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Overview The Big Picture

The Big Picture

Used by researchers in the area of Music Information Retrieval
(MIR) for tasks such as key detection, genre classification, and
lyric interpretation.
Problem: Performing chord analysis from audio by hand is time
consuming and prone to error.
Potential Solution: Automatic chord recognition systems.
Issues: Noise in recordings, determining where chords change,
complex music.
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Overview The Big Picture

Solution

Feature Extraction: Audio signals are processed to extract
harmonic information, represented using a Pitch Class Profile.
Pattern Matching: Chord labels are applied by matching chord
models to the features that are present in the audio.
Models can be generated either by hand or stochastically.
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Feature Extraction Preprocessing

Preprocessing

Preprocessing is an optimization step, performed during feature
extraction, before a Pitch Class Profile (PCP) is generated.
The goal of preprocessing is to remove as much background
noise as possible from the audio file in an effort to provide a
smooth and clear PCP.
Two issues, background noise and overtones, usually addressed
separately.
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Feature Extraction Pitch Class Profile

Pitch Class Profile

Pitch Class Profile (PCP) measures energy in the 12 frequency
regions where musical notes occur.
Each row represents a pitch class, or note, and each column
represents a frame, or period of time.
Actual chord progression is shown above for reference.558 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 3. A typical chromagram feature matrix, shown here for the opening to let It Be (Lennon/McCartney). Salience of pitch class at time is estimated by
the intensity of entry of the chromagram. The reference (ground truth) chord annotation is also shown above for comparison, where we have reduced the
chords to major and minor classes for simplicity.

Early ACE methods were based on polyphonic note tran-
scription [22]–[27], although it was Fujishima [28] who first
considered ACE as a task unto itself. His chroma feature
(which he called Pitch Class Profile, or PCP) involved taking
a Discrete Fourier Transform of a segment of the input audio,
and from this calculating the power evolution over a set of
frequency bands. Frequencies which were close to each pitch
class were then collected and collapsed to form
a 12–dimensional chroma vector for each time frame.
Themain steps for the calculation of a chromagram are shown

in Fig. 4. In the remainder of the current section we will discuss
each of these steps in greater detail.

A. Transformation to Frequency Domain

Digital music is typically sampled at up to 44,100 samples
per second (CD–quality), meaning that a typical 210 second pop
song is represented by an extremely high–dimensional vector
for each audio channel. In this raw form, it is also not directly
informative of the harmonic content of the audio. There is ev-
idence that the human auditory system performs a transform
from the time to frequency domain and that we are more sen-
sitive to frequency magnitude than phase information [29], en-
dowing us with the ability to perceive melodic and harmonic
information. Mimicking this, the first step in the chromagram
computation is a transformation of the signal to a lower–dimen-
sional representation that is more directly informative of the fre-
quency content.
A simple Fourier transform magnitude of the waveform

would lead to a global description of the frequencies present in
our target audio, with loss of all timing information. Naturally,
ACE researchers are interested in the local harmonic variations.
Thus instead a Short Time Fourier Transform (STFT) of the
audio is often used, which computes the frequency magni-
tudes in a sliding window across the signal. These magnitude

spectra are then collected as columns of a matrix known as the
spectrogram.
One of the limitations of the STFT is that it uses a

fixed–length window. Setting this parameter involves trading
off the frequency resolution with the time resolution [30]: with
short windows, frequencies with long wavelengths cannot be
distinguished, whilst with a long window, a poor time reso-
lution is obtained. Since for ACE purposes frequencies that
are half a semi–tone apart need to be distinguishable, this sets
a lower–bound on the window–length and hence an inherent
limit on the time resolution. This resolution will be particularly
poor if one wishes to capture low frequencies with the required
semi–tone frequency resolution, meaning that the choice of fre-
quency range over which to take the transform is an important
design choice (although systems which utilize A-weighting are
less sensitive to this bias as frequencies outside the optimal
human sensitivity range will be de-emphasized, see Sub. II-D).
An alternative to the STFT that partially resolves this

problem by making use of a frequency–dependent window
length is the Constant–Q spectrum—first used in a musical
context by Brown [31]. In terms of ACE, it was used by Nawab
et al. [32]. This frequency representation has become very
popular in recent years [33]–[37]. For reasons of brevity, the
readers are referred to the original work by Brown [31] for the
details of the Constant-Q spectrum.

B. Preprocessing Techniques

When considering a polyphonic musical excerpt, it is clear
that not all of the signal will be beneficial in the understanding
of harmony. Some authors [38]–[40] have defined the unhelpful
part of the spectrum as the background spectrum, and attempted
to remove it in order to enhance the clarity of their features.
Removing the background spectrum has the potential advantage
of cleaning up the resulting chromagram, at the risk of removing
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Pattern Matching Hidden Markov Models

Hidden Markov Models

A Hidden Markov Model (HMM)
describes a sequence of states and
transition probabilities.
Transition probabilities are learned
from labeled training data.
The chords for the testing data are
unknown, or hidden states. The PCP
frames are the observed states.
Observed states and transition
probabilities are used to find the most
likely sequence and eliminate unlikely
transitions.

