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ABSTRACT

Automatic chord recognition from audio is used in the area
of Music Information Retrieval (MIR) to document and cat-
egorize music. In addition to providing harmony to mu-
sic, chords also provide a way to describe the harmony of a
piece. In almost every chord recognition system the audio
signal is represented by a Pitch Class Profile (PCP), which
measures the intensity of energy in each of the frequency re-
gions where musical notes occur [5]. Some systems perform
what is known as preprocessing before generating a PCP, to
get rid of unwanted frequencies in the audio file. The next
step, known as pattern matching, is to assign chord labels
by matching the harmonic features to a set of chord mod-
els. In this paper we will discuss these processes in greater
detail and compare the results of three research cases, each
of which uses a different chord recognition system.
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1. INTRODUCTION

A chord is a set of tones played simultaneously. A chord
progression is a sequence of chords over time and is what de-
scribes the harmony of a piece [2]. Automatic chord recog-
nition is the process of extracting a chord progression from
an audio file. These chord sequences are used by musicians
as lead sheets (summaries containing chords, melody, and
lyrics) as well as by researchers for tasks such as key de-
tection, genre classification, and lyric interpretation. Per-
forming chord analysis by hand is time consuming, prone
to human error, and requires two or more trained experts.
This is what makes automatic chord recognition an impor-
tant area of research [4].

The two main steps of automatic chord recognition are
feature extraction and pattern matching. Feature extraction
is the process of extracting useful information from audio
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files, and pattern matching is how chord labels are applied
to that data.

There are many challenges encountered by systems that
process audio signals. There are background noises, percus-
sion instruments, and other unwanted tones in audio record-
ings. It is also difficult to distinguish when chords change
and to line these points up exactly with the beat. Prepro-
cessing helps eliminate unwanted information from the audio
files before or during the feature extraction step, depending
on the system. An overview of the chord recognition system
used in [5] can be seen in Figure 1.

These systems have been improving and becoming more
usable in recent years. This paper will compare three dif-
ferent systems that use a variety of techniques in each step
of the process. By looking at the components of the high-
est performing systems, we will determine the most effective
methods used in each step.

2. BACKGROUND

In order to explain the process of automatic chord recog-
nition, some general information about feature extraction
and pattern matching is needed.

2.1 Feature Extraction

The first step of generating a chord progression from audio
data is processing the signal to extract harmonic features.
Feature extraction is a fairly simple process, but can become
more complex due to the addition of optimization steps to
increase accuracy [4]. Preprocessing is one of these steps,
performed during feature extraction, which results in a Pitch
Class Profile (PCP), representing what notes are present
over time.

2.1.1 Preprocessing

In Figure 2, the light areas show where frequencies have
been detected, and the dark areas show empty space. It is
clear that frequencies other than just the chord tones have
been detected because the light areas are not solid white and
the dark areas not solid black. The goal of preprocessing is
to reduce as much of this background noise as possible from
the audio file, in an effort to provide a smooth and clear PCP.
Another issue is that musical instruments produce a series
of harmonics at higher and lower frequencies than the tone
that is played. These tones, called overtones, can confuse
feature extraction techniques, so they need to be removed.
These two issues, background noise and overtones, are usu-
ally addressed separately during preprocessing.
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Figure 1: Overview of the chord recognition system used in research case 1 [5].
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Figure 2: A typical chromagram, or PCP, generated
from the opening to Let It Be (Lennon/McCartney).
Pitch class (chroma) at time t is shown by the light-
ness at that point. The true chord progression (sim-
plified) is shown above for comparison.

2.1.2  Pitch Class Profile

The pitch of a note is measured in two dimensions - height
and chroma (pitch class). Height tells which octave a note
belongs to, and chroma tells where a note stands within
the octave (the name of the note). Height is not a factor
in determining chord type because two notes that are an
octave apart have the same chroma value. A chromagram,
or PCP, is a 12-dimensional vector representation of chroma,
representing the intensity of each of the twelve semitones in
the chromatic scale, over a period of time. An example of
a common PCP, along with the actual progression, can be
seen in Figure 2 [4].

For over a decade PCP has been the most popular way to
represent harmonic features for chord recognition. Most new
approaches are variations or refinements of this approach [1].
These systems can have many more steps in converting audio
to PCP including tuning correction, which compensates for
music that is not tuned to standard pitch A4 = 440 Hz,
and beat-synchronization, which calculates the average pitch
between beats to get rid of changes caused by noise and other
transients. [4].

