
Automatic Chord Recognition from Audio

Alex R. Emmons
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

emmon046@morris.umn.edu

ABSTRACT
Automatic chord recognition from audio is used in the area
of Music Information Retrieval (MIR) to document and cat-
egorize music. In addition to providing harmony to mu-
sic, chords also provide a way to describe the harmony of a
piece. In almost every chord recognition system the audio
signal is represented by a Pitch Class Profile (PCP), which
measures the intensity of energy in each of the frequency re-
gions where musical notes occur [5]. Some systems perform
what is known as preprocessing before generating a PCP, to
get rid of unwanted frequencies in the audio file. The next
step, known as pattern matching, is to assign chord labels
by matching the harmonic features to a set of chord mod-
els. In this paper we will discuss these processes in greater
detail and compare the results of three research cases, each
of which uses a different chord recognition system.

Keywords
Automatic chord recognition, hidden Markov models, pitch
class profile, signal processing

1. INTRODUCTION
A chord is a set of tones played simultaneously. A chord

progression is a sequence of chords over time and is what de-
scribes the harmony of a piece [2]. Automatic chord recog-
nition is the process of extracting a chord progression from
an audio file. These chord sequences are used by musicians
as lead sheets (summaries containing chords, melody, and
lyrics) as well as by researchers for tasks such as key de-
tection, genre classification, and lyric interpretation. Per-
forming chord analysis by hand is time consuming, prone
to human error, and requires two or more trained experts.
This is what makes automatic chord recognition an impor-
tant area of research [4].

The two main steps of automatic chord recognition are
feature extraction and pattern matching. Feature extraction
is the process of extracting useful information from audio

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2014 Morris, MN.

files, and pattern matching is how chord labels are applied
to that data.

There are many challenges encountered by systems that
process audio signals. There are background noises, percus-
sion instruments, and other unwanted tones in audio record-
ings. It is also difficult to distinguish when chords change
and to line these points up exactly with the beat. Prepro-
cessing helps eliminate unwanted information from the audio
files before or during the feature extraction step, depending
on the system. An overview of the chord recognition system
used in [5] can be seen in Figure 1.

These systems have been improving and becoming more
usable in recent years. This paper will compare three dif-
ferent systems that use a variety of techniques in each step
of the process. By looking at the components of the high-
est performing systems, we will determine the most effective
methods used in each step.

2. BACKGROUND
In order to explain the process of automatic chord recog-

nition, some general information about feature extraction
and pattern matching is needed.

2.1 Feature Extraction
The first step of generating a chord progression from audio

data is processing the signal to extract harmonic features.
Feature extraction is a fairly simple process, but can become
more complex due to the addition of optimization steps to
increase accuracy [4]. Preprocessing is one of these steps,
performed during feature extraction, which results in a Pitch
Class Profile (PCP), representing what notes are present
over time.

2.1.1 Preprocessing
In Figure 2, the light areas show where frequencies have

been detected, and the dark areas show empty space. It is
clear that frequencies other than just the chord tones have
been detected because the light areas are not solid white and
the dark areas not solid black. The goal of preprocessing is
to reduce as much of this background noise as possible from
the audio file, in an effort to provide a smooth and clear PCP.
Another issue is that musical instruments produce a series
of harmonics at higher and lower frequencies than the tone
that is played. These tones, called overtones, can confuse
feature extraction techniques, so they need to be removed.
These two issues, background noise and overtones, are usu-
ally addressed separately during preprocessing.

PREPROCESSING
FEATURE

EXTRACTION
SEGMENTATION

CHORD

RECOGNITION

Time-Aligned

Chord Labels

PATTERN RECOGNITION

Acoustic

recording

Figure 1: Overview of Chord Recognition system
implemented as a pattern recognition system

of music relies primarily on its spectral content, we use a
summed representation of the signal spectrum known as the
Pitch Class Profile (PCP) [14]. The PCP, previously used in
the field of musical cognition [9, 12], is defined as an energy
measure of the spectral content in the log2 spaced regions
corresponding to musical pitch. This 12-dimensional vec-
tor represents the energy contained in each of the 12 pitch
classes, {C, C#, D, . . . , B}. By centering non-overlapping
bandpass filters on a set of musical frequencies spanning the
range of frequency in which notes are generally played, we
obtain an Nfb-dimensional vector of normalized spectral en-
ergies, Xcq , which is an approximation to the Constant-Q
transform, where Nfb is the number of filters in such a fil-
terbank. For the experiments presented in this paper we
used Nfb = 84 filters (7 octaves) corresponding to musical
pitches with center frequencies from a low of C1 = 32.703Hz
to a high of B7 = 3951.1Hz. The filterbank outputs are ob-
tained directly from an FFT calculation by warping the fre-
quency axis to the log2 scale and summing, for each center
frequency, the magnitudes of the FFT bins whose warped
frequencies were closest to each individual log2 center fre-
quency. Using a total of Nfb = 84 frequency bins, the first
frequency band corresponds to the lowest C on the piano,
(fc0 = 32.703 Hz), and the resulting sequence of band center
frequencies can be specified as,

fck = fc0 · 2k/12, k = 0, 1, 2, . . . , Nfb − 1 (1)

resulting in the set of center frequencies {fc0, fc1, . . . , fcNfb−1}.
The output vector, Xcq can then be calculated as the energy
outputs of the warped frequency domain filters as described
above (each bin normalized to compensate for the number of
FFT points in the summation). Each PCP bin can then be
calculated as a weighted summation of every 12th filterbank
bin, i.e.,

PCP (l) =
�
j∈Cl

αlXcq(j) l = 0, 1, . . . , 11 (2)

where j is indexed such that j mod 12 = l corresponds to
the pitch class l, Cl the set of frequency bins belonging to
pitch class l, and αl is the set of weighting factors for pitch
class l.