562 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 8. Visualization of a first order Hidden Markov Model (HMM) of length
T. Hidden states (chords) are shown as circular nodes, which emit observable
states (e.g. rectangular nodes and chroma frames).

the underlying model. One of the most common ways of incor-
porating smoothness in the model is to use a Hidden Markov
Model (HMM). HMMs have become the most common method
for assigning chord labels to frames in the ACE domain (see
summary of MIREX submission in Section V-E).
An HMM is a probabilistic model for a sequence of observed

variables, called the observed variables. The particular structure
of the HMMmodel embodies certain assumptions on how these
variables are probabilistically dependent on each other. In par-
ticular, it is assumed that there is a sequence of hidden variables,
paired with the observed variables, and that each observed vari-
able is independent of all others when conditioned on its cor-
responding hidden variable. Additionally, it is assumed that the
hidden variables form a Markov chain of order 1.
Fig. 8 depicts a representation of the dependency structure of

an HMM in the form of a probabilistic graphical model, applied
to the ACE problem setting: the hidden variables are the chords
in subsequent frames, and the observed variables are the chroma
(or similar) features in the corresponding frame.
We briefly discuss the mathematical details of the HMM for

ACE. For more details in HMMs in general, the reader is re-
ferred to the tutorial by Rabiner [67], whereas the HMM for
ACE is covered in detail in e.g. [36].
Recall that we denote the chromagram of a particular song as
with 12 rows and as many columns as there are frames. Let

us use the symbol to denote a sequence of chord symbols (the
chord annotation), with length equal to the number of frames.
Each chord symbol comes from an agreed alphabet of chords
considered (see Section V). HMMs can be used to formalize a
probability distribution jointly for the chromagram
and the annotation of a song, where are the parameters

of this distribution.
In this model, the chords are modelled as a first–order Mar-

kovian process, meaning that future chords are independent
of the past given the present. Furthermore, given a chord,
the 12–dimensional chromagram feature vectors in the cor-
responding time window is assumed to be independent of all
other variables in the model. The chords are referred to as the
hidden variables of the model and the chromagram frames as
the observed variables.
Mathematically, the Markov and conditional independence

assumptions allow the factorization of the joint probability of
the feature vectors and chords of a song into the fol-
lowing form:

(1)

Fig. 9. Two–chain HMM, here representing hidden nodes for Keys and
Chords, emitting Observed nodes. All possible hidden transitions are shown in
this figure, although these are rarely considered by researchers.

Here, is the probability that the first chord is equal to
(the initial distribution or prior), is the proba-

bility that a chord is followed by chord in the subsequent
frame (the transition probabilities, corresponding to the hori-
zontal arrows in Fig. 8), and is the probability den-
sity for chroma vector given that the chord of the th frame is
(the emission probabilities, indicated by the vertical arrows

in Fig. 8).
It is common to assume that the HMM is stationary, which

means that and are independent of . Furthermore, it
is common to model the emission probabilities as a 12–dimen-
sional Gaussian distribution, meaning that the parameter set
of an HMM used for ACE are commonly given by

(2)

where it is convenient to gather the parameters into matrix form:
are the transition probabilities, is

the initial distribution, and , and
are mean vectors and covariance matrices for a multivariate
Gaussian distribution respectively.
Although HMMs are very common in the domain of speech

estimation [67], we found the first example of an HMM in the
domain of music transcription to be by Martin, where the task
was to transcribe piano notation directly from audio [24]. In
terms of ACE, the first example can be seen in the work by
Sheh and Ellis, where HMMs and the Expectation–Maximiza-
tion algorithm [68] are used to train a model for chord boundary
prediction and labelling [47]. Although initial results were quite
poor (maximum accuracy of 26.4%), this work inspired the sub-
sequently dominant use of the HMM architecture in ACE.
A real–time adaptation of the HMM architecture was pro-

posed by Cho and Bello, who found that with a relatively
small lag of 20 frames (less than 1 second), performance is
less than 1% worse than an HMM with access to the entire
signal [69]. The idea of real–time analysis was also explored by
Stark and collaborators, who employ a simpler, template–based
approach [70].

C. Incorporating Key Information

Simultaneous estimation of chords and keys can be obtained
by including an additional hidden chain into an HMM architec-
ture. An example of this can be seen in Fig. 9. This two–chain
HMM clearly has many more conditional probabilities than the
simpler HMM, owing to the inclusion of a key chain, whichmay
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Pattern Matching Hidden Markov Models

Hidden Markov Models

Transition probabilities are learned by
dividing the transitions to each chord
by the total transitions from that
chord.
This is done for each chord, assigning
a probability to all possible transitions.

CHO AND BELLO: ON THE RELATIVE IMPORTANCE OF INDIVIDUAL COMPONENTS OF CHORD RECOGNITION SYSTEMS 483

Fig. 4. Examples of transition matrices in a log probability scale: (a) the esti-
mated transition matrix from annotated music data, (b) the uniform transition
matrix after applying the transition penalty .

Fig. 5. Transition probabilities from C major triad and C minor triad. (a)
(C major), (b) (C major), (c) (C minor), (d) (C minor).

As in the case of the chord model training described in
Section IV-B, we only consider chord transitions relative to
the current chord, i.e., we assume that all transitions happen
from a root of C major or C minor. For example, the transitions

and m are both counted as (i.e.,
)10. The root-normalized bigrams are then transposed

to the other major and minor roots to form the final matrix.
Fig. 4(a) shows an example of the estimated transitions matrix.
Fig. 5(a) and Fig. 5(b) show transition probabilities from the

C major triad in and , respectively. In the figures, the
two most common chord transitions11 in popular music,
and , have relatively higher probabilities than the

other transitions except . In contrast, is a rare
transition12 in popular music, and thus has a very low probability
in both cases.

