
Bayesian Spam Detection

Jeremy Eberhardt
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

eberh060@morris.umn.edu

ABSTRACT
Spammers always find new ways to get spammy content to
the public. Very commonly this is accomplished by using
email, social media, or advertisements. According to a 2011
report by the Messaging Anti-Abuse Working Group roughly
90% of all emails in the United States are spam. This is
why we will be taking a more detailed look at email spam.
Spam filters have been getting better at detecting spam and
removing it, but no method is able to block 100% of it.
Because of this, many different methods of text classification
have been developed, including a group of classifiers that
use a Bayesian approach. The Bayesian approach to spam
filtering was one of the earliest methods used to filter spam,
and it remains relevant to this day.

In this paper we will analyze 2 specific optimizations of
Naive Bayes text classification and spam filtering, looking at
the differences between them and how they have been used in
practice. This paper will show that Bayesian filtering can be
simply implemented for a reasonably accurate text classifier
and that it can be modified to make a significant impact on
the accuracy of the filter. A variety of applications will be
explored as well.

Keywords
Spam, Bayesian Filtering, Naive Bayes, Multinomial Bayes,
Multivariate Bayes

1. INTRODUCTION
It is important to be able to detect spam emails not only

for personal convenience, but also for security. Being able to
remove emails with potential viruses or malicious software
of any kind is important on individual user levels and larger
scales.

Bayesian text classification has been used for decades, and
it has remained relevant throughout those years of change.
Even with newer and more complicated methods having
been developed, Naive Bayes, also called“Idiot Bayes” for its
simplicity, still matches and even outperforms those newer

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2014 Morris, MN.

methods in some cases. There are many modifications that
can be made to Naive Bayes, which demonstrates the mas-
sive scope of Bayesian classification methods.

Most commonly used in email spam filtering, Naive Bayes
can be used to classify many different kinds of documents.
A document is anything that is being classified by the filter.
In our case, we will primarily be discussing the classification
of emails. One further application will be explored in sec-
tion 8.1. The class of a document in our case is very simple:
something will be classified as either spam or ham. Spam is
an unwanted document and ham is a non-spam document.

All of the methods discussed here use supervised forms of
machine learning. This means that the filter that is created
first needs to be trained by previously classified documents
provided by the user. Essentially this means that you cannot
develop a filter and immediately implemented it, because it
will not have any basis for classifying a document as spam
or ham. But once you do train the filter, no more training is
needed as each new document classified additionally trains
the filter by simply being classified. There are other imple-
mentations that are semi-supervised, where documents that
have not been explicitly classified can be used to classify
further documents. But in the following models, all docu-
ments that are classified or in the training data are classified
as either spam or ham, not using any semi-supervised tech-
niques.

Three methods of Bayesian classification will be explored,
those being Naive Bayes, Multinomial Bayes, and Multivari-
ate Bayes. Multinomial Bayes and Multivariate Bayes will
be analyzed in more detail due to their more practical ap-
plications.

2. BAYESIAN NETWORKS
A Bayesian network is a representation of probabilistic

relationships. These relationships are shown using Directed
Acyclic Graphs (DAGs). DAGs are graphs consisting of ver-
tices and directed edges wherein there are no cycles. Each
node is a random variable. Referencing figure 1, the prob-
ability of a node occurring is the product of the probabil-
ity that the random variable in the node occurs given that
the parents have occurred. This can also be shown with
the following equation. P (x1, ..., xn) is the probability of
any node xi and Pa(xi) is the probability of the parent.
P (xi|Pa(xi)) is also called a conditional probability, mean-
ing that the probability of an event is directly affected by
the occurrence of another event. [8]

P (x1, ..., xn) =
∏

P (xi|Pa(xi)) (1)

Figure 1: A simple Bayesian network. Note that
there is no way of cycling back to any node.

