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The Big Picture

@ Used by researchers in the area of Music Information Retrieval
(MIR) for tasks such as key detection, genre classification, and
lyric interpretation.

@ Problem: Performing chord analysis from audio by hand is time
consuming and prone to error.

@ Potential Solution: Automatic chord recognition systems.

@ Issues: Noise in recordings, determining where chords change,
complex music.
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Solution

@ Feature Extraction: Audio signals are processed to extract
harmonic information, represented using a Pitch Class Profile.

@ Pattern Matching: Chord labels are applied by matching chord
models to the features that are present in the audio.

@ Models can be generated either by hand or stochastically.
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Feature Extraction Preprocessing

Preprocessing

@ Preprocessing is an optimization step, performed during feature
extraction, before a Pitch Class Profile (PCP) is generated.

@ The goal of preprocessing is to remove as much background
noise as possible from the audio file in an effort to provide a
smooth and clear PCP.

@ Two issues, background noise and overtones, usually addressed
separately.
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Feature Extraction Pitch Class Profile

Pitch Class Profile

@ Pitch Class Profile (PCP) measures energy in the 12 frequency

regions where musical notes occur.
@ Each row represents a pitch class, or note, and each column

represents a frame, or period of time.
@ Actual chord progression is shown above for reference.

Reference Chord Annotation

[C:maj [ Gimaj [A:min [ F:maj C:maj [ Gimaj [F:maj [ C:maj |

Pitch Class

Time (seconds)
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Hidden Markov Models

@ A Hidden Markov Model (HMM)
describes a sequence of states and
transition probabilities.

@ Transition probabilities are learned
from labeled training data.

@ The chords for the testing data are
unknown, or hidden states. The PCP
frames are the observed states.

@ Observed states and transition
probabilities are used to find the most
likely sequence and eliminate unlikely
transitions.
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Hidden Markov Models

@ Transition probabilities are learned by .
dividing the transitions to each chord  °*
by the total transitions from that
chord.

@ This is done for each chord, assigning
a probability to all possible transitions.
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Pattern Matching Gaussian Mixture Models

Gaussian Mixture Models

@ More detailed models for each chord are created by averaging
features from multiple PCPs.

@ Multiple variations of the same chord are represented using
multiple Gaussian components.

@ Like HMM, labeled training data is used and transition probabilities
are learned for each chord.

@ The observed chord is matched with each chord model to find the
best fit.
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Pattern Matching Support Vector Machines

Support Vector Machines

@ Another type of supervised learning system.

@ Trained with labeled testing data, chord labels are applied to
segments of the test data.

@ Only works on the kind of data it is trained on.
@ Training procedure is complex for large datasets.
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Case 1: Effects of Proper Signal Processing

@ Two methods of preprocessing were used.
@ Four feature vectors were compared.

@ Two datasets were used.

@ GMMs and SVMs are compared.
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Research Cases

Preprocessing

@ Homomorphic Liftering: Finds
strong peaks in the frequency
areas where notes occur.

@ Harmonic Product Spectrum
(HPS): De-emphasizes
overtones, emphasizes chord

tones.

Emmons (U of Minn, Morris)

Case 1: Effects of Proper Signal Processing

Log Magnitude of G Major Chord, f, = {261.63, 329.63, 392.00}

log IY(0)!
Lbowmasoow

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Effect of Liftering, LowPass = 30Hz, HighPass = 4kHz

log IY(H!

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Effect of HPS (R = 5) atter Liftering

log IY(@)!

"0 500 1000 1500 2000 2500 3000 3500 4000

Automatic Chord Recognition from Audio

December 6, 2014

15/29



Case 1: Effects of Proper Signal Processing
Feature Extraction

@ Four Feature Vectors (FV), or combinations of methods used for
feature extraction were compared.

@ Sample Rate is the audio resolution and Fast Fourier Transform
(FFT) determines the resolution in the frequency domain.

Type | Sample Rate | FFT Length | Liftering | HPS Ratio
FV1 | FB 44100 32768 yes 5
FV2 | PCP 11025 4096 no 1
FV3 | PCP 44100 32768 no 1
FV4 | PCP 44100 32768 yes 5
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Datasets

@ Isolated chord dataset: 7790 chords
synthesized from Musical Instrument
Digital Interface (MIDI) data on piano
and strings.

@ 80% used for training, 20% for testing.
3 complexity levels were tested.

@ Continuous single-instrument
audio: 50 hymns from the Trinity
Hymnal, a MIDI collection of 761
hymns.

@ 40 used for training, 10 for testing.
FV4 and DS3 are used with an SVM.