10In this paper, Roman numerals are often used to indicate the harmonic rela-
tionship between two chords without reference to actual chord symbols. In this
notation, the first seven Roman numerals represent a major scale degree from
the root. Capital letters are used for major triads, while lowercase letters are
used for minor triads, and a flat or sharp in front of a Roman numeral
lowers or raises the diatonic pitch by a half step.
11Progressions in which the chord roots ascend by 4th and descend by 5th are

the most frequent and strongest in jazz and popular music [42].
12This chord progression is commonly avoided due to its augmented fourth

root motion that is one of the most dissonant musical intervals [42].

The noteworthy observation in these figures is the extremely
high self-transition probabilities, i.e., in both Fig. 5(a)
and (b) and in both Fig. 5(c) and (d). The self-tran-
sition probability represents the probability of staying in the
same chord frame to frame. In the case of both frame-based and
beat-synchronous analysis, chord durations are typically longer
than frame length. Accordingly, the chord remains stable for
several frames, making the transition probability to itself the
highest. This appears as a strong diagonal in the transition ma-
trix, as seen in Fig. 4(a). While many previous works report
improving the accuracy rate with the trained transition matrix,
most of them contain little discussion of these self-transition
probabilities. They merely explain that the musical context de-
scribed in the transition matrix reduces chord confusions that
occur in the patternmatching stage. Only a few studies including
our own [6] and [10] argue that most of the improvement is due
to a relatively high self-transition probability, which essentially
acts to minimize the number of chord changes.
To verify this argument, we use a transition penalty , which

is similar to the insertion penalty used widely in speech recog-
nition [43]. The penalty is a fixed value subtracted from the
log probability of each transition but the self-transition, thus
reducing the chances of transitions out of the current chord.
In brief, this penalty controls the relative strength between the
self-transition and the other transitions. It is applied as follows:

(11)

where is the original transition probability matrix and
is the modified matrix with penalty . In addition, to

evaluate the effect of the transition probabilities other than the
self-transition probability, we define a uniform transition ma-
trix in which all transitions have the same probability. With
a high penalty value, minimizes the number of chord tran-
sitions without considering musical context. Fig. 4(b) shows an
example of after applying the transition penalty . In
order to apply post-filtering to the output of , pseudo-prob-
abilities are calculated by taking the reciprocal of the Euclidean
distances between chromagram frames and the chord templates.

VII. EXPERIMENTS

The experiments are conducted on all possible combinations
of the stages as follows:
Expt1: Feature extraction and pattern matching

In this experiment, we assess the performance of dif-
ferent combinations of the chroma features and chord
models described in Section III and Section IV.

Expt2:Effect of pre-filtering
In this experiment, we evaluate the effects of pre-fil-
tering approaches described in Section V.

Expt3:Effect of post-filtering
In this experiment, we probe into how the musical con-
texts represented in a transition matrix impact chord
recognition performance using the transition penalty .

Expt4:Combined pre- and post-filtering
In this experiment, we investigate the relationship be-
tween pre- and post-filtering and evaluate all possible
parameter combinations.

MCVICAR et al.: ACE FROM AUDIO: A REVIEW OF THE STATE OF THE ART 565

Fig. 12. HMM parameters, trained using Maximum likelihood on the MIREX dataset. Above, left: initial distribution . Above, right: transition probabilities
. Below, left: mean vectors for each chord . Below, right: covariance matrix for a C major chord. In all cases to preserve clarity, parallel minors for

each chord and accidentals follow to the right and below.

symmetry in musical harmony by transposing all chord types
to the same tonic before training [86], [87]. This means that one
may learn a generic ‘major chord’ (for example) model, rather
than individual C major, major, models, effectively in-
creasing the amount of training data for each chord type by a
factor of 12. These parameters may then be transposed 12 times
to yield a model for each pitch class.
We show example parameters (trained on the ground truths

from the 2011MIREX dataset, without transposition) in Fig. 12.
Inspection of these features reveals that musically meaningful
parameters can be learned from the data, without the need of
expert knowledge. Notice, for example, how the initial distribu-
tion is strongly peaked to starting on no chord, as expected (most
songs begin with silence). Furthermore, we see strong self–tran-
sitions in line with our expectation that chords are constant over
several beats. The mean vectors bear close resemblance to the
pitches present within each chord and the covariance matrix
is almost diagonal, meaning there is little covariance between
notes in chords.

D. Learning From Partially–labelled Datasets

Some authors have been exploring the use of readily–avail-
able chord transcriptions from guitar tab websites to aid in
testing, training, ranking, musical education, and score fol-
lowing of chords [78], [88], [89].

Such annotations are of course noisy and, lacking any chord
timing information other than their ordering, they are harder to
exploit for training ACE systems. Even so, in work by McVicar
it is shown that they represent a valuable resource for ACE,
owing to the volume of such data available [90]. A further help
in using them is the fact that a large number of examples of
each song are available on such sites. For example, Macrae and
Dixon found 24,746 versions for songs by The Beatles, or an
average of 137.5 tabs per song [15].

