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ABSTRACT

Energy consumption has become a growing concern for cloud
computing data centers as demand for instantaneous web-
based services has increased. Energy optimization algo-
rithms are used to reduce energy and make data centers
more sustainable. Some algorithms focus on reducing power
consumption of hardware while others use geographic loca-
tion and renewable resources.

This paper discusses two types of modern energy opti-
mization algorithms that create a more sustainable, green
cloud.
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1. INTRODUCTION

Cloud Computing has been growing rapidly in the last sev-
eral years in order to accommodate a growing demand for
internet services. Due to this growth, additional and larger
data centers are required to meet demand. With more data
centers, an increasing amount of power is necessary. In 2000,
only about 70 TWh of energy was consumed worldwide to
power data centers. In 2010, approximately four times the
energy, 271 TWh, was used by data centers or 1.5% of all
energy consumed in the world [6]. In light of these stagger-
ing numbers, much research has been devoted to reducing
power consumption. So far, two different approaches have
been implemented to reduce the carbon footprint of data
centers: macro-based and micro-based methods. Macro-
based methods focus on exploiting data centers in diverse
geographical locations that have higher levels of renewable
energy or cooler climates. Micro-based methods focus on ef-
ficient resource allocation of data center components [3]. In
this paper, we will consider both macro and micro-based al-
gorithms that use various techniques such as evolutionary al-
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gorithms, gossip-based protocol and the Hungarian method
of assignment. Description of these techniques along with a
background in cloud computing will be provided in Section 2.
Section 3 discusses a macro-based algorithm. Section 4 pro-
vides details on micro-based algorithms. The results of these
algorithms are presented in Section 5. Next, ramifications
of these algorithms are presented in Section 6. Comparisons
between these algorithms will not be discussed due to the
fact that the algorithms were optimizing different parame-
ters and there was not a standard representation of result
data.

2. BACKGROUND

In order for the reader to fully understand the material
presented in this paper, we will introduce some necessary
background information.

2.1 Cloud Computing

In the last several years, cloud computing has become
a prevalent service. Cloud computing pertains to both the
applications services provided via the Internet and the hard-
ware and systems software in data centers. Inside these
data centers are a copious amount of servers (the hardware)
managed by middleware (software that communicates be-
tween servers). These components make up what is called
the cloud [1]. Usually, large IT firms called providers, such
as Google or Amazon, own large data centers that contain
the hardware and system software. However, these large IT
firms have extra servers beyond their own needs and rent
them to smaller companies providing a relatively cheap sys-
tem to compute in the cloud.

The workload on the cloud is the number of requests for
service at a given time. A cloud is considered to be in over-
load if there is not enough resources to handle all of the
service requests. In order to provide a high quality of ser-
vice, QoS, the providers sign a service level agreement, SLA,
that requires them to fulfill these requests in a set amount
of time.

2.2 Evolutionary Multi-objective Optimization
Algorithms (EMOA)

Evolutionary Computation [5] is based around the inter-
actions of individuals. As in biological evolution, a group
of individuals makes up a population. In biological evolu-
tion and natural selection, organisms within a population
compete in order to survive and reproduce. Individuals best
adapted to their environment have the best chance of ful-



Figure 1: Example of an individual that is a poten-
tial solution to assigning cloud services, S;, to data
centers, D;. Here is an individual with six services
employed by the provider that are assigned to a total
of four data centers.

filling these objectives. In an evolutionary multi-objective
optimization algorithm, EMOA, individuals are similar to
organisms in biological evolution but contain a potential so-
lution to a given problem with many user-defined objectives
such as maximizing renewable energy and reducing cooling
energy at the same time, see Figure 1. Individuals, in this
case, are stored as an array with the indices corresponding
to a cloud service and the elements of the array correspond-
ing to the data center in which that service is placed. Like
organisms, individuals also compete, but here competition
is set up in such as way that those individuals that provide
closer solutions to all user-defined objectives have the best
odds. The goal of EMOAs is to produce a set of individu-
als that provide quality solutions in a reasonable amount of
time.