2.2 Pattern Matching

Almost all chord recognition systems use PCP or some
other chroma-based feature extraction technique. What dif-
ferentiates these systems is the mechanism used to assign
the chord labels. Generating the chord model against which
the PCP will be matched can be done either by hand (using
musical knowledge), or stochastically (by deriving it from
real-world music). The most basic way to model chords is by
hand, describing the known note distribution of a chord. An

example of a binary chord template (individal chord model)
for a C major triad (chord containing 3 notes) would look
like [1 0001001000 0], where each digit left to right
follows the chromatic scale starting at C. A 1 indicates the
presence of a note and 0 represents the absence of a note.
Using this method, each chord template is created and then
tested on each frame (time point around 25ms, depending
on the system) of a PCP, to find the best fit. The problem
with this method is that a lot of times chord tones are not all
played at the same time or held for the same duration. More
sophisticated chord models are generated stochastically, by
defining probability distributions for each chord type that a
system can recognize [1].

2.2.1 Hidden Markov Models

A hidden Markov model (HMM) is a statistical model
which describes a finite set of states, in this case chords.
Since we do not know the chord progression for a given audio
file, these states are considered to be hidden, the observed
states are the PCP frames. Transitions between these states
are given probabilities that describe the likelihood of tran-
sitioning from one state (chord) to another. In the research
cases reviewed in this paper, supervised HMMs are used,
meaning that these probabilities are learned from a set of
labeled training data (audio that has been assigned chord
labels by hand or some other system) [6]. The chord tran-
sition probabilities are learned for a chord by dividing the
number of transitions to each chord by the total number of
transitions from that chord. This is done for each chord
in the training data. An example of transition probabilities
from the C major chord can be seen in Figure 3. The Viterbi
algorithm is then used, which estimates the the best previ-
ous chord for each frame recursively, storing the paths in a
table. Using the observed states and known transition prob-
abilities, the most likely sequence is estimated and unlikely
transitions are restricted [1].

2.2.2 Gaussian Mixture Models

In a Gaussian mizture model (GMM), more detailed mod-
els for each chord type are created by averaging multiple
PCPs for that type. This is done for each chord type for
each of the 12 notes. Multiple Gaussian components are
also used, which represent different variations of the same
chord (i.e., chords with notes excluded or doubled up), pro-
viding a more accurate fit. The fit of a frame is measured
by the likelihood of a model for that frame.

For GMM training, PCPs from the training data are seg-
mented by chord type (i.e., 12 major, 12 minor, depending
on what chords are being recognized). To increase the num-
ber of training samples, all PCP values for these segments
are rotated so that the root (name) is C. These segments are



Type | Sample Rate | FFT Length | Liftering | HPS Ratio
FV1 FB 44100 32768 yes 5
Fv2 | PCP 11025 4096 no 1
FV3 | PCP 44100 32768 no 1
Fv4 | PCP 44100 32768 yes 5

Table 1: Feature Vectors, or combinations of methods used for feature extraction, for isolated chord recog-

nition in research case 1 [5].
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Figure 3: An example of transition probabilities
from the C major triad, learned from training data.

then averaged to create models for C-major and C-minor
chords, which are then copied and shifted for the remaining
11 keys [4].

2.2.3  Support Vector Machines

Support Vector Machines (SVMs) are another type of su-
pervised learning model used for pattern matching. Given a
set of labeled training data, SVMs assign labels to segments
of the test data. A full explanation of SVMs is outside the
scope of this paper, as they are only used in one research
case for comparison. Many systems use existing tools for
SVM classification.

3. RESEARCH CASES

This paper looks at three research cases that involve au-
tomatic chord recognition. All of these cases include fea-
ture extraction and pattern matching. Here we will give an
overview of each system, the datasets that were used, and a
summary of the results.

3.1 Case 1: Effects of Proper Signal
Processing

The first research case [5] uses a chord recognition system
that begins with a preprocessing block, followed by feature
extraction, where the PCP is calculated. After this, the sig-
nal is segmented along predicted chord boundaries, and then
chord labels are assigned to each segment (pattern match-
ing). An overview of this system can been seen in Figure 1.

There are two stages in the preprocessing block, to address
background noise and overtones. The first step, Homomor-
phic Liftering, is a method of separating out the frequencies
of musical tones from background and system noise. This is
done by finding strong frequency peaks in areas correspond-
ing to the pitch range of the notes. Frequencies above and
below a specified range can also be removed to reduce noise.