E. Discussion of Expert vs Data–driven systems

With the two classes of ACE systems now clear (expert and
data–driven), we discuss the strengths and weaknesses of each
in the current subsection. The first thing to note is that both
systems employ some musical and psychoacoustic knowledge
in their implementation. For example, all modern systems are
based on modifying the spectrogram to match the equal–tem-
pered scale, and most search for deviations from the standard

Hz. Further to this, summing pitches which belong
to the same pitch class to form a chromagram is now standard
practice, derived from the human perception of sound. Musical
theory is also injected into choice of hidden nodes in HMMs or
DBNs.
However, the inference of model parameters is where the two

systems begin to differ. The performance attained using either
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Pattern Matching Gaussian Mixture Models

Gaussian Mixture Models

More detailed models for each chord are created by averaging
features from multiple PCPs.
Multiple variations of the same chord are represented using
multiple Gaussian components.
Like HMM, labeled training data is used and transition probabilities
are learned for each chord.
The observed chord is matched with each chord model to find the
best fit.
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Pattern Matching Support Vector Machines

Support Vector Machines

Another type of supervised learning system.
Trained with labeled testing data, chord labels are applied to
segments of the test data.
Only works on the kind of data it is trained on.
Training procedure is complex for large datasets.
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Research Cases Case 1: Effects of Proper Signal Processing

Case 1: Effects of Proper Signal Processing

Two methods of preprocessing were used.
Four feature vectors were compared.
Two datasets were used.
GMMs and SVMs are compared.

PREPROCESSING
FEATURE

EXTRACTION
SEGMENTATION

CHORD

RECOGNITION

Time-Aligned 

Chord Labels

PATTERN RECOGNITION

Acoustic

recording

Figure 1: Overview of Chord Recognition system
implemented as a pattern recognition system

of music relies primarily on its spectral content, we use a
summed representation of the signal spectrum known as the
Pitch Class Profile (PCP) [14]. The PCP, previously used in
the field of musical cognition [9, 12], is defined as an energy
measure of the spectral content in the log2 spaced regions
corresponding to musical pitch. This 12-dimensional vec-
tor represents the energy contained in each of the 12 pitch
classes, {C, C#, D, . . . , B}. By centering non-overlapping
bandpass filters on a set of musical frequencies spanning the
range of frequency in which notes are generally played, we
obtain an Nfb-dimensional vector of normalized spectral en-
ergies, Xcq , which is an approximation to the Constant-Q
transform, where Nfb is the number of filters in such a fil-
terbank. For the experiments presented in this paper we
used Nfb = 84 filters (7 octaves) corresponding to musical
pitches with center frequencies from a low of C1 = 32.703Hz
to a high of B7 = 3951.1Hz. The filterbank outputs are ob-
tained directly from an FFT calculation by warping the fre-
quency axis to the log2 scale and summing, for each center
frequency, the magnitudes of the FFT bins whose warped
frequencies were closest to each individual log2 center fre-
quency. Using a total of Nfb = 84 frequency bins, the first
frequency band corresponds to the lowest C on the piano,
(fc0 = 32.703 Hz), and the resulting sequence of band center
frequencies can be specified as,

fck = fc0 · 2k/12, k = 0, 1, 2, . . . , Nfb − 1 (1)

resulting in the set of center frequencies {fc0, fc1, . . . , fcNfb−1}.
The output vector, Xcq can then be calculated as the energy
outputs of the warped frequency domain filters as described
above (each bin normalized to compensate for the number of
FFT points in the summation). Each PCP bin can then be
calculated as a weighted summation of every 12th filterbank
bin, i.e.,

PCP (l) =
�
j∈Cl

αlXcq(j) l = 0, 1, . . . , 11 (2)

where j is indexed such that j mod 12 = l corresponds to
the pitch class l, Cl the set of frequency bins belonging to
pitch class l, and αl is the set of weighting factors for pitch
class l.

2.2 Preprocessing
Since the information required to perform chord classi-

fication is related only to the fundamental frequencies of
the sounded notes, it will aid the classifier to eliminate in-
formation not related to the note pitches. By using signal
processing methods, the effects of timbre, or the quality of
the sound not related to pitch or volume, can be effectively
reduced. This is achieved by a two-stage process of Ho-
momorphic Liftering followed by the use of the Harmonic
Product Spectrum, as illustrated in Figure 2. Homomor-
phic processing provides a method of deconvolving signals

whose frequency support regions lie in different portions of
the spectrum, effectively separating them out in the cep-
stral domain. The harmonic product spectrum provides a
method of reducing overtones, which add energy to pitch
classes not directly related to the actual notes played.

A musical tone, whether produced by a vibrating string
or a tube, can be treated as the output of a linear system
excited by a harmonic oscillation or a periodic sequence of
impulses. Because the frequency components of the musical
signal are all that is needed to ’understand’ the underlying
chord structure, it is useful to separate the system excitation
from the system impulse response. Homomorphic process-
ing provides a viable method for separating the excitation
portion of the signal from the impulse response of the sys-
tem, which have been convolved together in the production
of the musical signal. The way in which we perform this
separation is further explained in [13]. Consider, y[n], the
output of a linear system, h[n], excited by a periodic signal
x[n], i.e.,

y[n] = x[n] ∗ h[n] (3)

with resulting z-transforms

Y (z) = X(z)H(z) (4)

A homomorphic system for the deconvolution of x[n] and
h[n] utilizes the logarithm of the Discrete Fourier Transform
(DFT) of y[n], producing

Ŷ (z) = log[Y (z)] = log[X(z)] + log[H(z)] (5)

Taking the inverse DFT (evaluated on the unit circle, z =
ejω) gives

ŷ[n] =
1

2π

� π

−π

Ŷ (ejω)ejωndω (6)

Ignoring the imaginary portion of the above integral, the

HAMMING

WINDOW

400msx(n)

Input

Signal
FFT

NFFT = 32768
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NFFT = 32768

Homomorphically

Liftered Spectrum

COMPRESSION
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.