In our case, each node is a feature that is found in a docu-
ment. A feature is any element of a document that is being
used to classify the document. Features can be words, seg-
ments of words, lengths of words, or any other element of a
document. Using these nodes and formula 1, one can find
the probability that an email (document) is spam given all
of the words (features) found in the email. This idea will be
explored further in the following sections. These graphs can
also be used to determine independence of random variables.
For example, in figure 1 node 5 is completely independent of
all other nodes. Node 5 does not have any parents, so there
are no dependencies. Node 11, however, is dependent upon
both node 5 and node 7. In this manner one can determine
the dependence and independence of any random variable in
the DAG. This is an abstract way to view how Bayesian sta-
tistical filtering is done. Bayesian networks and the formula
above rely heavily on the fact that the nodes have dependen-
cies. The models discussed in this paper, however, are naive,
meaning that instead of assuming dependencies they assume
that all features (nodes) are completely independent from
one another. They use the same idea of Bayesian networks,
but simplify it to create a relatively simple text classifier.
Figures 1 and 2 demonstrate the differences visually.

3. NAIVE BAYES
Naive Bayes spam detection is a common model to detect

spam, however it is seldom used in the following implemen-
tation. Most Bayesian spam filters use an optimization of
Naive Bayes which will be covered in sections 4 and 5. Naive
Bayes must be trained with controlled data that is already
defined as spam or ham so the model can be applied to real-
world situations. Naive Bayes also assumes that the fea-
tures that it is classifying, in our case the individual words
of the email, are independent from one another. Addition-
ally, adjustments can be made not only to the Naive Bayes
algorithm of classification, but also the methodology used to
choose features that will be analyzed to determine the class
of a document, which will be discussed further in section 6.

Once the data is given, a filter is created that assigns the
probability that each feature is in spam. Probabilities in this
case are written as values between 0 and 1. Common words
such as “the” and “it” will be assigned very neutral proba-
bilities (around 0.5). In many cases, these words will simply
be ignored by the filter, as they offer very little relevant in-
formation. Now that the filter is ready to detect spam from
the training data, it will evaluate whether or not an email

Figure 2: A visualization of the Naive Bayes model.

is spam based on the individual probabilities of each word.
Figure 2 shows that the words are independent from each
other in the classification of the email, and are all treated
equally. Now we have nearly everything we need to classify
an email. Below is a formula for P (S|W), the probability
than an email is spam given that word W is in the email.
This is also called the spamicity of a word.

P (S|W) =
P (W |S) · P (S)

P (W |S) · P (S) + P (W |H) · P (H)
[10] (2)

W represents a given word, S represents a spam email
and H represents a ham email. The left side of the equation
can be read as “The probability that an email is spam given
that the email contains word W.”P (W |S) and P (W |H) are
the conditional probabilities of the word W . For P (W |S),
this would be the proportion of spam documents that also
contain word W . P (W |H), similarly, is the proportion of
ham documents that also contain word W . These probabili-
ties come from the training data. P (S) the probability that
any given email is spam and P (H) the probability that any
given email is ham vary depending on the approach. Some
use the current probability that any given email is spam.
Currently, it is estimated that around 80%-90% of all emails
are spam [1]. There are also some approaches that choose
to assume there is no previous assumption about P (S), so
they choose to use an even 0.5. Another approach is to use
the data from the training set used to train the filter, which
makes the filter more tailored for the user since the user
classified the training data.

To combine these probabilities we can use the following
formula.

P (S|W) =
P1P2...PN

P1P2...PN + (1− P1)(1− P2)...(1− PN)
[10]

(3)
W denotes a set of words, so P (S|W) is the probability

that a document is spam given that a set of words W occur
in the document. N is the total number of features that
were classified. In the context of email spam, N would be
the total number of words contained in the email. P1...PN

are spamicities of each individual word in the email, which
can also be represented as P (S|W1)...P (S|WN).