At the beginning of an EMOA, a population is randomly
initialized. The initial population then competes in order
to be selected to produce the next generation based on the
quality of solution they provide. For the purposes of this pa-
per, we will discuss binary tournament selection, although
there are many different methods to select individuals to al-
ter. Binary tournament selection is where two individuals
are randomly chosen from the population, and the individ-
ual that is more optimized is selected as a parent. This
process is repeated to obtain a second parent. The selected
parents can propagate their configurations to the next gener-
ation by two methods. The first and most common method
is crossover, comparable to sexual reproduction, where el-
ements from each selected parent are combined to form a
new individual in the next generation. The second method
is mutation, in which a single parent is selected and partial
altered randomly, much like biological mutation. Crossover
and mutation are utilized across multiple generations, until
a set of optimized solutions are found when some sort of
resource limit is reached.

2.3 Gossip-based Protocol

Gossip-based protocol acts exactly as the name implies. A
node which contains new information selects multiple nodes
called peers to spread new information to. The selection
of peers is often probabilistic and therefore there can be
a range of peers. The act of spreading the information is
called a round. In the next round, each of the peers that
received the information selects more peers to spread the
information to. As more rounds are completed, all of the
nodes eventually obtain the same new information [6].
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Figure 2: Computing the Hungarian method cost
matrix for servers A,B,C and jobs 1,2,3. Matrix
elements represent energy consumption in Watts.
The optimal solution (job to server) is 1-B, 2-C, 3-
A

2.4 Hungarian Method of Assignment

The following describes the general procedure of the Hun-
garian Method of Assignment. The Hungarian Method of
Assignment uses a n X n cost matrix with respect to energy
(as seen in Figure 2) to find the least power consuming con-
figuration of server to job placement. Rows and columns
represent jobs and servers respectively [2]. The matrix el-
ements represent the amount of power placing a job onto
a server. To find this configuration, we first subtract the
smallest wattage in each row from all the entries of its row.
Similarly, we subtract the smallest wattage (after rows have
been subtracted) in each column from all entries in its col-
umn. After subtraction, the new cost matrix will have some
number of zero entries. Since we only subtract the mini-
mum entries, there will not be any negative entries. We
draw lines through appropriate rows and columns so that
all the zero entries of the cost matrix are covered and the
minimum number of such lines is used. If the number of lines
is equal to n then there is an optimal solution. However, if
the number of lines is not equal to n, then we determine
the smallest entry not covered by any line. We subtract this



entry from each uncovered row, and then add it to each cov-
ered column repeating until there are n lines. By locating
a minimum job to server pairing of matrix elements, we can
easily determine the optimal solution.

3. MACRO-BASED ALGORITHMS

Green Monster is a framework proposed by Phan et al [4]
that uses geographical location to maximize energy savings
by emphasizing the maximization of renewable energy. The
EMOA, described in Section 2.2, in Green Monster uses
three optimization objectives: renewable energy consump-
tion (RE), cooling energy consumption (CE), and user-to-
service distance (USD). In order to get the best results,
Green Monster looks to maximize RE, and minimize both
CE and USD. By minimizing the USD, Green Monster at-
tempts to minimize the response time to assure a high qual-
ity of service. Also, minimizing the CE implies that the
energy consumed in the data center will be more heavily
used for processing. In 3.1, we will discuss how the EMOA
behind Green Monster works, and in 3.2 we will look at
simulations of Green Monster with real world data.