.

.
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Figure 2: Preprocessing of the muscial signal by Ho-
momorphic Liftering and the use of the Harmonic
Product Spectrum

2
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Research Cases Case 1: Effects of Proper Signal Processing

Preprocessing

Homomorphic Liftering: Finds
strong peaks in the frequency
areas where notes occur.
Harmonic Product Spectrum
(HPS): De-emphasizes
overtones, emphasizes chord
tones.

(real) cepstrum, c[n] is defined as the even part of ŷ[n],

c[n] = 1
2π

� π

−π
log |Y (ejω)|ejωndω

= 1
2π

� π

−π
Re[Ŷ (ejω)]ejωndω

(7)

The cepstrum representation of a signal exists in the que-
frency domain (a type of time domain), with c[n] represent-
ing the cepstral content with sample n corresponding to a
duration of n

fs
seconds. The cepstrum component of the

signal corresponding to the system response, h[n], resides in
the low quefrency end of the cepstrum, while the cepstrum
of the excitation signal, x[n], resides at its fundamental pe-
riod, T0, and multiples thereof. Thus an estimate of the
frequencies in the excitation signal can be obtained by find-
ing strong peaks in the cepstrum [7] in regions corresponding
to the pitch range of the notes.

Homomorphic filtering involves windowing the desired por-
tion of the cepstrum (zeroing out the unwanted portion),
then taking the DFT to obtain a liftered log-magnitude spec-
trum. In the case of extracting only the frequency mag-
nitude of the periodic excitation sequence, cepstral values
corresponding to a period T < Te, where Te is the maxi-
mum excitation period of interest would be set to 0. This
effectively removes the spectral shape contributed by the
system. Furthermore, cepstral values corresponding to high
frequencies can be set to zero to reduce noise.

2.2.1 Harmonic Product Spectrum
A musical tone consists of the sum of sinusoidal tones

of integer multiples of the fundamental frequency. While
enriching the sound of the musical note, the resulting over-
tone series can contribute negatively to the calculation of
the PCP since the harmonics will add energy to frequency
bins different from the desired fundamental frequencies that
were played.

The Harmonic Product Spectrum [7], (HPS) is a fre-
quency domain method which emphasizes fundamental fre-
quencies when their corresponding overtones are present.
The HPS, P (k) is computed by compressing the spectrum by
factors of 1 to R, and multiplying the resulting compressed
spectra, or adding the log compressed spectra

logP (k) = log

R�
i=1

|X(ik)|2 k = 0, 1, . . . , NFFT /2 (8)

where the Rth spectrum is obtained by sampling every Rth

value of the positive half of the DFT. Since this method re-
duces the frequency resolution of the resulting spectrum, it is
necessary to use an input DFT with R times as many points
as desired at the output. Undersampling the input spectrum
can result in heavily quantized frequency estimates.

An illustration of the combination of homomorphic lif-
tering and the harmonic product spectrum can be seen in
Figures 3 through 8. A chord played on the piano, of MIDI
notes {60, 64, 67} corresponding to fundamental frequencies
of f0 = {261.63, 329.63, 392.00}(Hz) has a log magnitude
spectrum as seen in Figure 3. By calculating the cepstrum
of the signal, and zeroing out portions in the quefrency range
corresponding to frequencies of less than 30 Hz and greater
than 4 kHz, and then taking the direct FFT, the signal has
been liftered to have a log magnitude spectrum as seen in
Figure 4. Here it can be seen that all of the frequency com-
ponents from the fundamentals as well as the overtones re-
main, but the overall spectral shape has been “flattened”.
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Figure 3: Log magnitude spectrum of C Major chord
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(real) cepstrum, c[n] is defined as the even part of ŷ[n],

c[n] = 1
2π

� π

−π
log |Y (ejω)|ejωndω

= 1
2π

� π

−π
Re[Ŷ (ejω)]ejωndω

(7)

The cepstrum representation of a signal exists in the que-
frency domain (a type of time domain), with c[n] represent-
ing the cepstral content with sample n corresponding to a
duration of n

fs
seconds. The cepstrum component of the

signal corresponding to the system response, h[n], resides in
the low quefrency end of the cepstrum, while the cepstrum
of the excitation signal, x[n], resides at its fundamental pe-
riod, T0, and multiples thereof. Thus an estimate of the
frequencies in the excitation signal can be obtained by find-
ing strong peaks in the cepstrum [7] in regions corresponding
to the pitch range of the notes.

Homomorphic filtering involves windowing the desired por-
tion of the cepstrum (zeroing out the unwanted portion),
then taking the DFT to obtain a liftered log-magnitude spec-
trum. In the case of extracting only the frequency mag-
nitude of the periodic excitation sequence, cepstral values
corresponding to a period T < Te, where Te is the maxi-
mum excitation period of interest would be set to 0. This
effectively removes the spectral shape contributed by the
system. Furthermore, cepstral values corresponding to high
frequencies can be set to zero to reduce noise.