For example, let there be a document that contains 3
words. Using formula 2 we determine the spamicities of
the words to be 0.3, 0.075, and 0.5. Then to solve for
the probability that the document is spam we would be
0.3∗0.075∗0.5/((0.3∗0.075∗0.5)+(0.7∗0.925∗0.5)) = 0.034,
meaning that there is a 3.4% chance that the email is spam.

Using such a small data set is not likely to give you a very ac-
curate probability, but using documents with a much larger
set of words will yield a more accurate result. Now we would
likely compare 0.034 to a pre-determined threshold or to
P (H|W) calculated similarly, which would ultimately label
the document as either spam or ham.

4. MULTINOMIAL NAIVE BAYES
Multinomial Bayes is an optimization that is used to make

the filter more accurate. In essence we perform the same
steps, but this time we keep track of the number of oc-
currences of each word. So for the following formulas W
represents a multiset of words in the document. This means
that W also contains the correct number of occurrences of
each word. For purposes of further application, one way to
represent Naive Bayes using Bayes theorem and the law of
total probability is

P (S|W) =
P (W|S) · P (S)∑
S P (S) · P (W|S)

[4] (4)

Recall that W is a multiset of words that occur in a docu-
ment and S means that the document is spam. For example,
if a document had words A, B, C, and C again as its contents,
W would be (A, B, C, C). Note that duplicates are allowed
in the multiset. Since we now have Naive Bayes written out
this way, we can expand it to assume that the words are
generated following a multinomial distribution and are in-
dependent. Note that identifying an email as spam or ham
is binary, we know that our class can only ever be 0 or 1, S
or H. With those assumptions, we can now write our Multi-
nomial Bayes equation as

P (W|S) =
(
∑

W fW)!∏
W fW !

∏
W

P (W |S)fW [4] (5)

where fW is the number of times that the word W takes place
in the multiset W and

∏
W is the product for each word

in W. This formula can be further manipulated, for the
alternative formula and its derivation see Freeman’s Using
Naive Bayes to Detect Spammy Names in Social Networks.
[4]

We now have everything we need except for P (W |S): the
probability that a given word occurs in a spam email. This
can be estimated using the training data provided by the
user. In the following equation αW,S is the smoothing pa-
rameter. It prevents this value from being 0 if there are few
occurrences of a particular word. In doing so it prevents our
calculation from being highly inaccurate. It also prevents a
divide-by-zero error. Usually, this number is set to 1 for all
αW,S , which is called Laplace smoothing. This results in the
smallest possible impact on the value while simultaneously
avoiding errors. Our formula is

P (W |S) =
NW,S + αW,S

NS +
∑

W αW,S
[4] (6)

where NW,S is the number of occurrences of a word W in
a spam email. NS is the total number of words that have
been found in the spam emails up to this point by the filter.
This number will grow as more emails are added to the filter
that are classified as spam and that contain new words.

Now that each of the parameters have a value, you simply
use our initial equation 4 and find the probability. In our

case of email spam detection, it is most likely that the cal-
culated probability would be compared to a certain thresh-
old that is given by the user to classify the email as either
spam or ham. The resulting value could also be compared
to P (H|W), which can be calculated similarly to P (S|W).
The class of the email would be decided by the maximum of
the two values. Note that Multinomial Bayes does not scale
well to large documents where there is a higher likelihood of
duplicate features due to the calculation time.

5. MULTIVARIATE NAIVE BAYES
Multivariate Naive Bayes, also known as Bernoulli Naive

Bayes is a method that is closely related to Multinomial
Bayes. Similar to the multinomial approach, it treats each
feature individually. However, they are treated as booleans.[9].
This means that W contains either true or false for each
word, instead of containing the words themselves. W con-
tains A elements, where A is the number of elements in the
vocabulary. The vocabulary is a set of each unique word
that has occurred in the training data. Each element is true
or false, and each correspond to a particular word. Note
that Multivariate Bayes is still naive, so each feature is still
independent from all other features. We can find the proba-
bilities of the parameters in a similar fashion to Multinomial
Bayes, resulting in the following equation:

P (W |S) =
1 +NW,S

2 +NS
[9]

Note that this multivariate equation of classification also
implements smoothing of 1 in the numerator and 2 in the
denominator to prevent the filter from assigning a 1 or 0 to
certain words. NW,S is the total number of training spam
documents that contain the word W and NS is the total
number of training documents that are classified as spam.
Multivariate Bayes does not keep track of the number of
occurrences of features, unlike Multinomnial Bayes, which
means that Multivariate Bayes scales better. The total prob-
ability of the document can be calculated in the same way
as Multinomial Bayes using equation 4 using our new W.