3.1 Green Monster EMOA

Green Monster represents individuals as a configuration
of all services (S;) in all data centers (D;). Each data center
has a service capacity, or the maximum workload a data cen-
ter can handle. To initialize a population of N individuals,
the EMOA assigns random services to random data centers
so that any given data center does not exceed the service
capacity. If the service does exceed the service capacity, it
will be assigned to the data center with the least workload.
Upon completion of initialization, the EMOA uses binary
tournament selection to select individuals for alteration. In
this instance of binary tournament, the individual is selected
by constrained-dominance. An individual, 4, is constrained-
dominant to an individual, j, if ¢ has the least amount of
service capacity violations. Also, if ¢ and j do not have any
violations, we set i to be constrained-dominant when 7’s ob-
jective values are greater or equal to j’s objective values in
all objectives and if i’s objective values are superior than
j’s in at least one objective. When two parents are selected,
crossover is determined by a crossover rate and two offspring
are produced. Both of these offspring perform mutation de-
termined by a mutation rate that is relatively small for each
service. Mutating simply switches the current data center,
D;, for a random new one. The mutation rate is a small
percentage because we want to ensure that the individual
retains changes made from crossover and the majority of
the individual is not randomized.

After mutation, Phan et al perform an additional opti-
mization step not typically part of an EMOA: a local search
based on a local search rate for each S; on the offspring in-
dividuals. This local search checks to see if any Dy where
k # j, could improve all optimizations without violating the
service capacity. If Dy meets the previous criteria, then Dy
replaces Dj in S;.

Selection, crossover, mutation, and local searches are re-
peated until the number of individuals in the new offspring
generation is the same as in the parent generation. In order
for the best individuals to permeate to the next generation,
Phan et al combine both the parent and offspring genera-
tions and sort them based on constrained-dominance. Phan
et al then take only the first N individuals to be the next

Data Center Configurations

Number of Data Centers 9

Total Number of Servers In Data Centers (N) | 100
Service Types 3
Average rate of requests per day 2,000,000
Max Power Consumption in a Server 400W
Min Power Consumption in a Server 150W

Table 1: Data center configurations in Green Mon-
ster simulation

EMOA Configuration

Generations 100
Population size (N) | 100
Crossover rate 90%
Mutation rate 10%
Local Search rate 10%

Table 2: EMOA configurations in Green Monster.
Configurations were based on optimal experimental
results by Phan et al.

parent generation. This whole process repeats until a certain
number of generations is reached.

3.2 Green Monster Simulations

Several simulations of Green Monster have been conducted
based on statistics of nine data center in nine different Euro-
pean countries: Denmark, Germany, Greece, Ireland, Italy,
Netherlands, Spain, UK and Portugal. Temperature data
was used from European Climate Assessment & Dataset
project which records real temperature data in Europe. The
countries were chosen based on the wide variety of climates
and renewable energy. The average renewable energy pro-
duction data was pulled for each country from January 2007
to December 2009. In each data center there are between 8-
200 servers and 16-400 services consisting of voice, data, and
video based on the countries population. For the simulation,
Phan et al decided that every server will have the same spec-
ifications and each type of service was evenly distributed to
all types of services. Data center configurations are given
in Table 1. Green Monster’s EMOA in this simulation runs
bi-weekly for twelve simulated months. After running the
EMOA with the configurations in Table 2, the individual
that is the most optimized overall is selected. Green Mon-
ster will migrate service, S;, to data center, D;, according to
solution presented by the optimized individual. Results of
the Green Monster simulations will be presented in Section
5.1.

4. MICRO-BASED ALGORITHMS

There are many different micro-based algorithms for a
green cloud, but we will choose to focus on two algorithms
under development: GRMP-Q, a gossip-based allocation al-
gorithm by Yanggratoke et al, and the speed-scaling algo-
rithm by Han et al.