2.2 Preprocessing
Since the information required to perform chord classi-

fication is related only to the fundamental frequencies of
the sounded notes, it will aid the classifier to eliminate in-
formation not related to the note pitches. By using signal
processing methods, the effects of timbre, or the quality of
the sound not related to pitch or volume, can be effectively
reduced. This is achieved by a two-stage process of Ho-
momorphic Liftering followed by the use of the Harmonic
Product Spectrum, as illustrated in Figure 2. Homomor-
phic processing provides a method of deconvolving signals

whose frequency support regions lie in different portions of
the spectrum, effectively separating them out in the cep-
stral domain. The harmonic product spectrum provides a
method of reducing overtones, which add energy to pitch
classes not directly related to the actual notes played.

A musical tone, whether produced by a vibrating string
or a tube, can be treated as the output of a linear system
excited by a harmonic oscillation or a periodic sequence of
impulses. Because the frequency components of the musical
signal are all that is needed to ’understand’ the underlying
chord structure, it is useful to separate the system excitation
from the system impulse response. Homomorphic process-
ing provides a viable method for separating the excitation
portion of the signal from the impulse response of the sys-
tem, which have been convolved together in the production
of the musical signal. The way in which we perform this
separation is further explained in [13]. Consider, y[n], the
output of a linear system, h[n], excited by a periodic signal
x[n], i.e.,

y[n] = x[n] ∗ h[n] (3)

with resulting z-transforms

Y (z) = X(z)H(z) (4)

A homomorphic system for the deconvolution of x[n] and
h[n] utilizes the logarithm of the Discrete Fourier Transform
(DFT) of y[n], producing

Ŷ (z) = log[Y (z)] = log[X(z)] + log[H(z)] (5)

Taking the inverse DFT (evaluated on the unit circle, z =
ejω) gives

ŷ[n] =
1

2π

� π

−π

Ŷ (ejω)ejωndω (6)

Ignoring the imaginary portion of the above integral, the

HAMMING

WINDOW

400msx(n)

Input

Signal
FFT

NFFT = 32768
ABS{LOG{ . }}

IFFT

(RIGHT HALF)

LIFTERING

Te > T > Tmax = 0 c(n)

CepstrumLARGE FFT

NFFT = 32768

Homomorphically

Liftered Spectrum

COMPRESSION

RATIO 2:1

COMPRESSION

RATIO 3:1

COMPRESSION

RATIO R:1

.

.

.

Harmonic

Product

Spectrum

Figure 2: Preprocessing of the muscial signal by Ho-
momorphic Liftering and the use of the Harmonic
Product Spectrum

2

Figure 1: Overview of the chord recognition system used in research case 1 [5].
558 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 3. A typical chromagram feature matrix, shown here for the opening to let It Be (Lennon/McCartney). Salience of pitch class at time is estimated by
the intensity of entry of the chromagram. The reference (ground truth) chord annotation is also shown above for comparison, where we have reduced the
chords to major and minor classes for simplicity.

Early ACE methods were based on polyphonic note tran-
scription [22]–[27], although it was Fujishima [28] who first
considered ACE as a task unto itself. His chroma feature
(which he called Pitch Class Profile, or PCP) involved taking
a Discrete Fourier Transform of a segment of the input audio,
and from this calculating the power evolution over a set of
frequency bands. Frequencies which were close to each pitch
class were then collected and collapsed to form
a 12–dimensional chroma vector for each time frame.
Themain steps for the calculation of a chromagram are shown

in Fig. 4. In the remainder of the current section we will discuss
each of these steps in greater detail.

A. Transformation to Frequency Domain

Digital music is typically sampled at up to 44,100 samples
per second (CD–quality), meaning that a typical 210 second pop
song is represented by an extremely high–dimensional vector
for each audio channel. In this raw form, it is also not directly
informative of the harmonic content of the audio. There is ev-
idence that the human auditory system performs a transform
from the time to frequency domain and that we are more sen-
sitive to frequency magnitude than phase information [29], en-
dowing us with the ability to perceive melodic and harmonic
information. Mimicking this, the first step in the chromagram
computation is a transformation of the signal to a lower–dimen-
sional representation that is more directly informative of the fre-
quency content.
A simple Fourier transform magnitude of the waveform

would lead to a global description of the frequencies present in
our target audio, with loss of all timing information. Naturally,
ACE researchers are interested in the local harmonic variations.
Thus instead a Short Time Fourier Transform (STFT) of the
audio is often used, which computes the frequency magni-
tudes in a sliding window across the signal. These magnitude

spectra are then collected as columns of a matrix known as the
spectrogram.
One of the limitations of the STFT is that it uses a

fixed–length window. Setting this parameter involves trading
off the frequency resolution with the time resolution [30]: with
short windows, frequencies with long wavelengths cannot be
distinguished, whilst with a long window, a poor time reso-
lution is obtained. Since for ACE purposes frequencies that
are half a semi–tone apart need to be distinguishable, this sets
a lower–bound on the window–length and hence an inherent
limit on the time resolution. This resolution will be particularly
poor if one wishes to capture low frequencies with the required
semi–tone frequency resolution, meaning that the choice of fre-
quency range over which to take the transform is an important
design choice (although systems which utilize A-weighting are
less sensitive to this bias as frequencies outside the optimal
human sensitivity range will be de-emphasized, see Sub. II-D).
An alternative to the STFT that partially resolves this

problem by making use of a frequency–dependent window
length is the Constant–Q spectrum—first used in a musical
context by Brown [31]. In terms of ACE, it was used by Nawab
et al. [32]. This frequency representation has become very
popular in recent years [33]–[37]. For reasons of brevity, the
readers are referred to the original work by Brown [31] for the
details of the Constant-Q spectrum.