6. FEATURE SELECTION
For Naive Bayes, the method for determining the rele-

vance of any given word is quite complex. Bayesian feature
selection only works if we assume that features are indepen-
dent from each other and we can assume future occurrences
of spam will be similar to past occurrences of spam. The
filter assigns each word a probability of being contained in
a spam email. This is done by using the following formula
for a given word W :

P (W) =

NW,S

NS

NW,H

NH
+

NW,S

NS

NW,S is the number of times that word W occurs in spam
documents, NW,H is the number of time that word W occurs
in ham documents, NS is the total number of spam docu-
ments and NH is the total number of ham documents. For
example, if the word “mortgage” occurs in 400/3000 spam
emails and 5/300 ham emails then P (W) would be 0.8889.
Words with very high or very low probabilities will be most
influential in the classification of the email. The threshold

for being considered relevant can vary per user, as there is
not one perfect threshold.[2]

As demonstrated by Freeman [4], adjustments can be made
to feature selection to more appropriately suit the given
data. One example of this is given by Freeman. In Free-
man’s case, the author was using words to determine valid
names for LinkedIn. LinkedIn is a social networking service
designed for people looking for career networking or oppor-
tunities. Since names are only ever a few words long, using
individual words for text classification would not be ade-
quate. N-grams, or sections of words, allow Bayesian meth-
ods to be applied. Each word was broken up into 3 letter
segments. For example, the name “David” would be broken
up into (\^Da,dav,avi,vid,id\$). \ˆ and \$ represent the be-
ginning and end of a word, respectively. Then the Bayesian
filter would classify each of those individual n-grams with
different levels of spamicity. Recall that the spamicity of a
word is P (S|W), the probability that a document is spam
given that word W occurs in the document. In our case,
W is an n-gram instead of a word. This can be applied to
things other than n-grams, for example a certain length of
a word can have a spamicity. W can be any desired fea-
ture. It is important to note that using n-grams breaks a
key assumption of Naive Bayes: the features are no longer
independent from each other. However, results indicated
that it was still possible to have reliable outcomes, although
it was also possible to have highly inaccurate outcomes. [4]

Additionally, individual aspects of the document may be
given more weight than others. For example, in an email the
contents of the subject line may be given more weight than
body of the email. This particular adjustment of feature
selection will not be explored in detail in this paper, how-
ever, it is important to note that there are many different
ways that feature selection can be implemented which vary
depending on the type of document that is being classified.

7. ADVANTAGES AND DISADVANTAGES
Naive Bayes is a very simple algorithm that performs

equally well against much more complex classifiers in many
cases, and even occasionally outperforms them. It also does
not classify the email on the basis of one or two words, but
instead takes into account every single relevant word. For
example, if the word “cash” has a high probability of being
in a spam email and the word“Charlie”has a low probability
of being in a spam email and they both occur in the same
email, they will cancel each other out. In that way, it does
not make premature classifications of the email.