4.1 Gossip-based Resource Allocation

GRMP-@ is middleware for a data center that utilizes
gossip protocol, described in Section 2.3, to minimize the



number of servers running services. Usually, providers rent
specific servers by the hour to smaller companies. This, how-
ever, is not efficient. A single server working at workload
capacity, or the maximum number of services that a single
server can handle, will be much more efficient than three
servers working at one third of workload capacity. This is
due to the minimum power level that a server must consume
to be on. GRMP-Q attempts to migrate all services to the
least number of servers possible. For simplicity, Yanggratoke
et al assume that all servers, N, in a data center have iden-
tical specifications (power consumption, CPU, and memory
capacities). For any given service, (S;), the demand, ws,,
can be spread across multiple servers. The equation for de-
mand w(g,,») on a single server n, is given by (1) where
oys; n) is a portion of the demand of S; running on server
n:

N
W(s;m) = Q(s;,n)Ws; such that a(s; ny >0, Za(si,n) =1

n=1
(1)

Yanggratoke et al then placed all of the og, n) for ev-
ery service into a matrix called the configuration matrix.
The configuration matrix, A, shows how the data center’s
resources are allocated to services. At certain times, load
changes, addition of services, or change in the number of
servers will cause the configuration matrix to be updated.

The first objective of GRMP-Q is to satisfy user demand
by allocating enough resources so that the provider can sat-
isfy the SLA. The second objective is to minimize power
consumption. GRMP-Q does this by turning a server to
stand-by if the total demand on the server is zero. If there
is insufficient resources or the ws,,, n) of a new service,
Sit+1, is greater than the workload capacity, €2, the system
will turn a stand-by server on.

In order to transfer one service to another server there are
three gossip-based processes that occur. The first process
is initialization which initializes the gossip protocol for the
current configuration matrix at a random server n. The
second process chooses a peer from the configuration matrix
by randomly selecting a different server, j, whose o > 0 and
is in the set N, where N,, is the set of servers in A with
similar types of services to n. However, in order to avoid
selection in disjoint sets of servers, Yanggratoke et al select
a server from N,, p percent of the time and a different server
in A with « > 0, 1 — p percent of the time. The equation
for p in given in (2).

p= 1|N7n| (2)
+ [Nn|
After a peer is selected, the relative demand, y, on server
n is calculated by taking the sum of w of all services on n
divided by the workload capacity of n shown in (3).

M
ws;
Yn = Z % where M is the total num of services (3)
i=1

If yn + y; > 2, the algorithm assumes based on these two
servers that the cloud is in overload and will move services
to the server that has a smaller relative demand. However, if
Yn+Yy; < 2, then algorithm assumes the cloud is in underload
(there are unused resources on some active servers). When
the cloud is in underload, GRMP-Q then packs services in
such a manner that the server with the highest relative de-

Daily Averaged Objective Values for Green Monster

Renewable | Cooling | User-to-Service
Energy Energy | Distance

Static 324.5 949.58 0

Random rate 327.3 947.34 487378

Green Monster | 438.5 919.02 373172

Table 3: Daily averaged objective values for static
placement, random placement, and Green Monster.
RE and CE are in MWH. USD is presumed to be in
meters.

mand of y,, and y; migrates services so that demand is equal
to 2. This ensures that one server is fully packed and the
other is less than Q. Since this algorithm is gossip-based,
comparisons of two servers will occur continuously [6].

4.2 Speed-Scaling

In this version of speed scaling, Han et al use a combina-
tion of performance optimization and job placement to make
data centers more energy efficient. Han et al assume for this
algorithm that there are J jobs and M servers. Han et al
define the power consumption with respect to CPU speed, s,
given by (4). Let j be a specific job and i the server number.

P = SZ]- +c, (4)
7

W; = Z Aj X P; ; where J is the total number of jobs, (5)
j=1
M

U= Z Wi where M is the total number of servers, (6)

1=1

where ¢ accounts for static power loss and ~ is a constant
that was computed experimentally. Han et al found v ~ 3
for the relationship between speed and power. In order to
relate jobs and the QoS, jobs have a weighted positive integer
A; that denotes the level of QoS for job j. The total weighted
power for a server is shown in (5). The total weighted power,
U, is given by (6).