2.2.1 Harmonic Product Spectrum
A musical tone consists of the sum of sinusoidal tones

of integer multiples of the fundamental frequency. While
enriching the sound of the musical note, the resulting over-
tone series can contribute negatively to the calculation of
the PCP since the harmonics will add energy to frequency
bins different from the desired fundamental frequencies that
were played.

The Harmonic Product Spectrum [7], (HPS) is a fre-
quency domain method which emphasizes fundamental fre-
quencies when their corresponding overtones are present.
The HPS, P (k) is computed by compressing the spectrum by
factors of 1 to R, and multiplying the resulting compressed
spectra, or adding the log compressed spectra

logP (k) = log

R�
i=1

|X(ik)|2 k = 0, 1, . . . , NFFT /2 (8)

where the Rth spectrum is obtained by sampling every Rth

value of the positive half of the DFT. Since this method re-
duces the frequency resolution of the resulting spectrum, it is
necessary to use an input DFT with R times as many points
as desired at the output. Undersampling the input spectrum
can result in heavily quantized frequency estimates.

An illustration of the combination of homomorphic lif-
tering and the harmonic product spectrum can be seen in
Figures 3 through 8. A chord played on the piano, of MIDI
notes {60, 64, 67} corresponding to fundamental frequencies
of f0 = {261.63, 329.63, 392.00}(Hz) has a log magnitude
spectrum as seen in Figure 3. By calculating the cepstrum
of the signal, and zeroing out portions in the quefrency range
corresponding to frequencies of less than 30 Hz and greater
than 4 kHz, and then taking the direct FFT, the signal has
been liftered to have a log magnitude spectrum as seen in
Figure 4. Here it can be seen that all of the frequency com-
ponents from the fundamentals as well as the overtones re-
main, but the overall spectral shape has been “flattened”.
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Research Cases Case 1: Effects of Proper Signal Processing

Feature Extraction

Four Feature Vectors (FV), or combinations of methods used for
feature extraction were compared.
Sample Rate is the audio resolution and Fast Fourier Transform
(FFT) determines the resolution in the frequency domain.

Type Sample Rate FFT Length Liftering HPS Ratio
FV1 FB 44100 32768 yes 5
FV2 PCP 11025 4096 no 1
FV3 PCP 44100 32768 no 1
FV4 PCP 44100 32768 yes 5
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Research Cases Case 1: Effects of Proper Signal Processing

Datasets

Isolated chord dataset: 7790 chords
synthesized from Musical Instrument
Digital Interface (MIDI) data on piano
and strings.
80% used for training, 20% for testing.
3 complexity levels were tested.
Continuous single-instrument
audio: 50 hymns from the Trinity
Hymnal, a MIDI collection of 761
hymns.
40 used for training, 10 for testing.
FV4 and DS3 are used with an SVM.

Label given in:
Label DS1 DS2 DS3
Major Major Major Major
Minor Minor Minor Minor

Major 7 - Major Major 7
Minor 7 - Minor Minor 7
Dom. 7 - Major Dom. 7

Dim. Dim. Dim. Dim.
Full Dim. - Dim. Full Dim.
Half Dim. - Dim. Half Dim.

Augmented Aug. Aug. Augmented
Sus. 4 - - Sus. 4

7 Sus. 4 - - 7 Sus. 4
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Research Cases Case 1: Effects of Proper Signal Processing

Results

Feature Vector DS1 DS2 DS3
FV1 83.68 61.85 57.24
FV2 90.33 82.44 82.26
FV3 91.76 84.20 84.09
FV4 85.64 79.40 78.93

Table : Isolated chord recognition accuracy using GMM, training set: piano,
testing set: piano

Feature Vector DS1 DS2 DS3
FV1 68.06 42.00 33.62
FV2 42.72 18.60 16.30
FV3 43.49 22.00 18.31
FV4 86.94 80.23 80.18

Table : Isolated chord recognition accuracy using GMM, training set: piano,
testing set: strings
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Research Cases Case 1: Effects of Proper Signal Processing

Results

Feature Vector DS1 DS2 DS3
FV1 93.43 88.21 86.52
FV2 94.78 93.26 93.13
FV3 95.23 94.31 94.24
FV4 90.56 88.08 87.74

Table : Isolated chord recognition accuracy using SVM, training set: piano,
testing set: piano

Number of Scatter Points
3 5 7 9

72.73 87.77 88.07 88.42

Table : Continuous single-instrument recognition accuracy using FV4 and
DS3, with varying number of scatter points
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Research Cases Case 2: HMM Trained with Audio from Symbolic Data

Case 2: HMM Trained with Audio-From-Symbolic Data

Chord label data and audio files are
created from the same MIDI data.
Pitch Class profile is generated from
the audio.
These pieces are used to train a
supervised HMM.

uncorrelated with each other, and thus use diagonal covari-
ance matrix. State transitions obey the first-order Markov
property; i.e., the future is independent of the past given the
present state. In addition, we use an ergodic model since we
allow every possible transition from chord to chord, and yet
the transition probabilities are learned.

Once the model parameters – initial state probabilities,
state transition probabilities, and mean vector and covari-
ance matrix for each state – are learned, the Viterbi algo-
rithm is applied to the model to find the optimal path, i.e.,
chord sequence, in a maximum likelihood sense given an in-
put signal.