Label given in:

Label DS1 DS2 DS3
Major Major Major Major
Minor Minor Minor Minor
Major 7 - Major Major 7
Minor 7 Minor Minor 7
Dom. 7 - Major Dom. 7
Dim. Dim. Dim. Dim.
Full Dim. - Dim. Full Dim.
Half Dim. - Dim. Half Dim.
Augmented Aug. Aug. Augmented
Sus. 4 - - Sus. 4
7 Sus. 4 7 Sus. 4

Emmons (U of Minn, Morris) Automatic Chord Recognition from Audio

December 6, 2014 17/29




Results
Feature Vector | DS1 DS2 DS3
FVv1 83.68 | 61.85 | 57.24
FVv2 90.33 | 82.44 | 82.26
FV3 91.76 | 84.20 | 84.09
FV4 85.64 | 79.40 | 78.93

Table : Isolated chord recognition accuracy using GMM, training set: piano,

testing set: piano

Feature Vector | DS1 DS2 DS3
FV1 68.06 | 42.00 | 33.62
FV2 42.72 | 18.60 | 16.30
FV3 43.49 | 22.00 | 18.31
FV4 86.94 | 80.23 | 80.18

Table : Isolated chord recognition accuracy using GMM, training set: piano,

testing set: strings
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Results
Feature Vector | DS1 DS2 DS3
FV1 93.43 | 88.21 | 86.52
Fv2 94.78 | 93.26 | 93.13
FV3 95.23 | 94.31 | 94.24
FV4 90.56 | 88.08 | 87.74

Table : Isolated chord recognition accuracy using SVM, training set: piano,

testing set: piano

Number of Scatter Points

3 5

7

9

72.73 | 87.77

88.07

88.42

Table : Continuous single-instrument recognition accuracy using FV4 and

DS3, with varying number of scatter points
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Case 2: HMM Trained with Audio from Symbolic Data
Case 2: HMM Trained with Audio-From-Symbolic Data

(MIDI)
Chord 11:|]y};/ N}il synthesis
. . (lab) (.wav)
@ Chord label data and audio files are
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@ Pitch Class profile is generated from

=

chord name: C G D7 Em...

the aUdIO time: 01332 60.. 12-bin chroma features
@ These pieces are used to train a %
supervised HMM.
P e 30

< e SO
)O

HMM

Emmons (U of Minn, Morris) Automatic Chord Recognition from Audio December 6, 2014 20/29



Datasets

@ Two training datasets: 81 solo piano pieces, 196 string quartets by
J.S. Bach, Beethoven, Mozart, and Haydn.

@ Two testing datasets: 5 solo piano pieces, 5 string quartets
selected from the Kostka and Payne’s book.

@ All combinations of training and testing data were tried.
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Results

Training Data Test Data Recognition Rate
Piano Piano 68.69
String Quartet Piano 73.40
Piano & Strings Piano 74.41
Piano String Quartet 79.35
String Quartet | String Quartet 79.76
Piano & Strings | String Quartet 80.16

Table : Recognition results for all six possible training - test pairs in research
case 2

Emmons (U of Minn, Morris) Automatic Chord Recognition from Audio December 6, 2014 22/29



Case 3: Importance of Individual Components

Four experiments:
@ Using different combinations of

preprocessing techniques during :
feature extraction. Feature Extraction
¥
° I?re-fllterlpg using moving average Pre.filtering
filters, which look for noisy frames v
and smooth them across neighboring Pattern Matching
frames. !

Post-filtering

@ Post-filtering using an HMM.

.
@ Using both pre-filtering and
post-filtering.
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Datasets

@ Each experiment was performed on 495 chord labeled songs.

@ 180 Beatles songs, 20 Queen songs, 100 songs from the Real
World Computing (RWC) pop dataset, and 195 songs from the
US-Pop dataset.

@ 5 groups of 99 songs were selected randomly, with four used for
training and one for testing.
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Results

@ Each experiment was tried using 1, 5, 10, and 25 Gaussian
components, with the best result shown.

@ Increasing the number of components helped when using HMMs
because they are dependent on transition probabilities.

@ For preprocessing, high and low frequencies were de-emphasized
and log compression was used, which limits dynamic range
caused by different instruments and volumes.

Expt. Highest Accuracy Pre-filtering Pattern Matching Post-filtering
1 58.30 - 1 Gaussian component -
2 71.22 Moving average filters 1 Gaussian component -
3 77.90 - 25 Gaussian components HMM
4 77.58 Moving average filters 25 Gaussian components HMM

Table : Results from research case 3, showing the highest accuracy in each
experiment, and the components used to achieve it
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Outline

e Conclusions
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Conclusions

Conclusions

@ |solated chords were more of a proof of concept.

@ Highest accuracy is around 88%, achieved using homomorphic
liftering, HPS, chord segmentation, and SVMs for labeling.

@ This system was dependent on the training data, and SVMs don'’t
work as well for large datasets.

@ Systems can be specifically tailored to type types of instruments
and chords present in the dataset.

@ Advances are being made in more general models that can
provide chords for any given song.
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Thanks!

Thank you for your time and attention!

Contact:

@ emmon046@morris.umn.edu

Questions?
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