The second step, known as the Harmonic Product Spectrum
(HPS), is a method which emphasizes frequencies when their
overtones are present. HPS is calculated by compressing the
spectrum by factors of 1 to R (i.e., 1:2 compression ratio)
and multiplying the resulting compressed spectra. The re-
sulting output energy is then summed according to pitch
class before a PCP is created.

The first step of pattern matching for this system is chord
segmentation, where the audio signal is segmented at the
boundaries where chords change. This can be difficult when
the notes of a chord are not played all at once or not held
for the same length. To find the points where change has
occurred the PCP is analyzed frame-by-frame to find signif-
icant change in pitch-class content.

The next and final step in this system is assigning chord
labels to the segments. Given an instance of the PCP for a
region of the audio, the most probable chord label is picked
from a set of training PCPs. In this research case the use
of GMMs and SVMs are compared for classification. For
SVM classification, a tool called the OSU SVM Classifier
MATLAB Toolbox was used (as explained in [5]).

3.1.1 Datasets

In this case Musical Instrument Digital Interface (MIDI)
data was used to create the audio. Two datasets were used:
one of isolated chords synthesized on piano and strings, and
one of continuous single-instrument music synthesized on
piano.

The isolated chord dataset consisted of 7790 chords and
inversions (where the notes are stacked in a different or-
der). Three chord complexity levels were tested, labeled
DS1, DS2, and DS3 (seen in Table 2). DS1 involved the
four common triad types (major, minor, augmented, and
diminished), across all 12 notes. No other chords were used
in DS1. DS2 added variations of the 7th chord (chords con-
taining four notes): major 7th, minor 7th, dominant 7th,
fully diminished 7th, and half diminished 7th. In DS3 all 11
different chord types that the system could recognize were
used.

Four Feature Vectors (FV), or combinations of methods
used for feature extraction, were compared on each of these
complexity levels, seen in Table 1. FV1 started with prepro-
cessing using homomorphic liftering with a lower cutoff of
30Hz and upper frequency cutoff of 4kHz, then computing
HPS with a compression ratio R = 5. Instead of PCP, FV1
uses an 84 dimensional vector (representing 7 octaves with
12 notes per octave). The hypothesis was that this would
provide more information because the octaves weren’t flat-
tened down to one. FV2 had a lower sampling rate (au-
dio quality), shorter Fast Fourier Transform (FFT) window
length (used in converting audio to frequency domain), and
no preprocessing was performed on the audio signal. This
feature vector was chosen to match a previous system that



Label given in:
Chord Label | DS1 DS2 DS3
Major Major | Major Major
Minor Minor | Minor Minor
Major 7 - Major Major 7
Minor 7 - Minor Minor 7
Dom. 7 - Major Dom. 7
Dim. Dim. Dim. Dim.
Full Dim. - Dim. Full Dim.
Half Dim. - Dim. Half Dim.
Augmented Aug. Aug. | Augmented
Sus. 4 - - Sus. 4
7 Sus. 4 - - 7 Sus. 4

Table 2: Chord complexity levels used in research
case 1 [5].

was being comparing against. FV3 increases the sample
rate and FF'T, but still leaves out preprocessing. FV4 intro-
duces preprocessing using the same homomorphic liftering
and HPS as FV1.

The continuous single-instrument audio dataset consisted
of 50 hymn verses selected from the Trinity Hymnal, a MIDI
collection of 761 hymns, synthesized on piano. 40 were used
for training and 10 for testing. Labels similar to DS3 were
used, with the exception of 7 Sus. 4, Full Dim., and Half
Dim. chords, as they were not common in the dataset. F'V4
was used as the feature vector [5].

3.1.2 Results

For the isolated chords dataset, this system was trained
using chords synthesized on a piano, and was tested on
chords synthesized on both piano and on strings. The dataset
was randomly divided with 80% of the chords used for train-
ing and 20% for testing. Five of these training and test-
ing sets were created and the recognition rates from these
were averaged. The overall chord recognition accuracies for
GMDMs can be seen in Table 3 for piano, and in Table 4 for
strings. FV4 performed the best with the chords played on
strings, and showed the least difference between recogniz-
ing piano and string chords [5]. The results of classification
using SVMs can be seen in Table 5. Using SVMs clearly
outperformed GMMs when tested with the instrument that
they were trained with, yielding accuracy rates up to 95%.
This was not the case however, when SVMs were tested on
strings when trained on piano. In this case SVMs actually
did not work because an SVM requires knowledge of the type
of data in the testing set, so these results were not included.

