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ABSTRACT

This paper discusses search-based procedural content gener-
ation (SBPCG) systems used to generate content in videoga-
mes. Procedural content generation (PCG) involves gener-
ating content algorithmically, using some form of randomiza-
tion or psuedo-randomization to create a variety of different
content pieces. Search-based procedural content generation
involves using a fitness function to test and score individual
content pieces after they are generated. The example of in
this paper discusses implementing SBPCG through the use
of a genetic algorithm (GA). An applications section is also
included, which discusses the implementation and testing
of two SBPCG systems: a system for generating racetracks
in The Open Racing Car Simulator (TORCS) proposed by
Cardamone et al., and a system proposed by Mourato et al.
for generating levels in Prince of Persia.
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1. INTRODUCTION

Modern videogame developers are constantly pressured to
deliver a product that is desirable to consumers. Gamers ex-
pect videogames to include elements such as a large game
world to explore, access to many different unique items and
weapons, or a game world that is different each time the
game is played. Since implementing these elements can be a
daunting task for developers, a technique called procedural
content generation (PCG) is often used to automate much of
the work. Procedural content generation relies on algorithms
that incorporate some level of randomness to generate tan-
gible pieces of videogame content [5]. A common issue with
basic PCG is that the content produced may be of lower
quality than content specifically designed by a developer. A
procedurally generated track in a car racing game, for ex-
ample, may not be nearly as fun to drive on as one designed
by a developer. Search-based procedural content generation
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(SBPCG) aims to solve this problem by testing pieces of gen-
erated content and scoring them based on criteria specified
by developers. This is primarily done by generating content
within a genetic algorithm. This way, future generations of
generated content are more likely to meet the expectations
of the players and developers.

2. BACKGROUND

Before discussing search-based procedural content systems
in videogames, it is important to first understand procedural
content generation and some related concepts.

2.1 Procedural Content Generation

Procedural content generation (PCG) is process in which
an algorithm is used to automate content creation [5]. These
algorithms are referred to as content generation algorithms.
For this process to work, content generation algorithms are
designed so they introduce some level of randomness in gen-
erated content. For example, if an algorithm is used to gen-
erate separate areas within a game work, it may randomly
generate coordinates that correspond to the placement of
certain features like buildings, trees, mountains etc. This
randomness allows for variety in the content created. Indi-
vidual items produced by a PCG system will be referred to
as “content pieces”.

2.2 Content Representation

In order for content to be generated, it must be repre-
sented in a specific way. We will discuss a basic example if a
PCG system that uses templates and experimental chunks
to build content pieces.

2.2.1 Templates

Templates represent the general structure of content pieces,
but lack specific parts [4]. They typically contain placehold-
ers that are later replaced by experimental chunks to form
content pieces. An example if a template would be an empty
grid of placeholder tiles that form the general structure of a
two-dimensional game map.

2.2.2 Experimental Chunks

Experimental chunks are items that are used to fill in tem-
plates to create content pieces [4]. They are often human
designed, but can also be procedurally generated. An ex-
ample of experimental chunks would be pieces of geometry
(floors, walls, etc.) that are used to fill in the placeholder
tiles within the template example described in section 2.2.1.



2.2.3  Online vs. Offline PCG

Two large categories of PCG are online and offline [5].
Online refers to content being generated as the player is in-
teracting with the game world. An example would be an
algorithm that, as the player moves though the game world,
spawns enemies just out of the players sight. Offline refers to
PCG that occurs before the player interacts with the game.
This can mean that such content is generated while the game
or a particular map or level is loading. An example of this
could be a game where the environments are randomly gen-
erated every time the game loads, giving the player a dif-
ferent experience each time they play. It also includes PCG
that is done by developers when building the game. For ex-
ample, a game may include a very large and complex game
world that is always the same to players, but was initially
developed using PCG.

2.2.4 Constructive vs. Generate-and-test PCG

Two more categories that procedural content generation
algorithms are broken down into are constructive PCG and
generate-and-test PCG [5]. In constructive PCG system,
the content generation algorithm outputs finished content
pieces. No testing is done after the content pieces are gener-
ated. In generate-and-test PCG, this is not the case. Con-
tent pieces that are generated by the content generation al-
gorithm are run through a test, and either accepted or re-
jected. Accepted content pieces are used, and rejected ones
are not. See Figure 1.
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Figure 1: This flow diagram displays a comparison
between search-based, constructive, and generate-
and-test PCG [6].