B. Preprocessing Techniques

When considering a polyphonic musical excerpt, it is clear
that not all of the signal will be beneficial in the understanding
of harmony. Some authors [38]–[40] have defined the unhelpful
part of the spectrum as the background spectrum, and attempted
to remove it in order to enhance the clarity of their features.
Removing the background spectrum has the potential advantage
of cleaning up the resulting chromagram, at the risk of removing

Figure 2: A typical chromagram, or PCP, generated
from the opening to Let It Be (Lennon/McCartney).
Pitch class (chroma) at time t is shown by the light-
ness at that point. The true chord progression (sim-
plified) is shown above for comparison.

2.1.2 Pitch Class Profile
The pitch of a note is measured in two dimensions - height

and chroma (pitch class). Height tells which octave a note
belongs to, and chroma tells where a note stands within
the octave (the name of the note). Height is not a factor
in determining chord type because two notes that are an
octave apart have the same chroma value. A chromagram,
or PCP, is a 12-dimensional vector representation of chroma,
representing the intensity of each of the twelve semitones in
the chromatic scale, over a period of time. An example of
a common PCP, along with the actual progression, can be
seen in Figure 2 [4].

For over a decade PCP has been the most popular way to
represent harmonic features for chord recognition. Most new
approaches are variations or refinements of this approach [1].
These systems can have many more steps in converting audio
to PCP including tuning correction, which compensates for
music that is not tuned to standard pitch A4 = 440 Hz,
and beat-synchronization, which calculates the average pitch
between beats to get rid of changes caused by noise and other
transients. [4].

2.2 Pattern Matching
Almost all chord recognition systems use PCP or some

other chroma-based feature extraction technique. What dif-
ferentiates these systems is the mechanism used to assign
the chord labels. Generating the chord model against which
the PCP will be matched can be done either by hand (using
musical knowledge), or stochastically (by deriving it from
real-world music). The most basic way to model chords is by
hand, describing the known note distribution of a chord. An

example of a binary chord template (individal chord model)
for a C major triad (chord containing 3 notes) would look
like [1 0 0 0 1 0 0 1 0 0 0 0], where each digit left to right
follows the chromatic scale starting at C. A 1 indicates the
presence of a note and 0 represents the absence of a note.
Using this method, each chord template is created and then
tested on each frame (time point around 25ms, depending
on the system) of a PCP, to find the best fit. The problem
with this method is that a lot of times chord tones are not all
played at the same time or held for the same duration. More
sophisticated chord models are generated stochastically, by
defining probability distributions for each chord type that a
system can recognize [1].

2.2.1 Hidden Markov Models
A hidden Markov model (HMM) is a statistical model

which describes a finite set of states, in this case chords.
Since we do not know the chord progression for a given audio
file, these states are considered to be hidden, the observed
states are the PCP frames. Transitions between these states
are given probabilities that describe the likelihood of tran-
sitioning from one state (chord) to another. In the research
cases reviewed in this paper, supervised HMMs are used,
meaning that these probabilities are learned from a set of
labeled training data (audio that has been assigned chord
labels by hand or some other system) [6]. The chord tran-
sition probabilities are learned for a chord by dividing the
number of transitions to each chord by the total number of
transitions from that chord. This is done for each chord
in the training data. An example of transition probabilities
from the C major chord can be seen in Figure 3. The Viterbi
algorithm is then used, which estimates the the best previ-
ous chord for each frame recursively, storing the paths in a
table. Using the observed states and known transition prob-
abilities, the most likely sequence is estimated and unlikely
transitions are restricted [1].

2.2.2 Gaussian Mixture Models
In a Gaussian mixture model (GMM), more detailed mod-

els for each chord type are created by averaging multiple
PCPs for that type. This is done for each chord type for
each of the 12 notes. Multiple Gaussian components are
also used, which represent different variations of the same
chord (i.e., chords with notes excluded or doubled up), pro-
viding a more accurate fit. The fit of a frame is measured
by the likelihood of a model for that frame.

For GMM training, PCPs from the training data are seg-
mented by chord type (i.e., 12 major, 12 minor, depending
on what chords are being recognized). To increase the num-
ber of training samples, all PCP values for these segments
are rotated so that the root (name) is C. These segments are

Type Sample Rate FFT Length Liftering HPS Ratio
FV1 FB 44100 32768 yes 5
FV2 PCP 11025 4096 no 1
FV3 PCP 44100 32768 no 1
FV4 PCP 44100 32768 yes 5

Table 1: Feature Vectors, or combinations of methods used for feature extraction, for isolated chord recog-
nition in research case 1 [5].

CHO AND BELLO: ON THE RELATIVE IMPORTANCE OF INDIVIDUAL COMPONENTS OF CHORD RECOGNITION SYSTEMS 483

Fig. 4. Examples of transition matrices in a log probability scale: (a) the esti-
mated transition matrix from annotated music data, (b) the uniform transition
matrix after applying the transition penalty .

Fig. 5. Transition probabilities from C major triad and C minor triad. (a)
(C major), (b) (C major), (c) (C minor), (d) (C minor).

As in the case of the chord model training described in
Section IV-B, we only consider chord transitions relative to
the current chord, i.e., we assume that all transitions happen
from a root of C major or C minor. For example, the transitions

and m are both counted as (i.e.,
)10. The root-normalized bigrams are then transposed

to the other major and minor roots to form the final matrix.
Fig. 4(a) shows an example of the estimated transitions matrix.
Fig. 5(a) and Fig. 5(b) show transition probabilities from the

C major triad in and , respectively. In the figures, the
two most common chord transitions11 in popular music,
and , have relatively higher probabilities than the

other transitions except . In contrast, is a rare
transition12 in popular music, and thus has a very low probability
in both cases.