In our model, we have defined 36 classes or chord types
according to their sonorities only – major, minor, and di-
minished chords for each pitch class. We grouped triads
and seventh chords with the same root and sonority into
the same category. For instance, we treated E minor triad
and E minor seventh chord as just E minor chord without
differentiating the triad and the seventh. Augmented chords
were not considered because they scarcely appear in West-
ern tonal music. We found this class size appropriate in a
sense that it lies between overfitting and oversimplification.

3.3 Harmonic Analysis on Symbolic Data
In order to train a supervised model, we need label files

which must contain annotated chord boundaries as well as
chord names. To automate this laborious process, we use
symbolic data to generate label files as well as audio data.
To this end, we first convert a symbolic file to a format which
can be used as an input to a chord analysis tool. Chord an-
alyzer then performs harmonic analysis and outputs a file
with root information and note names from which complete
chord information (i.e., root and its sonority – major, mi-
nor, or diminished triad/seventh) is extracted. Sequence of
chords are used as ground-truth or labels when training the
HMM. In parallel, we use the same symbolic files to gen-
erate audio files using a sample-based synthesizer. Audio
data generated this way are in perfect sync with chord la-
bel files obtained above, and are enharmonically rich as in
real acoustic recordings because audio samples in a synthe-
sis engine contain the upper harmonics as well. Figure 1
illustrates the overview of the system.

4. IMPLEMENTATION AND
EXPERIMENTS

As shown in Figure 1, our system for generating labeled
training data has two main blocks running in parallel. First,
harmonic analysis is performed on symbolic data. We used
symbolic files in Humdrum data format. Humdrum is a
general-purpose software system intended to help music re-
searchers encode, manipulate, and output a wide variety
of musically-pertinent representations.1 For harmonic anal-
ysis, we used the Melisma Music Analyzer developed by
Sleator and Temperley by the authors.2 The Melisma Mu-
sic Analyzer takes a piece of music represented by an event
list, and extracts musical information from it such as me-
ter, phrase structure, harmony, pitch-spelling, and key. By
combining harmony and key information extracted by the
analysis program, a complete Roman-numeral analysis is

1http://dactyl.som.ohio-state.edu/Humdrum/
2http://www.link.cs.cmu.edu/music-analysis/

(.lab)

Label

(MIDI)

Chord analysis MIDI synthesis

time:             0   1.5  3.2   6.0 ...
chord name: C   G   D7   Em ...

Symbolic data

Audio

(.wav)

Chroma analysis

12−bin chroma features

HMM

Training

Figure 1: Overview of the system.

performed, from which we can generate label files with se-
quence of chord names.

The analysis program was tested on a corpus of excerpts
and the 48 fugue subjects from the Well-Tempered Clavier,
and the harmony analysis and the key extraction yield the
accuracy of 83.7% and 87.4%, respectively [12].

In the feature extraction block in our system, MIDI files
are synthesized using Timidity++. Timidity++ is a free
software synthesizer, and converts MIDI files into audio files
in a WAVE format.3 It uses a sample-based synthesis tech-
nique to generate enharmonically rich audio as in real record-
ings. The raw audio is downsampled to 11025 Hz, and 12-bin
chroma features are extracted from it with the frame size of
8192 samples and the hop size of 2048 samples. The chroma
vectors are then used as input to the HMM along with the
label files obtained above.

To examine the model’s dependence on the training data,
we chose two different training data sets and obtained two
model parameters on each data set. For the first model,
we used as a training data set 81 files of solo piano music
by J. S. Bach, Beethoven, and Mozart in a Humdrum data
format at the Center for Computer Assisted Research in

3http://timidity.sourceforge.net/
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Research Cases Case 2: HMM Trained with Audio from Symbolic Data

Datasets

Two training datasets: 81 solo piano pieces, 196 string quartets by
J.S. Bach, Beethoven, Mozart, and Haydn.
Two testing datasets: 5 solo piano pieces, 5 string quartets
selected from the Kostka and Payne’s book.
All combinations of training and testing data were tried.
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Research Cases Case 2: HMM Trained with Audio from Symbolic Data

Results

Training Data Test Data Recognition Rate
Piano Piano 68.69

String Quartet Piano 73.40
Piano & Strings Piano 74.41

Piano String Quartet 79.35
String Quartet String Quartet 79.76

Piano & Strings String Quartet 80.16

Table : Recognition results for all six possible training - test pairs in research
case 2
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Research Cases Case 3: Importance of Individual Components

Case 3: Importance of Individual Components

Four experiments:
Using different combinations of
preprocessing techniques during
feature extraction.
Pre-filtering using moving average
filters, which look for noisy frames
and smooth them across neighboring
frames.
Post-filtering using an HMM.
Using both pre-filtering and
post-filtering.

478 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

models, and pre- and post-filtering approaches, thereby pro-
viding valuable information that can guide future developments
in automatic chord recognition. This work is an extension
of our previous work [6], which concentrated on variations
of filtering parameters and the testing of different pattern
matching approaches but did not investigate feature extraction
approaches. We expand by including various types of features
and a popular pre-filtering technique known as beat-synchro-
nization. In addition, we use a database consisting of 495 chord
annotated songs, more than double the size of the database used
in the previous study. We also provide a more in-depth analysis
of the relative impact of system components.
It must be clarified that covering the full range of possible ap-

proaches is beyond the scope of this study. Instead, we choose to
use several of the most common and representative techniques
per processing step, each of which can be found in state-of-
the-art chord recognition systems. Finally, all evaluations in
this paper are performed on the detection of major, minor and
no chords, the chord set currently used in MIREX evaluations.
The remainder of this paper is organized as follows: Section II
introduces the fundamental architecture of chord recognition
systems with a brief outline of each stage in this architecture;
Section III to Section VI describe the details of common tech-
niques used in each stage; Section VII presents the experimental
setup and evaluation methodology; In Section VIII we discuss
the results; while Section IX includes our conclusions and di-
rections for future work.