3. SEARCH-BASED PCG

Search-based procedural content generation (SBPCG) is
a special type of generate-and-test PCG. It differs from the
standard generate-and-test approach in that content pieces
are not simply accepted or rejected during the testing phase.
Instead, these pieces of content are tested using a fitness
function, and assigned fitness values that correspond to their
suitability [5]. See Figure 1. The following sections will
discuss how an SBPCG system can be created by using a
genetic algorithm.

4. GENETIC ALGORITHMS

Geneitic algorithms (GA) are search algorithms that mimic
the processes of evolution and natural selection in order to
find a solution to a problem [2]. Search-based PCG systems
are most commonly implemented through the use of genetic
algorithms. The following subsections detail some primary
concepts and components of a genetic algorithm used in an
SBPCG system.

4.1 Fitness Functions

A fitness functions tests the individuals within a popula-
tion, and assigns them fitness values [5]. These fitness val-
ues correspond to the suitability of the individuals based on
criteria specified by developers within the fitness function.
When creating fitness functions, developers aim to include
criteria that best represents an ideal solution to the prob-
lem. In the context of search-based PCG, fitness functions
aim to help find the best suited content pieces.

4.1.1 Direct

Direct fitness functions are the most simple, and usually
require little computation. In a direct fitness function, cer-
tain attributes of an individual are extracted and exam-
ined [5]. A fitness value is then assigned based on these
attributes. Assigned fitness values may correspond to spe-
cific, individual characteristics, or to combinations of char-
acteristics. The relation between characteristics and fitness
values may also be linear or non-linear. A simple exam-
ple of a direct fitness could be one that scores randomly
generated NPC characters in a medieval-themed role play-
ing game with the attributes (strength, speed, agility, in-
telligence, and dexterity). If the goal is to find the best
warrior-type character, the fitness value may be an individ-
uals strength value, plus their dexterity value.

4.1.2 Simulation-Based

As the name implies, simulation-based fitness tests score
content based on the performance of that content within a
simulation [5]. This is often done because it is not always
apparent how well content will be suited to certain situation,
and therefore it is difficult to design a direct fitness function
to test it. Simulation-based fitness functions are especially
useful when testing artificial intelligence, but can also be
used for other applications as well.

4.1.3 Interactive

Interactive fitness functions score content based on the
player’s interactions or input [5]. This can be done by col-
lecting data while the player is playing the game, or by ex-
plicitly asking the player using a some sort of form or ques-
tionnaire about their experiences.

4.2 Genetic Operators

Genetic operators are functions within a genetic algorithm
that are used in order to introduce variation to the popula-
tion during subsequent generations [7].

4.2.1 Selection

Selection operators are modeled after the theory of natural
selection, and determine which individuals will be selected
to add variation to the population. Two common selection
operators are truncation and tournament selection [8]:



1. Truncation Selection. In truncation selection, in-
dividuals in the population are ordered based on their
fitness values. A proportion of the population with the
highest fitness values is selected for crossover.

2. Tournament Selection. Tournament selection in-
volves running “tournaments” where randomly chosen
individuals from the population are picked. The indi-
vidual with the highest fitness value in each tourna-
ment “wins”, and is selected for crossover.

Crossover Mutation

Figure 2: Examples of crossover and mutation rep-
resented using integer arrays of size 3. Crossover is
performed on individuals A and B to create a new
individual. Mutation is then performed on that new
individual [3].

4.2.2 Crossover and Mutation

The crossover and mutation operators model different as-
pects of biological reproduction [7]:

1. Crossover. This operator mimics the creation of a
new individual through biological reproduction. Two
“parent” individuals in the population are used to cre-
ate a new individual. When crossover occurs, a new
individual is introduced into the population that takes
part of its characteristics from one parent individual,
and part from the other. See Figure 2.

2. Mutation. The mutation operator is modeled after
biological mutation of a new individual. It is per-
formed on a single individual, typically one that has
been created as a result of crossover. One of the traits
of the newly created individual is replaced by another
randomly selected trait. See Figure 2.