For the continuous single-instrument dataset, the number
of scatter points (7 scatter points means the partition frame
plus 3 frames on each side) were compared, as shown in
Table 6. Recognition accuracy of around 88% was achieved.
Melody tones that were not part of the chord made this more
difficult than labeling the isolated chords [5].

3.2 Case 2: HMM Trained with Audio from
Symbolic Data

In the next research case [2], symbolic data in Humdrum
data format is used to generate training data for an HMM.
Humdrum is a software toolkit used for music research. The
data is used to generate a chord label file (containing chord
names and times), and an audio file (synthesized from MIDI),

Feature Vector | DS1 | DS2 | DS3
FV1 83.68 | 61.85 | 57.24
FV2 90.33 | 82.44 | 82.26
FV3 91.76 | 84.20 | 84.09
FVv4 85.64 | 79.40 | 78.93

Table 3: Isolated chord recognition accuracy using
GMM, training set: piano, testing set: piano [5].

Feature Vector | DS1 | DS2 | DS3
FVi1 68.06 | 42.00 | 33.62
FV2 42.72 | 18.60 | 16.30
FV3 43.49 | 22.00 | 18.31
FV4 86.94 | 80.23 | 80.18

Table 4: Isolated chord recognition accuracy using
GMM, training set: piano, testing set: strings [5].

from the same data. Chroma analysis is then performed on
the audio file to get a PCP, which is used as input to the
trained HMM along with the chord label file. This system
is visualized in Figure 4.

A 36-state HMM is used, with each state representing a
chord (major, minor, and diminished for each 12 pitches).
Once the model parameters are learned, the Viterbi algo-
rithm is applied to find the optimal sequence in a maximum
likelihood sense.

3.2.1 Datasets

Two training datasets were used: the first consisted of
81 solo piano pieces by J.S. Bach, Beethoven, and Mozart,
and the second consisted of 196 string quartet pieces by
Beethoven, Haydn, and Mozart. For the testing datasets,
five piano solos and five string quartet pieces were selected
from the Kostka and Payne’s book, which includes hand-
marked analysis and audio recordings done by the com-
posers. Both of these sets were tested using both of the
training datasets, as well as third that consisted of the first
two combined, resulting in six possible training - testing
pairs. The output of the system was compared to the hand-
marked data to check for accuracy [2].

3.2.2 Results

The results of the experiments in this case can be seen in
Table 7. The recognition rate was highest for the combined
training dataset, at 80%, although the difference is not sig-
nificant. Further analysis on the results showed that the
highest error came from non-chord tones in the melody, es-
pecially in faster pieces. This is because the analysis window
would span over multiple chord changes, which confused the
system. Other issues were caused by the system treating
7th chords the same as triads because 7th chords contain
two triads.

3.3 Case 3: Importance of Individual
Components

The final research case [1] consists of four experiments,
testing different methods used for each step of the process.
The overall recognition system in this case is defined as a
feature extraction step and pattern matching step, with op-
tional pre-filtering and post-filtering steps. In this case pre-
processing is part of the feature extraction step. An overview



Expt. | Highest Accuracy Pre-filtering Pattern Matching Post-filtering
1 58.30 - 1 Gaussian component -
2 71.22 Moving average filters | 1 Gaussian component -
3 77.90 - 25 Gaussian components HMM
4 77.58 Moving average filters | 25 Gaussian components HMM

Table 8: Results from research case 3 [1], showing the highest accuracy in each experiment, and the compo-

nents used to achieve it.

Feature Vector | DS1 | DS2 | DS3
FVi1 93.43 | 88.21 | 86.52
FV2 94.78 | 93.26 | 93.13
FV3 95.23 | 94.31 | 94.24
FV4 90.56 | 88.08 | 87.74

Table 5: Isolated chord recognition accuracy using
SVM, training set: piano, testing set: piano [5].

Number of Scatter Points
3 5 7 9
72.73 | 87.77 | 88.07 | 88.42

Table 6: Continuous single-instrument recognition
accuracy with varying number of scatter points [5].

of the system can been seen in Figure 5. Pre-filtering is ap-
plied to PCPs directly before pattern matching, and con-
sists of averaging frames between beats, yielding a beat-
synchronized PCP. Post-filtering is performed after pattern
matching, in the form of an HMM using a Viterbi decoder.
In the first experiment, different combinations of chroma
features and chord models were tested to show whether or
not model complexity affects performance of the system.
The second experiment looked at the effect of different pre-
filtering techniques, while the third looked at the effect of
post-filtering. The fourth experiment used both pre-filtering
and post-filtering, in all possible parameter combinations.

