered easy. It required the
initialization of an object found in the class discovered
in task 1. The initialization required an ’initializer’,
which required a secondary object. This means that
the subjects had to identify three classes.

Task 3
This task was considered medium difficulty and re-
quired subjects to create a transformation of an object,
from task 2, with a corresponding class. To do this a
graph first had to be created from the task 2 object.
An initialization of a different object had to be cre-
ated, along with a node. The node and both objects
where then passed to the transformation class. This
means that the subject had to identify three classes.

Aspect Task 1 Task 2 Task 3 Task 4 Task 5

Less Development Time Java Groovy Groovy Java Java

Fewer Builds/Runs Groovy Java Java

Fewer Files Looked At Java Groovy Java Java Java

Fewer File Switches Java Groovy Groovy Java Java

Figure 9: Collective results of all tasks showing lead-
ing language(either statically typed Java or dynam-
ically typed Groovy)[3]

Task 4
This task was the only task to be considered diffi-
cult. The subjects were required to add a node to a
graph through parameterizing a non-trivial initializer
correctly. The parameters required were an instance of
a sequence object, each object contained an identifier
and a sequence of pairs. These pairs contain an identi-
fier and another sequence object. Despite the subject
only needing to identify three classes, the recursive def-
inition of the objects lead to a suspicion that the code
may be hard to understand, especially in the dynamic
type system, with no defined types.

Task 5
This task was considered easy, but required the highest
number of classes that needed to be identified. The
subjects were required to take the object from task 2
and create method that takes a command object(also
created) and make a ’menu’ from the task 2 object.
This ’menu’ method also takes three additional classes
to fully complete the command. In total six classes
needed to be identified.

It is interesting to note is that one subject was removed
from the experiment because it was found that the subject
had “spent a very large amount of time in reading the com-
plete source code while working on task 2 and then solved
tasks 3 and 4 quickly” [3]. After this had been confirmed to
be the case the subjects data was removed. This indicates
that different programmers have different ways of processing
and writing code, suggesting that no one way of program-
ming will work equally well for everyone.

5.2 Results
It should be noted that, for several reasons, the program-

ming tasks were designed with the assumption that “for all
tasks, except task 1, the static type system would show a
measurable positive impact”[3].

5.2.1 Null Hypotheses results
After analysis of the collected time data it was found that,

concerning the first hypothesis, tasks 1, 4, and 5 showed a
positive impact for the static type system, Java. Tasks 2
and 3, however, showed a positive impact for the dynamic
type system, Groovy, as seen in the first line of Figure 9.
This caused hypothesis one to be rejected.

Hypothesis 2, however, cannot be rejected because just
the number of types and difficulty of the tasks “cannot be
a main effect of the difference between static and dynamic”
[3]. This is because for the ’easy’ tasks (1, 2, and 5) the dy-
namic type system was found to have a positive impact on



only task 2, while tasks 1 and 5 showed a negative impact.
This contradicted the assumption that the number of types
needing to be identified is a main factor. Task 2 required
more types to be identified than task 1 but fewer types than
task 5. For tasks 3 and 4, which had the same number of
type identifications required but different difficulties, con-
tradictory results were also found.

5.2.2 Exploratory Study and Results
The contrary nature of the hypothesis 2 results lead to

an investigation to find if other influences could have con-
tributed to the results. One suggested influence was the
measured number of builds and times tests were run during
each task. These numbers were taken from the times the
compiler ran and the times the ’start-button’ was clicked.
Tasks 1 and 5 registered no significant difference between
Java and Groovy in number of builds and tests run. How-
ever tasks 3 and 4 showed the static type system, Java, had
the fewer test runs. Task 2 was the only task where the dy-
namic type system, Groovy, had fewer test runs. The results
are seen in second line of Figure 9.

A second suggested factor was the number of files the
subject was looking at, which may indicate the amount of
the source code that a subject needed to read in order to
complete the task. The authors assumed that this could
have an effect because subjects using the dynamic system
’should’ be more likely to look at unrelated source code.
Evidence gathered seems to support this theory for all but
one task, task 2. For tasks 1, 3, 4, and 5 fewer files were
viewed when the subject was using Java. Task 2 showed
that fewer files were viewed when the subjects used Groovy.
See line three of Figure 9.

The final suggested factor was that the number of times
the subject switched could indicate the amount of explo-
ration the subject did while solving the task. Similarly to
the previous suggestion, the effect was assumed to come from
the ’required’ need for user of a dynamically typed language
to frequently change files to find or formulate answers. This
was measured separately from the previous analysis. Oddly
enough the results from this analysis directly correspond to
the development time results, for each task. See line four
of Figure 9. Tasks 1, 4, and 5 showed fewer file switches
when the subjects used the static type system Java, while
tasks 2 and 3 showed fewer files switched when subjects used
the dynamic type system, Groovy. This result suggests that
the number of switched files could be an indicator for the
resulting development time.

6. CONCLUSIONS
This paper looked at three studies that attempted to help

address the discussion on the benefits of the different type
systems. The first was a case study that looked at how pro-
grammers use types in Groovy. The second study was an
experiment to compare static and dynamic types when pro-
grammers where completing tasks with an undocumented
piece of software. The third study experimented to deter-
mine the influence of types on the development time for
trivial programming tasks.

The goal of these studies were to answer some questions
about benefits type systems have for programmers. The first
study looked at how do programmers use types? for this the
first study analyzed data gathered from 6,638 projects writ-
ten in Groovy. The researchers found that past experience

plays a part in how programmers use types; if the program-
mer has used at least one dynamically typed language in
the past, they are likely to use types less frequently. While
programmers tend to use types in their interfaces more then
any other form of declaration very few include types in test
classes and script files. Also the size, age, or level of activity
in the overall project has no influence on how programmers
include types.

The other two studies that we considered gave 20-30 sub-
jects a set of programming tasks in both Java and Groovy
to determine the effect type systems have on development
time. Both studies determined that while there is no simple
answer for the question of static versus dynamic, the type
system does have an effect. Study two found that static
type systems improve development time if the types help
explain document design decisions, or the number of classes
the programmer needs to identify is high. For simpler task
dynamic type systems can potentially reduce development
times. Study three found that the dynamic type system had
a positive effect in three of their five tasks as well as over all,
the remaining tasks showed no significant difference between
the two type systems.

7. ACKNOWLEDGMENTS
Thank you to Elena Machkasova, Stephen Adams and Pe-

ter Dolan

References
[1] Groovy programming language.

http://groovy.codehaus.org/.

[2] S. Ferg. Static vs. dynamic typing of programming lan-
guages, 2012. From Python Conquers the Universe on
wordpress.com.

[3] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and
A. Stefik. An empirical study of the influence of static
type systems on the usability of undocumented software.
In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, pages 683–702, New York,
NY, USA, 2012. ACM.

[4] N. Nome. What is the difference between statically typed
and dynamically typed languages?, October 2009. From
stackoverflow.

[5] C. Souza and E. Figueiredo. How do programmers use
optional typing?: An empirical study. In Proceedings of
the 13th International Conference on Modularity, MOD-
ULARITY ’14, pages 109–120, New York, NY, USA,
2014. ACM.

[6] A. Stuchlik and S. Hanenberg. Static vs. dynamic type
systems: An empirical study about the relationship be-
tween type casts and development time. In Proceedings
of the 7th Symposium on Dynamic Languages, DLS ’11,
pages 97–106, New York, NY, USA, 2011. ACM.