10In this paper, Roman numerals are often used to indicate the harmonic rela-
tionship between two chords without reference to actual chord symbols. In this
notation, the first seven Roman numerals represent a major scale degree from
the root. Capital letters are used for major triads, while lowercase letters are
used for minor triads, and a flat or sharp in front of a Roman numeral
lowers or raises the diatonic pitch by a half step.
11Progressions in which the chord roots ascend by 4th and descend by 5th are

the most frequent and strongest in jazz and popular music [42].
12This chord progression is commonly avoided due to its augmented fourth

root motion that is one of the most dissonant musical intervals [42].

The noteworthy observation in these figures is the extremely
high self-transition probabilities, i.e., in both Fig. 5(a)
and (b) and in both Fig. 5(c) and (d). The self-tran-
sition probability represents the probability of staying in the
same chord frame to frame. In the case of both frame-based and
beat-synchronous analysis, chord durations are typically longer
than frame length. Accordingly, the chord remains stable for
several frames, making the transition probability to itself the
highest. This appears as a strong diagonal in the transition ma-
trix, as seen in Fig. 4(a). While many previous works report
improving the accuracy rate with the trained transition matrix,
most of them contain little discussion of these self-transition
probabilities. They merely explain that the musical context de-
scribed in the transition matrix reduces chord confusions that
occur in the patternmatching stage. Only a few studies including
our own [6] and [10] argue that most of the improvement is due
to a relatively high self-transition probability, which essentially
acts to minimize the number of chord changes.
To verify this argument, we use a transition penalty , which

is similar to the insertion penalty used widely in speech recog-
nition [43]. The penalty is a fixed value subtracted from the
log probability of each transition but the self-transition, thus
reducing the chances of transitions out of the current chord.
In brief, this penalty controls the relative strength between the
self-transition and the other transitions. It is applied as follows:

(11)

where is the original transition probability matrix and
is the modified matrix with penalty . In addition, to

evaluate the effect of the transition probabilities other than the
self-transition probability, we define a uniform transition ma-
trix in which all transitions have the same probability. With
a high penalty value, minimizes the number of chord tran-
sitions without considering musical context. Fig. 4(b) shows an
example of after applying the transition penalty . In
order to apply post-filtering to the output of , pseudo-prob-
abilities are calculated by taking the reciprocal of the Euclidean
distances between chromagram frames and the chord templates.

VII. EXPERIMENTS

The experiments are conducted on all possible combinations
of the stages as follows:
Expt1: Feature extraction and pattern matching

In this experiment, we assess the performance of dif-
ferent combinations of the chroma features and chord
models described in Section III and Section IV.

Expt2:Effect of pre-filtering
In this experiment, we evaluate the effects of pre-fil-
tering approaches described in Section V.

Expt3:Effect of post-filtering
In this experiment, we probe into how the musical con-
texts represented in a transition matrix impact chord
recognition performance using the transition penalty .

Expt4:Combined pre- and post-filtering
In this experiment, we investigate the relationship be-
tween pre- and post-filtering and evaluate all possible
parameter combinations.

Figure 3: An example of transition probabilities
from the C major triad, learned from training data.

then averaged to create models for C-major and C-minor
chords, which are then copied and shifted for the remaining
11 keys [4].

2.2.3 Support Vector Machines
Support Vector Machines (SVMs) are another type of su-

pervised learning model used for pattern matching. Given a
set of labeled training data, SVMs assign labels to segments
of the test data. A full explanation of SVMs is outside the
scope of this paper, as they are only used in one research
case for comparison. Many systems use existing tools for
SVM classification.

3. RESEARCH CASES
This paper looks at three research cases that involve au-

tomatic chord recognition. All of these cases include fea-
ture extraction and pattern matching. Here we will give an
overview of each system, the datasets that were used, and a
summary of the results.

3.1 Case 1: Effects of Proper Signal
Processing

The first research case [5] uses a chord recognition system
that begins with a preprocessing block, followed by feature
extraction, where the PCP is calculated. After this, the sig-
nal is segmented along predicted chord boundaries, and then
chord labels are assigned to each segment (pattern match-
ing). An overview of this system can been seen in Figure 1.

There are two stages in the preprocessing block, to address
background noise and overtones. The first step, Homomor-
phic Liftering, is a method of separating out the frequencies
of musical tones from background and system noise. This is
done by finding strong frequency peaks in areas correspond-
ing to the pitch range of the notes. Frequencies above and
below a specified range can also be removed to reduce noise.

The second step, known as the Harmonic Product Spectrum
(HPS), is a method which emphasizes frequencies when their
overtones are present. HPS is calculated by compressing the
spectrum by factors of 1 to R (i.e., 1:2 compression ratio)
and multiplying the resulting compressed spectra. The re-
sulting output energy is then summed according to pitch
class before a PCP is created.

The first step of pattern matching for this system is chord
segmentation, where the audio signal is segmented at the
boundaries where chords change. This can be difficult when
the notes of a chord are not played all at once or not held
for the same length. To find the points where change has
occurred the PCP is analyzed frame-by-frame to find signif-
icant change in pitch-class content.

The next and final step in this system is assigning chord
labels to the segments. Given an instance of the PCP for a
region of the audio, the most probable chord label is picked
from a set of training PCPs. In this research case the use
of GMMs and SVMs are compared for classification. For
SVM classification, a tool called the OSU SVM Classifier
MATLAB Toolbox was used (as explained in [5]).