3.3.1 Datasets

Each of the four experiments in this research case were
performed on 180 Beatles songs, 20 Queen songs, 100 songs
from the RWC (Real World Computing) pop dataset, and
195 songs from the US-Pop dataset, for a total of 495 songs.
The RWC and US-Pop dataset were assigned chord labels by
hand, while the Beatles and Queen chord models were gener-
ated stochastically. For training, 5-fold cross validation was
used with each group having 99 songs selected randomly. For
each fold one group is selected and the other four are used
for training. Accuracy is represented by the total duration
of correct chords out of the total duration of the dataset [1].

3.3.2 Results

The results of the four experiments conducted in this case
can be seen in Table 8. In all four experiments the best
results were found using a combination of these two prepro-
cessing methods: de-emphasizing high and low frequencies
and using log compression, which limits the dynamic range
caused by multiple instruments at different volumes. Each
experiment was also tried using 1, 5, 10, and 25 Gaussian
components, to test if a more complex chord model would
increase accuracy. For each experiment the best result and
components used to achieve it are shown in Table 8.
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Figure 4: Overview of the HMM trained with audio
from symbolic data in research case 2 [2].

In the first experiment, no filtering was applied during the
process. This experiment was testing the difference between
preprocessing techniques in the feature extraction stage (the
best combination is mentioned above). We would expect to
see higher accuracy with more Gaussian components used,
but that was not the case in this experiment, where the
best score was found by using only one component. The
highest error was in distinguishing major and minor chords
with the same root, because two of the notes are shared
and the third is only a half-step different. For the second
experiment, pre-filtering was applied using mowving average
filters, which look for noisy frames and smooth them across
the neighboring frames. The highest accuracy in this ex-
periment was again achieved by using only one Gaussian
component. The third experiment used post-filtering with



Training Data Test Data Recognition Rate

Piano Piano 68.69
String Quartet Piano 73.40
Piano & Strings Piano 74.41
Piano String Quartet 79.35
String Quartet | String Quartet 79.76
Piano & Strings | String Quartet 80.16

Table 7: Recognition results for all six possible
training - test pairs in research case 2 [2].
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Figure 5: General layout of the chord recognition
system used in research case 3 [1]. In this case pre-
processing is included in the feature extraction step.

no pre-filtering, and here we see that the best performance
was achieved by using more Gaussian components. This is
because post-filtering is dependent on the probability val-
ues for different chord models. The final experiment, using
both pre-filtering and post-filtering, showed about the same
result as post-filtering alone. This is because moving aver-
age filters sometimes did too much smoothing and ended up
blurring out chord boundaries and other signal detail.

4. CONCLUSIONS

The highest accuracy that we see in this paper was around
95% for the isolated chord dataset using SVMs in [5]. This
is more of a proof of concept since these systems are aimed
at providing chord data for an entire song. If we look at the
results of all experiments tested on continuous music, we
see that the highest accuracy achieved was around 88% for
the continuous music dataset in [5]. The components used
in this experiment were: preprocessing using homomorphic
lifering and HPS with a ratio of R = 5, chord segmentation
using SVMs, and chord recognition using SVMs. This was
using a relatively small dataset, they mention in [5] that
the training procedure for SVMs is very complex with large
amounts of data. This implies that the system used for chord
recognition is somewhat dependent on the dataset that is
being tested. Systems can be tailored specifically to the type
of instrument and chords that are present in the dataset.

There are still many issues and pitfalls with these and all
chord recognition systems. Music that has a lot of different

instruments, fast chord changes, and types of chords that
are not recognized can cause significant problems if they are
not expected. The pattern matching techniques in this pa-
per assume that individual chords are independent of each
other, but in real-world music some chords can only be la-
beled correctly by the context of the surrounding chords [1].
An example is a secondary chord, which is borrowed from
another key. These chords would be given a chord label that
is not in the key of the song, rather than the secondary label
that would be applied by hand. Detecting these and other
non-regular chords would be very difficult for these systems,
as they only recognize the chords that they are designed for.

4.1 Future Work

With the increasing amount of data that is available on-
line, some systems have been developed that scrape online
databases of songs that have already been labeled to use
for training data. The advantage here is having a large
amount of labeled chord data without having to generate
it. The system in [3] was able to scrape chord informa-
tion from e-chords.com for over 75,000 songs. There are
also genre-specific models, which account for different chord
transition probabilities in different genres of music. These
models can also be used to identify genre by testing with
all of the genre models and selecting the one with the best
result [4]. Progress is being made in this area, including
mobile apps that can provide chord data for audio captured
with the microphone.
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