4.3 Genetic Algorithms and SBPCG

Genetic algorithms can be used to create an SBPCG sys-
tem. The following is an outline of the steps within a GA:

1. An initial population (a collection of individuals to be
tested and modified by the GA) of content pieces is
saved. These may be designed manually or previously
generated using an algorithm.

2. Individuals in population are evaluated using the fit-
ness function, and assigned fitness values.

3. The selection operator selects individuals for crossover
and/or mutation using their fitness values.

4. Crossover and/or mutation operators are used on se-
lected individuals.

5. Individuals created from crossover/mutation replace
lower scoring individuals in the population.

6. A function tests to see if the GA is “done”. Most ge-
netic algorithms are designed to run for a specified
number of generations. This is done by comparing
a counter that is incremented ever generation to the
specified parameter.

7. If it is done, the population is returned. If it is not
done, the process starts over from step number two.

S. APPLICATIONS

We will discuss several applications of search-based pro-
cedural content generation used to generate videogame con-
tent.

5.1 Track Generation in TORCS

The Open Racing Car Simulator (TORCS) is an open-
source car racing simulator. TORCS is often used in exper-
iments and studies due to the fact that it is open source,
and because it has a detailed and complex physics engine,
3D graphics, and a variety of race tracks, cars, and game
modes. Cardamone et al. [1] proposed a framework that
uses an interactive fitness function to generate racetracks in
TORCS. While the proposed system includes a single and
multi-user mode for fitness testing, we will focus on results
of the single-user mode.

Figure 3: Race tracks are encoded using the po-
lar coordinates of control points (the dots along the
path of the track), the system origin (the dot in cen-
ter), and feasible slope values for each control point
(an example is represented the straight tangent line
going through a control point) [1].

5.1.1 Track Representation

The algorithm that generates tracks takes in a number
n on control points p (represented as polar coordinates).
These control points form a template for a racetrack. Track
segments act as experimental chunks that fill in the tem-
plate, and are then generated that pass through these con-
trol points to form a closed track. The process takes place
in the following way:

1. A number n of control points p (polar coordinates)
are given as input to an algorithm that returns a list
of track segments.

2. The polar coordinates of the n control points are used
to generate a range of possible slope values for each
point (see figure 3). If no slope value can be generated
that would allow the track segment passing through



the control point to meet with the incoming and out-
going segments, a null track is returned. The process
repeats until a closed track is generated.

3. A procedure connects the control points by using track
segments that are either straight or turn segments. A
straight segment is defined simply by its length as a
parameter. Turn segments are defined by 4 parame-
ters: the direction of the turn (either left or right),
the arc covered by the turn represented in radians, the
start radius of the turn, and the end radius of the turn.

4. If the first and last control points cannot be connected
by a single track segment, a procedure uses different
heuristics to attempt to connect them with a series of
different segments.
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Figure 4: A screenshot of the interface shows how
the user can rate racetracks using the “star” (left)
and “like/dislike” (right) [1].

5.1.2 Fitness Function

Within this framework, an interactive fitness test was
used. The user interface presents the user with a visual
display of the population of tracks. Users are able to test
the tracks, then score them using one of two systems:

1. The “star” system. The user can rate each track
from 1 to 5, represented by a number of filled in stars
out of 5 total stars. A fitness value is assigned of the
same integer value (i.e rating a track 2 out of 5 stars
corresponds to a fitness value of 2). See Figure 4.

2. The “like/dislike” system. The user either likes
or dislikes a track by clicking on a “thumbs up” or
“thumbs down” icon, respectively. Liking a track as-
signs it a fitness value of 5, and disliking it assigns it
a value of 1. See Figure 4.

5.1.3 Testing and Results

In the single-user mode, the framework was tested using
4 different selection operator/fitness function combinations:
the star system with tournament selection, the like/dislike
system with tournament selection, the star system with trun-
cation selection, and the like/dislike system with truncation
selection. Each of these was tested by 5 human subjects,
who were asked to complete 10 generations, each with a
population size of 20 tracks. The users were not told which
selection type was being used.