3.1.1 Datasets
In this case Musical Instrument Digital Interface (MIDI)

data was used to create the audio. Two datasets were used:
one of isolated chords synthesized on piano and strings, and
one of continuous single-instrument music synthesized on
piano.

The isolated chord dataset consisted of 7790 chords and
inversions (where the notes are stacked in a different or-
der). Three chord complexity levels were tested, labeled
DS1, DS2, and DS3 (seen in Table 2). DS1 involved the
four common triad types (major, minor, augmented, and
diminished), across all 12 notes. No other chords were used
in DS1. DS2 added variations of the 7th chord (chords con-
taining four notes): major 7th, minor 7th, dominant 7th,
fully diminished 7th, and half diminished 7th. In DS3 all 11
different chord types that the system could recognize were
used.

Four Feature Vectors (FV), or combinations of methods
used for feature extraction, were compared on each of these
complexity levels, seen in Table 1. FV1 started with prepro-
cessing using homomorphic liftering with a lower cutoff of
30Hz and upper frequency cutoff of 4kHz, then computing
HPS with a compression ratio R = 5. Instead of PCP, FV1
uses an 84 dimensional vector (representing 7 octaves with
12 notes per octave). The hypothesis was that this would
provide more information because the octaves weren’t flat-
tened down to one. FV2 had a lower sampling rate (au-
dio quality), shorter Fast Fourier Transform (FFT) window
length (used in converting audio to frequency domain), and
no preprocessing was performed on the audio signal. This
feature vector was chosen to match a previous system that

Label given in:
Chord Label DS1 DS2 DS3

Major Major Major Major
Minor Minor Minor Minor

Major 7 - Major Major 7
Minor 7 - Minor Minor 7
Dom. 7 - Major Dom. 7

Dim. Dim. Dim. Dim.
Full Dim. - Dim. Full Dim.
Half Dim. - Dim. Half Dim.

Augmented Aug. Aug. Augmented
Sus. 4 - - Sus. 4

7 Sus. 4 - - 7 Sus. 4

Table 2: Chord complexity levels used in research
case 1 [5].

was being comparing against. FV3 increases the sample
rate and FFT, but still leaves out preprocessing. FV4 intro-
duces preprocessing using the same homomorphic liftering
and HPS as FV1.

The continuous single-instrument audio dataset consisted
of 50 hymn verses selected from the Trinity Hymnal, a MIDI
collection of 761 hymns, synthesized on piano. 40 were used
for training and 10 for testing. Labels similar to DS3 were
used, with the exception of 7 Sus. 4, Full Dim., and Half
Dim. chords, as they were not common in the dataset. FV4
was used as the feature vector [5].

3.1.2 Results
For the isolated chords dataset, this system was trained

using chords synthesized on a piano, and was tested on
chords synthesized on both piano and on strings. The dataset
was randomly divided with 80% of the chords used for train-
ing and 20% for testing. Five of these training and test-
ing sets were created and the recognition rates from these
were averaged. The overall chord recognition accuracies for
GMMs can be seen in Table 3 for piano, and in Table 4 for
strings. FV4 performed the best with the chords played on
strings, and showed the least difference between recogniz-
ing piano and string chords [5]. The results of classification
using SVMs can be seen in Table 5. Using SVMs clearly
outperformed GMMs when tested with the instrument that
they were trained with, yielding accuracy rates up to 95%.
This was not the case however, when SVMs were tested on
strings when trained on piano. In this case SVMs actually
did not work because an SVM requires knowledge of the type
of data in the testing set, so these results were not included.

For the continuous single-instrument dataset, the number
of scatter points (7 scatter points means the partition frame
plus 3 frames on each side) were compared, as shown in
Table 6. Recognition accuracy of around 88% was achieved.
Melody tones that were not part of the chord made this more
difficult than labeling the isolated chords [5].

3.2 Case 2: HMM Trained with Audio from
Symbolic Data

In the next research case [2], symbolic data in Humdrum
data format is used to generate training data for an HMM.
Humdrum is a software toolkit used for music research. The
data is used to generate a chord label file (containing chord
names and times), and an audio file (synthesized from MIDI),

Feature Vector DS1 DS2 DS3
FV1 83.68 61.85 57.24
FV2 90.33 82.44 82.26
FV3 91.76 84.20 84.09
FV4 85.64 79.40 78.93

Table 3: Isolated chord recognition accuracy using
GMM, training set: piano, testing set: piano [5].

Feature Vector DS1 DS2 DS3
FV1 68.06 42.00 33.62
FV2 42.72 18.60 16.30
FV3 43.49 22.00 18.31
FV4 86.94 80.23 80.18

Table 4: Isolated chord recognition accuracy using
GMM, training set: piano, testing set: strings [5].

from the same data. Chroma analysis is then performed on
the audio file to get a PCP, which is used as input to the
trained HMM along with the chord label file. This system
is visualized in Figure 4.

A 36-state HMM is used, with each state representing a
chord (major, minor, and diminished for each 12 pitches).
Once the model parameters are learned, the Viterbi algo-
rithm is applied to find the optimal sequence in a maximum
likelihood sense.

3.2.1 Datasets
Two training datasets were used: the first consisted of

81 solo piano pieces by J.S. Bach, Beethoven, and Mozart,
and the second consisted of 196 string quartet pieces by
Beethoven, Haydn, and Mozart. For the testing datasets,
five piano solos and five string quartet pieces were selected
from the Kostka and Payne’s book, which includes hand-
marked analysis and audio recordings done by the com-
posers. Both of these sets were tested using both of the
training datasets, as well as third that consisted of the first
two combined, resulting in six possible training - testing
pairs. The output of the system was compared to the hand-
marked data to check for accuracy [2].

