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What is it?

Spam

Anything that is
undesired by the user
Email spam
Comment spam

Ham

Non-spam

Bayesian Approach

Statistics based
document classification
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Why do We Care?

70-90% of all
emails are spam

Global issue

Security

Advertising
Scams
Identity theft

Quality of life
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Overview

1 Intro
Setup

2 Naive Bayes
Explanation and example
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Explanation and example
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Explanation and example
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Multinomial Bayes
Multivariate Bayes
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Setup

Training data

Prepare the filter before use
Pre-classified documents that
the user specifies

Prior probability

Probability that an event
occurs

Conditional probability

Probability of an event given
that another event has
occurred

P(snowing) VS P(snowing |summer)
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Naive Bayes Classifier
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Naive Bayes Classifier

P(S |W ) = Spamicity(W )

The probability that a document is spam given that word W occurs in the
document.

Count(S ,W )·P(S)
Count(S ,W )·P(S)+Count(H ,W )·P(H)
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Classify the Document

P(S |All words) = Spamicity(All words)
Spamicity(All words)+Hamicity(All words)

Compare to threshold or

P(H |All words) = Hamicity(All words)
Hamicity(All words)+Spamicity(All words)
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Naive Bayes Example

Spamicity
Count(S ,W )·P(S)

Count(S ,W )·P(S)+Count(H,W )·P(H)

Classification
Spamicity(All words)

Spamicity(All words)+Hamicity(All words)

S(Purple): 1·2/3
(1·2/3)+(1·1/3) = 2/3

S(Circle) = 4/5

H(Purple): 1·1/3
(1·1/3)+(1·2/3) = 1/3

H(Circle) = 1/5

Doc Content
1 Purple Black Purple Circle H
2 Circle Square Square Red S
3 Square Purple S

Purple Purple Circle ?

P(S) = 0.667∗0.8
(0.667∗0.8)+(0.333∗0.2) ≈ 0.89

P(H) = 0.333∗0.2
(0.333∗0.2)+(0.667∗0.8) ≈ 0.11

Spam
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Multinomial Bayes

Optimization of Naive Bayes classifier

Multinomial distribution of words

Words are independent

Instead of counting documents, count words

Instead of calculating P(S |W ) calculate P(W |S)

P(S |All words) = P(S) · P(W1|S)f1 · . . . · P(Wn|S)fn

↑ ↑
Prior Conditional
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Multinomial Bayes Example

Priors
P(H) = 1

3 P(S) = 2
3

Conditional
P(W |S) = Count(W ,S)+1

Count(S)+Vocabulary

P(Purple|S) = (1+1)/(6+5) = 2/11

P(Circle|S) = 2/11

P(Purple|H) = (2 + 1)/(4 + 5) = 3/9

P(Circle|H) = 2/9

Doc Content
1 Purple Black Purple Circle H
2 Circle Square Square Red S
3 Square Purple S

Purple Purple Circle ?

P(S) = 2/3 ∗ (2/11)2 ∗ 2/11
≈ 0.004

P(H) = 1/3 ∗ (3/9)2 ∗ 2/9
≈ 0.008

Ham
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Multivariate Bayes

Another optimization of Naive Bayes

Similar to Multinomial Bayes, simpler

Combines ideas from Naive Bayes and Multinomial Bayes

Calculate probabilities like Multinomial Bayes

Counts documents like Naive Bayes
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Multivariate Bayes

1
↓

P(S |All words) = P(S) · P(W1|S)f1 · . . . · P(Wn|S)fn

↑ ↑
Prior Conditional
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Multivariate Bayes
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Multivariate Bayes Example

Priors
P(H) = 1

3 P(S) = 2
3

Conditional
P(W |S) = 1+Count(S ,W )

2+Count(S)

P(Purple|S) = (1 + 1)/(2 + 2) = 1/2

P(Circle|S) = 1/2

P(Purple|H) = (1 + 1)/(2 + 1) = 2/3

P(Circle|H) = 2/3

Doc Content
1 Purple Black Purple Circle H
2 Circle Square Square Red S
3 Square Purple S

Purple Purple Circle ?

P(S) = 2/3 ∗ 1/2 ∗ 1/2 ≈ 0.166

P(H) = 1/3 ∗ 2/3 ∗ 2/3 ≈ 0.148

Spam
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Feature Selection

Features:

Words
Lengths of words
Letters
Images
N-grams of words

3-gram of “david”

( da, dav, avi, vid, id )
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Multinomial Bayes Testing

Freeman 2013

LinkedIn account names

60 million accounts

100,000 were chosen to be tested, 50,000 spam and ham

N-gram values 3(Lightweight) and 5(Full)

110 MB vs 974 MB
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Results
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Results

Larger data sets ⇒ Lightweight
algorithm

Memory tradeoffs become
more relevant
More reliable for more
documents

Both more effective than
previous algorithm

Based on regular expressions

Chose Full algorithm

Cut false positive rate in half
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Multivariate Bayes

Athens University of Economics and Business

Data collected from Enron employees

Subject line and body
Ham only

Mixed in unique generic spam emails

Emulate real-time spam filtering

Ordered the emails chronologically (complicated)

43,000 ham, 50,000 spam

Clustered emails into chunks of 100

Filter updated after each chunk
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Results
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Results

Multivariate Bayes performed
relatively poorly

Multivariate Bayes still
moderately effective

Less effective than Multinomial
Bayes

Multinomial Bayes performed
best in all cases
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Advantages and Disadvantages of Bayesian Spam Filtering

Advantages

Adjustable accuracy

Different models for different
needs

User control

Constantly adapts

Disadvantages

Training data

Training time and memory usage

Bayesian poisoning
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Thank you!

Questions?

eberh060@morris.umn.edu
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