Another benefit of Bayesian filtering is that it is constantly
adapting to new forms of spam. This means that as the filter
is identifying spam and ham, it adds that data to its filter
and applies it to later emails. One documented example of
this is from GFI Software [2]. Spammers began to use the
word “F-R-E-E” instead of “FREE”. Once “F-R-E-E” was
added to the database of keywords by the filter, it was able
to successfully filter out spam emails containing that word.
[3, 6]

Bayesian filtering can also be tailor-made to individual
users. The filter depends entirely upon the training data
that is provided by the user, which is classified into spam
and ham prior to training the model. In addition, adjust-
ments can be made not only to the Naive Bayes algorithm
of classification, but also the methodology used to choose
features that will be analyzed to determine the class of a

document as previously discussed. However, this is also one
of the most significant disadvantages of Bayesian filtering
as well. Regardless of the method that you use, you will
need to provide training data to the model. Not only does
this make it difficult to train the model precisely, but it also
takes time depending on the size of the training data.

There have also been instances of Bayesian poisoning.
Bayesian poisoning is when a spammer intentionally includes
words or phrases that are specifically designed to trick a
Bayesian filter into believing that the email is not spam.
These words and phrases can be completely random, this
would tilt the spamicity level of the email slightly more fa-
vorably towards non-spam. However, some spammers ana-
lyze data to specifically find words that are not simply neu-
tral, but actually are more commonly found in non-spam. Of
course, over time, the filter will adapt to these new spam-
mers and catch them. All of this takes time, which can be
an important variable when choosing a classifier. [5]

It is also subject to spam images. Unless the filter is
specifically designed with image detection in mind, it is hard
for the filter to recognize when an image is spam or not, so
in many cases it is ignored. This makes it possible for the
spammer to use an image with the spam message in it as
the email message.

8. TESTING AND RESULTS

8.1 Multinomial Bayes
Freeman ran his Multinomial Bayes classifier on account

names on the social media and networking site LinkedIn.
Specifically, this testing was done using Multinomial Bayes
and n-grams. N-grams were used because account names are
only ever a few words long, and with varying size n-grams.
N-grams of a string in his experiment were defined as the
(m − n + 1) substring of a string of length m represented
as (c1c2...cm). n-grams of a word W can be written as:
(c1c2...cn, c2c3...cn+1, ..., cm−n+1cm−n+2...cm). n is chosen
for the desired size of the n-grams. Freeman used n = 1
through n = 5 for 5 separate trials.

The data was trained with 60 million LinkedIn accounts
that were already identified as either good standing or bad
standing initially. They then chose about 100,000 accounts
to test the classifier on. Roughly 50,000 were known to be
spam and 50,000 were known to be ham from the validation
set. After some trials, it was determined that the values
n = 3 and n = 5 were the most effective for the memory
trade-offs. The higher the n, the more memory that the
classifier used. Storing n = 3 n-grams used approximately
110 MB of distinct memory, whereas n = 5 n-grams used
about 974 MB. As you can see, the rate of memory required
grows rapidly, which is why n = 5 was the highest value
used in the trials.

Accuracy is measured based on precision and recall. Pre-
cision is the fraction of documents classified as spam that are
in fact spam and recall is the fraction of total documents that
are spam. Precision can be calculated by taking tp/(tp+fp)
where tp is “true positive” and fp is “false positive”. Recall
can be similarly computed by taking tp/(tp+ fn) where fn
is “false negative”. In the context of spam detection, true
positive means that the email is truly spam, false negative
means the the email was classified as ham but was spam in
reality, and false positive means the email was classified as
spam but was ham in reality. The results of the new clas-

Figure 3: A graph of the accuracy of the lightweight
and full Multinomial Bayes name spam detection al-
gorithm by Freeman. [4]

sifier increased accuracy of identifying spammy names on
LinkedIn are shown in figure 3. In the graph, the two lines
represent the two algorithms that were used. The“full”algo-
rithm is n = 5 and the “lightweight” algorithm is n = 3. The
lightweight algorithm gets less accurate faster than the full
algorithm, but the lightweight algorithm was deemed better
for smaller data sets due to the smaller memory overhead.
Both are accurate, but the full algorithm was consistently
more accurate.