3.2.2 Results
The results of the experiments in this case can be seen in

Table 7. The recognition rate was highest for the combined
training dataset, at 80%, although the difference is not sig-
nificant. Further analysis on the results showed that the
highest error came from non-chord tones in the melody, es-
pecially in faster pieces. This is because the analysis window
would span over multiple chord changes, which confused the
system. Other issues were caused by the system treating
7th chords the same as triads because 7th chords contain
two triads.

3.3 Case 3: Importance of Individual
Components

The final research case [1] consists of four experiments,
testing different methods used for each step of the process.
The overall recognition system in this case is defined as a
feature extraction step and pattern matching step, with op-
tional pre-filtering and post-filtering steps. In this case pre-
processing is part of the feature extraction step. An overview

Expt. Highest Accuracy Pre-filtering Pattern Matching Post-filtering
1 58.30 - 1 Gaussian component -
2 71.22 Moving average filters 1 Gaussian component -
3 77.90 - 25 Gaussian components HMM
4 77.58 Moving average filters 25 Gaussian components HMM

Table 8: Results from research case 3 [1], showing the highest accuracy in each experiment, and the compo-
nents used to achieve it.

Feature Vector DS1 DS2 DS3
FV1 93.43 88.21 86.52
FV2 94.78 93.26 93.13
FV3 95.23 94.31 94.24
FV4 90.56 88.08 87.74

Table 5: Isolated chord recognition accuracy using
SVM, training set: piano, testing set: piano [5].

Number of Scatter Points
3 5 7 9

72.73 87.77 88.07 88.42

Table 6: Continuous single-instrument recognition
accuracy with varying number of scatter points [5].

of the system can been seen in Figure 5. Pre-filtering is ap-
plied to PCPs directly before pattern matching, and con-
sists of averaging frames between beats, yielding a beat-
synchronized PCP. Post-filtering is performed after pattern
matching, in the form of an HMM using a Viterbi decoder.

In the first experiment, different combinations of chroma
features and chord models were tested to show whether or
not model complexity affects performance of the system.
The second experiment looked at the effect of different pre-
filtering techniques, while the third looked at the effect of
post-filtering. The fourth experiment used both pre-filtering
and post-filtering, in all possible parameter combinations.

3.3.1 Datasets
Each of the four experiments in this research case were

performed on 180 Beatles songs, 20 Queen songs, 100 songs
from the RWC (Real World Computing) pop dataset, and
195 songs from the US-Pop dataset, for a total of 495 songs.
The RWC and US-Pop dataset were assigned chord labels by
hand, while the Beatles and Queen chord models were gener-
ated stochastically. For training, 5-fold cross validation was
used with each group having 99 songs selected randomly. For
each fold one group is selected and the other four are used
for training. Accuracy is represented by the total duration
of correct chords out of the total duration of the dataset [1].

3.3.2 Results
The results of the four experiments conducted in this case

can be seen in Table 8. In all four experiments the best
results were found using a combination of these two prepro-
cessing methods: de-emphasizing high and low frequencies
and using log compression, which limits the dynamic range
caused by multiple instruments at different volumes. Each
experiment was also tried using 1, 5, 10, and 25 Gaussian
components, to test if a more complex chord model would
increase accuracy. For each experiment the best result and
components used to achieve it are shown in Table 8.

uncorrelated with each other, and thus use diagonal covari-
ance matrix. State transitions obey the first-order Markov
property; i.e., the future is independent of the past given the
present state. In addition, we use an ergodic model since we
allow every possible transition from chord to chord, and yet
the transition probabilities are learned.

Once the model parameters – initial state probabilities,
state transition probabilities, and mean vector and covari-
ance matrix for each state – are learned, the Viterbi algo-
rithm is applied to the model to find the optimal path, i.e.,
chord sequence, in a maximum likelihood sense given an in-
put signal.

In our model, we have defined 36 classes or chord types
according to their sonorities only – major, minor, and di-
minished chords for each pitch class. We grouped triads
and seventh chords with the same root and sonority into
the same category. For instance, we treated E minor triad
and E minor seventh chord as just E minor chord without
differentiating the triad and the seventh. Augmented chords
were not considered because they scarcely appear in West-
ern tonal music. We found this class size appropriate in a
sense that it lies between overfitting and oversimplification.

3.3 Harmonic Analysis on Symbolic Data
In order to train a supervised model, we need label files

which must contain annotated chord boundaries as well as
chord names. To automate this laborious process, we use
symbolic data to generate label files as well as audio data.
To this end, we first convert a symbolic file to a format which
can be used as an input to a chord analysis tool. Chord an-
alyzer then performs harmonic analysis and outputs a file
with root information and note names from which complete
chord information (i.e., root and its sonority – major, mi-
nor, or diminished triad/seventh) is extracted. Sequence of
chords are used as ground-truth or labels when training the
HMM. In parallel, we use the same symbolic files to gen-
erate audio files using a sample-based synthesizer. Audio
data generated this way are in perfect sync with chord la-
bel files obtained above, and are enharmonically rich as in
real acoustic recordings because audio samples in a synthe-
sis engine contain the upper harmonics as well. Figure 1
illustrates the overview of the system.