After all the data was collected from the trials, the two
fitness interfaces were compared (see Figure 5) and the two
selection operators were compared. Average fitness scores
were generally higher using the like/dislike system, while the
selection operator didn’t make a significant different. Users
reported that they felt that liking or disliking a track was
much more intuitive than assigning it a score from 1 to 5.
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Figure 5: Average fitness scores of the population
over 10 generations using the star ranking system
(empty squares) and the like/dislike system (solid
squares) [1].

5.2 Level Generation in a Platforming Game

In the platforming game Prince of Persia (1989), players
must run, climb, and jump through two-dimensional levels,
while avoiding traps and encountering enemies. These are all
common and definitive elements of platforming games. We
will next examine an offline search-based procedural content
system proposed by Mourato et al. [2]. Their system uses a
genetic algorithm to generate levels for Prince of Persia.

Figure 6: The three block types from left to right:
floor, empty space, wall.

5.2.1 Level Representation

Each level is represented by a template in the form of a
two dimensional grid of rectangular spaces, or “cells”. The
following are elements that make up a level.

1. Cells. Cells are two-dimensional rectangular tiles that
make up the template of a level. Cells contain blocks,
which form the structure of the level. Each level also
has a starting cell where the player begins the level,
and an ending cell where the player must move to in
order to complete the level.

2. Blocks. Blocks are experimental chunks that repre-
sent pieces of geometry. Each block occupies one cell
within a level template. The basic block types are
walls, floors, and empty blocks. Walls create physi-
cal barriers for the player, and floors create areas that
can be walked on. Empty blocks create spaces for the
player to jump or fall into, or they can form gaps be-
tween platform blocks for the player to jump over.

3. Path. The path of a level is the area that can be
traversed by the player. The area of the path is made
up of both empty and floor blocks. The path in a level
must also connect the starting and ending cells.



4. Window. Each level is divided into 10 by 3 cell sec-
tions called “windows”. At any given moment during
gameplay, the player is shown the window of the level
that their character is currently in. When the charac-
ter is moved outside of the window, the game displays
the new window that the character has been moved
into.

5. Entities. Entities are objects that are added to a level
after the geometric level structure is complete. Entities
include cell textures, enemies, traps, and usable items.

5.2.2 Fitness Function

In order to calculate the fitness scores for each level, the
fitness function was designed to test aspects that would in-
fluence the way a human player perceives the level. Fitness
values assigned to levels range from 0 to 1. A fitness value
of around 0.85 corresponds to a level that typically has no
significant flaws, and presents the player with an adequate
challenge. The fitness function is direct, and tests the follow-
ing elements individually to calculate late a score for each
level:

1. Path Structure. The fitness function favors paths
that would, theoretically, increase the players’ immer-
sion in the game. The function looks at the complexity
of the path structure, and favors paths that are non-
linear, but not too complex. Non-linear paths that
include multiple ways to reach the ending cell may be
more fun to players, but paths with excessive branches
and dead ends may seem overwhelming to the player.
The function also examines the minimum number of
moves (moving in some direction, jumping, climbing)
that a player must make to traverse the entire area of
the path. This is brief measurement of the difficulty
of a level.

2. Individual Cells. Individual cells are examined to
see if they make sense in the context of the other cells
in the level. The function looks for “valid” cells, mean-
ing the blocks within them can be used in a mean-
ingful way. For example, a cell that contains a floor
block is valid if it is part of the path. A cell with a
floor block surrounded entirely by wall blocks would
be non-reachable by the player, and therefore invalid.
The same rule applies to cells containing empty blocks.
Cells containing wall blocks are always valid. The
“value” of a cell refers to the block that is occupying
it.

3. Ending. The placement of the ending cell is examined
to ensure the area of the path that the player must
navigate to reach it is sufficiently challenging.

4. Balance. The function also checks for a balance be-
tween the types of blocks that are used to make up the
level. The number of each type of block used to create
a level should be fairly close.

5. Space Usage. The fitness function also examines the
number of cells in a levels path, in relation to the total
number of cells in the level.

5.2.3 Genetic Operators

The following are the genetic operators used in this sys-
tem:

Figure 7: An example of the crossover operation.
Each row represents a different step in the process.
See section 5.2.3 [2].