II. ARCHITECTURE OF A CHORD RECOGNITION SYSTEM

Asmentioned in the introduction, most chord recognition sys-
tems share a common architecture comprising two main stages:
feature extraction and pattern matching, and two optional sub
stages: pre-filtering and post-filtering, as illustrated in Fig. 1.
The following subsections provide a brief overview of each
stage in this architecture.

A. Feature Extraction

The role of this stage is, as its name implies, to extract ap-
propriate harmonic features from the audio signal. For over a
decade since Fujishima [11], chroma features have been the
most popular features used for chord recognition. A chroma fea-
ture vector, also referred to as pitch class profile (PCP), rep-
resents the energy distribution of a signal’s frequency content
across the 12 pitch classes of the equal-tempered scale. A tem-
poral sequence of these chroma vectors is often called a chro-
magram [12]. Because a chord is composed of a set of notes, and
it is assumed that the chord label can be determined by the oc-
currence of those notes regardless of octave, chroma features re-
main the de facto standard signal representation for chord recog-
nition systems. Thus, the feature extraction techniques that have
been developed are mostly methodological variations or refine-
ments of the original approach.
In our experiments, we investigate the impact of common

variants of chroma features on chord recognition performance,
and explore the implications of these variants for the subsequent
processing stages. The implementation details of chroma fea-
tures and their variants are discussed in Section III.

Fig. 1. Fundamental Architecture of a chord recognition system.

B. Pattern Matching

Because of the prevalence of chroma features in chord
recognition systems, what makes each system unique is largely
dependent on its decision mechanism. Although few studies
use discriminative machine learning techniques such as Con-
ditional Random Field [13] and structured Support Vector
Machine [14], the majority use generative chord models such
as Gaussian models [1], [15]–[17]. Generative chord models
primarily focus on describing the distribution of features for
individual chords, while the discriminative models focus on
determining the classification boundaries between different
chords in feature space. Since we only consider “common”
approaches in this study, we discard discriminative models.
In the case of generative approaches, the chord label of each

frame is determined by finding the chord model that best fits
that frame. Thus, in order to identify different chords,
distinct chord models are necessary. These chord models can
be classified into two major categories in terms of how they are
constructed. One is generated manually using musical knowl-
edge, and the other is derived stochastically from examples of
real-world music. In the former case, the most popular approach
is to use hand-crafted chord templates based on the classical
approach proposed in 1999 by [11], often used due to its
simplicity. In the latter case, Gaussian-based stochastic chord
models have become popular with the increasing availability
of hand-labeled data. In this paper, we investigate the effects
of increasing the complexity of these models, and discuss its
relative importance compared to parameters in other processing
stages. The specific methods used to generate the models are
described in Section IV.

C. Filtering

In chord transcription, determining chord boundaries is as im-
portant as identifying chord labels. Accordingly, the frame rate
of a chromagram is chosen to be significantly faster than the
typical rate of chord changes in music.2 However, in this case,
chroma features become susceptible to undesirable local vari-
ability such as transients and noise in the signal. The optional

2The average rate of chord change in our dataset (consisting of 495 popular
songs) is approximately 0.51/sec (1.95 s / change).
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Research Cases Case 3: Importance of Individual Components

Datasets

Each experiment was performed on 495 chord labeled songs.
180 Beatles songs, 20 Queen songs, 100 songs from the Real
World Computing (RWC) pop dataset, and 195 songs from the
US-Pop dataset.
5 groups of 99 songs were selected randomly, with four used for
training and one for testing.
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Research Cases Case 3: Importance of Individual Components

Results

Each experiment was tried using 1, 5, 10, and 25 Gaussian
components, with the best result shown.
Increasing the number of components helped when using HMMs
because they are dependent on transition probabilities.
For preprocessing, high and low frequencies were de-emphasized
and log compression was used, which limits dynamic range
caused by different instruments and volumes.

Expt. Highest Accuracy Pre-filtering Pattern Matching Post-filtering
1 58.30 - 1 Gaussian component -
2 71.22 Moving average filters 1 Gaussian component -
3 77.90 - 25 Gaussian components HMM
4 77.58 Moving average filters 25 Gaussian components HMM

Table : Results from research case 3, showing the highest accuracy in each
experiment, and the components used to achieve it
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Conclusions

Outline

1 Feature Extraction

2 Pattern Matching

3 Research Cases

4 Conclusions
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Conclusions

Conclusions

Isolated chords were more of a proof of concept.
Highest accuracy is around 88%, achieved using homomorphic
liftering, HPS, chord segmentation, and SVMs for labeling.
This system was dependent on the training data, and SVMs don’t
work as well for large datasets.
Systems can be specifically tailored to type types of instruments
and chords present in the dataset.
Advances are being made in more general models that can
provide chords for any given song.
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Conclusions

Thanks!

Thank you for your time and attention!

Contact:
emmon046@morris.umn.edu

Questions?
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