4. IMPLEMENTATION AND
EXPERIMENTS

As shown in Figure 1, our system for generating labeled
training data has two main blocks running in parallel. First,
harmonic analysis is performed on symbolic data. We used
symbolic files in Humdrum data format. Humdrum is a
general-purpose software system intended to help music re-
searchers encode, manipulate, and output a wide variety
of musically-pertinent representations.1 For harmonic anal-
ysis, we used the Melisma Music Analyzer developed by
Sleator and Temperley by the authors.2 The Melisma Mu-
sic Analyzer takes a piece of music represented by an event
list, and extracts musical information from it such as me-
ter, phrase structure, harmony, pitch-spelling, and key. By
combining harmony and key information extracted by the
analysis program, a complete Roman-numeral analysis is

1http://dactyl.som.ohio-state.edu/Humdrum/
2http://www.link.cs.cmu.edu/music-analysis/

(.lab)

Label

(MIDI)

Chord analysis MIDI synthesis

time: 0 1.5 3.2 6.0 ...
chord name: C G D7 Em ...

Symbolic data

Audio

(.wav)

Chroma analysis

12−bin chroma features

HMM

Training

Figure 1: Overview of the system.

performed, from which we can generate label files with se-
quence of chord names.

The analysis program was tested on a corpus of excerpts
and the 48 fugue subjects from the Well-Tempered Clavier,
and the harmony analysis and the key extraction yield the
accuracy of 83.7% and 87.4%, respectively [12].

In the feature extraction block in our system, MIDI files
are synthesized using Timidity++. Timidity++ is a free
software synthesizer, and converts MIDI files into audio files
in a WAVE format.3 It uses a sample-based synthesis tech-
nique to generate enharmonically rich audio as in real record-
ings. The raw audio is downsampled to 11025 Hz, and 12-bin
chroma features are extracted from it with the frame size of
8192 samples and the hop size of 2048 samples. The chroma
vectors are then used as input to the HMM along with the
label files obtained above.

To examine the model’s dependence on the training data,
we chose two different training data sets and obtained two
model parameters on each data set. For the first model,
we used as a training data set 81 files of solo piano music
by J. S. Bach, Beethoven, and Mozart in a Humdrum data
format at the Center for Computer Assisted Research in

3http://timidity.sourceforge.net/

13

Figure 4: Overview of the HMM trained with audio
from symbolic data in research case 2 [2].

In the first experiment, no filtering was applied during the
process. This experiment was testing the difference between
preprocessing techniques in the feature extraction stage (the
best combination is mentioned above). We would expect to
see higher accuracy with more Gaussian components used,
but that was not the case in this experiment, where the
best score was found by using only one component. The
highest error was in distinguishing major and minor chords
with the same root, because two of the notes are shared
and the third is only a half-step different. For the second
experiment, pre-filtering was applied using moving average
filters, which look for noisy frames and smooth them across
the neighboring frames. The highest accuracy in this ex-
periment was again achieved by using only one Gaussian
component. The third experiment used post-filtering with

Training Data Test Data Recognition Rate
Piano Piano 68.69

String Quartet Piano 73.40
Piano & Strings Piano 74.41

Piano String Quartet 79.35
String Quartet String Quartet 79.76

Piano & Strings String Quartet 80.16

Table 7: Recognition results for all six possible
training - test pairs in research case 2 [2].

478 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

models, and pre- and post-filtering approaches, thereby pro-
viding valuable information that can guide future developments
in automatic chord recognition. This work is an extension
of our previous work [6], which concentrated on variations
of filtering parameters and the testing of different pattern
matching approaches but did not investigate feature extraction
approaches. We expand by including various types of features
and a popular pre-filtering technique known as beat-synchro-
nization. In addition, we use a database consisting of 495 chord
annotated songs, more than double the size of the database used
in the previous study. We also provide a more in-depth analysis
of the relative impact of system components.
It must be clarified that covering the full range of possible ap-

proaches is beyond the scope of this study. Instead, we choose to
use several of the most common and representative techniques
per processing step, each of which can be found in state-of-
the-art chord recognition systems. Finally, all evaluations in
this paper are performed on the detection of major, minor and
no chords, the chord set currently used in MIREX evaluations.
The remainder of this paper is organized as follows: Section II
introduces the fundamental architecture of chord recognition
systems with a brief outline of each stage in this architecture;
Section III to Section VI describe the details of common tech-
niques used in each stage; Section VII presents the experimental
setup and evaluation methodology; In Section VIII we discuss
the results; while Section IX includes our conclusions and di-
rections for future work.

II. ARCHITECTURE OF A CHORD RECOGNITION SYSTEM

Asmentioned in the introduction, most chord recognition sys-
tems share a common architecture comprising two main stages:
feature extraction and pattern matching, and two optional sub
stages: pre-filtering and post-filtering, as illustrated in Fig. 1.
The following subsections provide a brief overview of each
stage in this architecture.

A. Feature Extraction

The role of this stage is, as its name implies, to extract ap-
propriate harmonic features from the audio signal. For over a
decade since Fujishima [11], chroma features have been the
most popular features used for chord recognition. A chroma fea-
ture vector, also referred to as pitch class profile (PCP), rep-
resents the energy distribution of a signal’s frequency content
across the 12 pitch classes of the equal-tempered scale. A tem-
poral sequence of these chroma vectors is often called a chro-
magram [12]. Because a chord is composed of a set of notes, and
it is assumed that the chord label can be determined by the oc-
currence of those notes regardless of octave, chroma features re-
main the de facto standard signal representation for chord recog-
nition systems. Thus, the feature extraction techniques that have
been developed are mostly methodological variations or refine-
ments of the original approach.
In our experiments, we investigate the impact of common

variants of chroma features on chord recognition performance,
and explore the implications of these variants for the subsequent
processing stages. The implementation details of chroma fea-
tures and their variants are discussed in Section III.

Fig. 1. Fundamental Architecture of a chord recognition system.