1. Crossover. Crossover is performed on two levels with

the following steps:

(a) The paths of each level are combined (cells in both
original paths are placed in their corresponding
locations within a new level) to form one path in
a new level. See figure 7, second and third rows.

(b) Overlapping path cells (cells that occupy the same
grid position in both original level paths) within
the new level are assigned their corresponding val-
ues from one of the original levels. See figure 7,
third row.

(c) Other cells of the same values in the original levels
are added to the new level. See figure 7, fourth
row.

(d) The remaining cells in the new level take on cor-
responding values from either of the two (one is
picked at random) original levels. See figure 7,
fifth row.

2. Mutation. In this system, mutation works by chang-

ing the values of several cells. The specific number of
cells to be changed during mutation can be adjusted,
as it is a system parameter. Two forms of mutation
were implemented:

(a) Random Mutation. Random mutation works
by simply picking random cells within a level to
change.

(b) Selective Mutation. Selective mutation makes
specific types of mutation more likely to occur.
For example, cells that are not part of the path,



and therefore not accessible to the player, are
more likely to be changed to wall cells.

5.2.4 Testing and Results

The system was tested using a prototype program that
allowed parameters (number cell columns and rows, num-
ber of individual levels in the population, and the number
of generation) to be adjusted through a graphical user in-
terface. Testing was performed using a level grid of 4 by 5
windows (40 by 15 cells), as this corresponds to a reasonably
sized level from the original game. Population sizes of 20,
50, 100, and 200 individuals were each tested with 200, 500,
1000, and 2000 generations. Each combination was tested
20 times. Average fitness values and time (in seconds) were
recorded. See Figure 8.

Generations
. 200 500 1000 2000
Population
=05 e =17 My =45 up =13
20 a =0.1 o = 0.6 o =19 g, = 4.5
individuals | #p =072 | pp =077 | pp=082 | pr =087
0 =004 | 0;=006 | g =005 | g =004
ue=16 H =56 e =14 e =126
50 o =04 o =33 op =54 g, = 10
individuals | #f =076 | pr=085 | p, =086 | pr =089
0 =003 | 0;=004 | =004 | g =003
e =33 o =95 e =19 pe =51
100 o =1 @ = 3.3 o =38 o, =225
individuals | #F =081 | pur =084 | uy=089 | ur =092
g, =005 | 0,=006 | 0, =006 | g =004
=175 e =23 U =46 e =102
200 o =3 o =12 o =17 o, = 39
individuals | #p =083 | pr =087 | =092 | pr =093
o; = 0.07 op = 0.05 gy = 0.05 or = 0.06

Figure 8: This table displays results for each combi-
nation rested. Averages y and standard deviations o
are displayed for computation times ¢ (in seconds),
and fitness values f [2].

Overall, an increase in average fitness values can be seen
when the number of generations increased, and when larger
population sizes were used. As expected, the computation
time also increased when computing more generations and
using larger population sizes. While computation times will
vary depending on the hardware used, the worst case in the
testing results (200 individuals, 2000 generations) yielded
an average fitness value of 0.93 (reasonably higher than the
goal of 0.85), with an average time of 102 seconds.

6. CONCLUSIONS

Both systems discussed in this paper show how search-
based PCG systems can improve the quality of generated
content. They do, however, achieve this in different ways.
The system proposed by Cardamone et al. [1] attempted to
improve procedurally generated racetracks by implementing
an SBPCG system with an interactive fitness function. The
data may not show any particularly dramatic increase in
fitness values, however, it does directly reflect the users’ en-
joyment of the content, as fitness values were calculated from

user ratings. The system is still in its preliminary stages, but
the data and feedback collected suggests interactive fitness
functions can be very effective for determining the quality
of procedurally generated racetracks.

The system proposed by Mourato et al. [2] for generat-
ing levels in Prince of Persia also yielded impressive results.
While testing the system with 200 generations of population
of 50 individuals, an average fitness value of 0.85 (the desired
fitness value for a level) was achieved with an average time of
5.6 seconds. Even the worst case that was tested (2000 gen-
erations, 200 individuals) performed reasonably well, gener-
ating a a population with an average fitness value of 0.93 in
an average time of 102 seconds. The proposed system seems
to be an effective solution for procedural level generation in
Prince of Persia and other games that use two-dimensional,
grid-based level design.
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