Han et al then adopt an implementation of the Hungarian
method of assignment described in Section 2.4, to assign
jobs to servers. Han et al then hypothetically migrate the
jobs to the appropriate servers, adjusts the speeds of CPUs
such that there is no extra processing power utilized, and
then recomputes U. If the AU > 0 then the algorithm will
migrate the jobs to the appropriate servers [2].

5. RESULTS

The results of the three different algorithms are discussed
in this section.

5.1 Green Monster

Phan et al simulated their algorithm in comparison to two
benchmark algorithms: static placement policy and a ran-
dom placement policy. Static placement randomly selects
two services and places them on each server for the duration
of the twelve month simulation. Random placement dynam-
ically migrates biweekly by using just the random initial
population generation described in Section 3.1. Results are
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Figure 3: Power reduction of GRMP-Q with respect
to cloud load.

summarized in Table 3, Green Monster consumed a signifi-
cantly higher amount of renewable energy than either static
or random. The daily average of renewable energy utilized
by Green Monster was 111 MWH, or 33.9%, more than ei-
ther algorithm. This shows that Green Monster migrates
services to more renewable data centers. Table 3 also illus-
trated that Green Monster saves more cooling energy than
the other algorithms. Green Monster saved 3.2% more cool-
ing energy than the random placement algorithm on a daily
average basis. However, the main focus was to maximize
renewable energy. Green Monster also surpassed random
placement yielding a 23.4% shorter user-to-service distance
than random. Notice that static placement has a user-to-
service distance of zero. This is because the static placement
does not migrate any service during the twelve months [4].

52 GRMP-Q

GRMP-Q was simulated on a data center with 10,000
servers in order to analyze the reduction of power. Yanggra-
toke et al implemented several different loads on the cloud:
10%, 40%, 70%, 100%, 130% of the CPU resources in the
cloud shown in Figure 3. When the load on the cloud was
small, 10%, the reduction of power increased by 85% from
a cloud in which none of the servers switch to stand-by. As
expected, power reduction becomes smaller but still saves
around 15% of power at a cloud load of 70%. However, this
algorithm does not provide any benefit for an overloaded
cloud. In order to test if this algorithm was scalable, Yang-
gratoke et al ran simulations for a cloud with as little as
2,500 servers to as many as 160,000 servers evaluated at a
cloud load of 25% and 50%. In all cases, Yanggratoke et al
found that the number of servers does not affect the amount
of power reduction. Power reductions were around 25% and
60% for a cloud load of 25% and 50% respectively [6].

5.3 Speed Scaling

Han et al simulated their algorithm in comparison with
a non-power-aware (NPA) policy and a dynamic voltage
and frequency scaling (DVFS) policy. In a NPA system,
there are no optimizations regarding placement of jobs. In
a DVFS, all servers are set to proportional speeds by esti-
mating the CPU speed required for its current running jobs.
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Figure 4: Number of servers with respect to power
in kilowatt hours. Non-power aware (NPA). Dy-
namic Voltage and Frequency Scaling (DVFS). Han
et al’s algorithm (SS).

DVFS will also adjust the voltage which means that cir-
cuits in the processor will switch more slowly with a lower
voltage. In Figure 4, we can clearly see results indicating
that the proposed algorithm uses significantly less energy
per hour than either NPA or DVFS policies [2].

6. CONCLUSIONS

The growth of cloud computing has created significant in-
creases of power consumption by data centers. Implement-
ing energy optimization techniques in data centers are an im-
portant part of creating a greener cloud. From the simulated
results, we can tell that both micro-based and macro-based
algorithms produce a greener data center even though they
use completely distinct methods to do so. Green Monster fo-
cuses on migrating services to different data centers so that
more renewable energy is conserved. GRMP-Q targets the
packing of services into in minimum number of servers possi-
ble. Han et al centers around adjusting CPU frequency and
voltage while optimizing the placement of jobs on servers.
Since cloud computing is still relatively new and growing,
there is considerable potential to reduce power even further.
Combinations of both micro and macro will undoubtedly be
used together to reduce power consumption of data centers.
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