B. Pattern Matching

Because of the prevalence of chroma features in chord
recognition systems, what makes each system unique is largely
dependent on its decision mechanism. Although few studies
use discriminative machine learning techniques such as Con-
ditional Random Field [13] and structured Support Vector
Machine [14], the majority use generative chord models such
as Gaussian models [1], [15]–[17]. Generative chord models
primarily focus on describing the distribution of features for
individual chords, while the discriminative models focus on
determining the classification boundaries between different
chords in feature space. Since we only consider “common”
approaches in this study, we discard discriminative models.
In the case of generative approaches, the chord label of each

frame is determined by finding the chord model that best fits
that frame. Thus, in order to identify different chords,
distinct chord models are necessary. These chord models can
be classified into two major categories in terms of how they are
constructed. One is generated manually using musical knowl-
edge, and the other is derived stochastically from examples of
real-world music. In the former case, the most popular approach
is to use hand-crafted chord templates based on the classical
approach proposed in 1999 by [11], often used due to its
simplicity. In the latter case, Gaussian-based stochastic chord
models have become popular with the increasing availability
of hand-labeled data. In this paper, we investigate the effects
of increasing the complexity of these models, and discuss its
relative importance compared to parameters in other processing
stages. The specific methods used to generate the models are
described in Section IV.

C. Filtering

In chord transcription, determining chord boundaries is as im-
portant as identifying chord labels. Accordingly, the frame rate
of a chromagram is chosen to be significantly faster than the
typical rate of chord changes in music.2 However, in this case,
chroma features become susceptible to undesirable local vari-
ability such as transients and noise in the signal. The optional

2The average rate of chord change in our dataset (consisting of 495 popular
songs) is approximately 0.51/sec (1.95 s / change).

Figure 5: General layout of the chord recognition
system used in research case 3 [1]. In this case pre-
processing is included in the feature extraction step.

no pre-filtering, and here we see that the best performance
was achieved by using more Gaussian components. This is
because post-filtering is dependent on the probability val-
ues for different chord models. The final experiment, using
both pre-filtering and post-filtering, showed about the same
result as post-filtering alone. This is because moving aver-
age filters sometimes did too much smoothing and ended up
blurring out chord boundaries and other signal detail.

4. CONCLUSIONS
The highest accuracy that we see in this paper was around

95% for the isolated chord dataset using SVMs in [5]. This
is more of a proof of concept since these systems are aimed
at providing chord data for an entire song. If we look at the
results of all experiments tested on continuous music, we
see that the highest accuracy achieved was around 88% for
the continuous music dataset in [5]. The components used
in this experiment were: preprocessing using homomorphic
lifering and HPS with a ratio of R = 5, chord segmentation
using SVMs, and chord recognition using SVMs. This was
using a relatively small dataset, they mention in [5] that
the training procedure for SVMs is very complex with large
amounts of data. This implies that the system used for chord
recognition is somewhat dependent on the dataset that is
being tested. Systems can be tailored specifically to the type
of instrument and chords that are present in the dataset.

There are still many issues and pitfalls with these and all
chord recognition systems. Music that has a lot of different

instruments, fast chord changes, and types of chords that
are not recognized can cause significant problems if they are
not expected. The pattern matching techniques in this pa-
per assume that individual chords are independent of each
other, but in real-world music some chords can only be la-
beled correctly by the context of the surrounding chords [1].
An example is a secondary chord, which is borrowed from
another key. These chords would be given a chord label that
is not in the key of the song, rather than the secondary label
that would be applied by hand. Detecting these and other
non-regular chords would be very difficult for these systems,
as they only recognize the chords that they are designed for.

4.1 Future Work
With the increasing amount of data that is available on-

line, some systems have been developed that scrape online
databases of songs that have already been labeled to use
for training data. The advantage here is having a large
amount of labeled chord data without having to generate
it. The system in [3] was able to scrape chord informa-
tion from e-chords.com for over 75,000 songs. There are
also genre-specific models, which account for different chord
transition probabilities in different genres of music. These
models can also be used to identify genre by testing with
all of the genre models and selecting the one with the best
result [4]. Progress is being made in this area, including
mobile apps that can provide chord data for audio captured
with the microphone.

5. ACKNOWLEDGEMENTS
Many thanks to Elena Machkasova, KK Lamberty, and

Scott Steffes for their invaluable feedback.

6. REFERENCES
[1] T. Cho and J. Bello. On the relative importance of

individual components of chord recognition systems.
Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, 22(2):477–492, Feb 2014.

[2] K. Lee and M. Slaney. Automatic chord recognition
from audio using a supervised hmm trained with
audio-from-symbolic data. In Proceedings of the 1st
ACM Workshop on Audio and Music Computing
Multimedia, AMCMM ’06, pages 11–20, New York, NY,
USA, 2006. ACM.

[3] M. McVicar and T. De Bie. Enhancing chord
recognition accuracy using web resources. In
Proceedings of 3rd International Workshop on Machine
Learning and Music, MML ’10, pages 41–44, New York,
NY, USA, 2010. ACM.

[4] M. McVicar, R. Santos-Rodriguez, Y. Ni, and T. D.
Bie. Automatic chord estimation from audio: A review
of the state of the art. Audio, Speech, and Language
Processing, IEEE/ACM Transactions on,
22(2):556–575, Feb 2014.

[5] J. Morman and L. Rabiner. A system for the automatic
segmentation and classification of chord sequences. In
Proceedings of the 1st ACM Workshop on Audio and
Music Computing Multimedia, AMCMM ’06, pages
1–10, New York, NY, USA, 2006. ACM.

[6] Wikipedia. Hidden markov model — wikipedia, the free
encyclopedia, 2014. [Online; accessed 1-December-2014].