The algorithm was run on live data and reduced the false
positive rate of the algorithm (previously based on regular
expressions) from 7% to 3.3%. Soon after it completely re-
placed the old algorithm. [4]

8.2 Multivariate Bayes
Multivariate Bayes has proven to be one of the least accu-

rate Bayesian implementations for document classification.
However, it is still surprisingly accurate for its simplicity.
It treats its features as only booleans, meaning that either
a feature exists in a document or it does not exist in doc-
ument. Given only that information, it averaged around a
89% accuracy rating by Metsis [9]. While it is not the most
accurate implementation, it is still applicable to individual
user situations, as it is far simpler than many other clas-
sifiers and still does an adequate job of filtering out spam
messages.

In the graph above, the y-axis is the true positive rate,
and the x-axis is the false positive rate. Multivariate Bayes
yields more false positive rates as the true positive rate in-
creases than Multinomial Bayes. In this study, at total of
6 Naive Bayes methods were tested. Note that the graph
above is an approximation, for the full graph (including the
other Naive Bayes methods), see [7]. The Multinomial Bayes
performed the best of all of the methods used in these tests,
and Multivariate performed the worst. This testing set was
generated using data gathered from Enron emails as ham,

Figure 4: Multivariate Bayes positive rates com-
pared to Multinomial Bayes positive rates. [7]

and mixed in generic non-personal spam emails. This data
was used with varying numbers of feature sets. In figure 4,
3000 features were used per email to classify it. As the
graph demonstrates, this particular Bayesian method is not
the most effective in this case. [7]

9. CONCLUSIONS
In this paper we have analyzed 2 different methods of

Naive Bayes text classification in the context of spam de-
tection. We have also discussed possible modifications to
the feature selection process in increase the accuracy of the
filters. Bayesian text classification can be applied to a mul-
titude of applications, 2 of which were explored here. Most
importantly, it has been observed that Bayesian methods of
text classification are still relevant today, even with new and
more complex methods having been developed and tested.
Minor modifications can make significant differences in ac-
curacy, and finding the modifications that increase accuracy
for a particular environment is the key to making Bayesian
methods effective.

10. ACKNOWLEDGMENTS
Thank you Elena Machkasova and Chad Seibert, for your

excellent feedback and recommendations.

11. REFERENCES
[1] Messaging anti-abuse working group report: First,

second and third quarter 2011. November 2011.

[2] Why bayesian filtering is the most effective anti-spam
technology. 2011.

[3] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. A
comparison of machine learning techniques for
phishing detection. In Proceedings of the Anti-phishing
Working Groups 2Nd Annual eCrime Researchers
Summit, eCrime ’07, pages 60–69, New York, NY,
USA, 2007. ACM.

[4] D. M. Freeman. Using naive bayes to detect spammy
names in social networks. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and
Security, AISec ’13, pages 3–12, New York, NY, USA,
2013. ACM.

[5] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein,
and J. D. Tygar. Adversarial machine learning. In
Proceedings of the 4th ACM Workshop on Security
and Artificial Intelligence, AISec ’11, pages 43–58,
New York, NY, USA, 2011. ACM.

[6] B. Markines, C. Cattuto, and F. Menczer. Social spam
detection. In Proceedings of the 5th International
Workshop on Adversarial Information Retrieval on the
Web, AIRWeb ’09, pages 41–48, New York, NY, USA,
2009. ACM.

[7] V. Metsis, I. Androutsopoulos, and G. Paliouras.
Spam filtering with naive bayes - which naive bayes?
In CEAS, 2008.

[8] I. Shmulevich and E. Dougherty. Probabilistic Boolean
Networks: The Modeling and Control of Gene
Regulatory Networks. Society for Industrial and
Applied Mathematics. Society for Industrial and
Applied Mathematics, 2010.

[9] V. M. Telecommunications and V. Metsis. Spam
filtering with naive bayes – which naive bayes? In
Third Conference on Email and Anti-Spam (CEAS,
2006.

[10] Wikipedia. Naive bayes spam filtering — wikipedia,
the free encyclopedia, 2014. [Online; accessed
18-October-2014].

