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The Issue

January 31st, 2000 Puerto Vallarta, Mexico to Seattle,
Washington
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The Cause

“A loss of airplane pitch control resulting from the in-flight
failure of the horizontal stabilizer trim system jackscrew
assembly’s acme nut threads. The thread failure was caused by
excessive wear resulting from Alaska Airlines’ insufficient
lubrication of the jackscrew assembly”

Figure: The jackscrew with acme
nut threads [5].

Figure: Alaska Airlines Flight
261 Memorial [3].
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• The Data

• Kernels

• Hidden Markov Models and Hidden Semi-Markov Models

• Natural Language Processing

• Types of Learning
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Aviation Data

• Real Flight Recorder Data

• Synthetic Flight Recorder Data (generated by the flight
simulator FlightGear)

• Aviation incident reports



Aviation Data
Mining

David Pagels

Background

Methods

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Results

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Conclusions

Kernels
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Kernels

Similarity between vectors
Support Vector Machine

E. Kim. 2013
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Hidden Markov Models and Hidden Semi-Markov Models
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Hidden Markov Models
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Hidden Semi-Markov Models



Aviation Data
Mining

David Pagels

Background

Methods

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Results

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Conclusions

Natural Language Processing
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Natural Language Processing

Extracting data from text generated by humans
Labels & text classification
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Learning

• Supervised

• Semi-Supervised

• Unsupervised
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Multiple Kernel Learning

Multiple Kernel Learning

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza. 2010 [1]
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The Problem

Heterogeneous Data: Discrete & Continuous

Compared to two baseline algorithms:

• Orca - Continuous

• SequenceMiner - Discrete
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Longest Common Subsequence

Found using the Hunt-Szymanski Algorithm [2]

−→x i : ABB CBB AC

−→x j : AB A BA A C B

ABBAC

Kd(−→x i ,
−→x j) =

5√
8 ∗ 8

= 0.625
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Discrete Kernel

Kd(−→x i ,
−→x j) =

5√
8 ∗ 8

= 0.625

Kd(−→x i ,
−→x j) =

|LCS(−→x i ,
−→x j)|√

l−→x i
l−→x j
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Continuous Kernel

Symbolic Aggregate approXimation (SAX) Representation
The same function as the discrete kernel.
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SAX Representation

J.

Lin, E. Keogh, L. Wei, and S. Lonardi. 2007
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Combined Kernel

k(−→x i ,
−→x j) = nKd(−→x i ,

−→x j) + (1− n)Kc(−→x i ,
−→x j)
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Hidden Semi-Markov Models

Hidden Semi-Markov Model

I. Melnyk, P. Yadav, M. Steinbach, J. Srivastava, V. Kumar, and A.

Banerjee. 2013 [4]
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Normal Dataset

To find the probability of sequences, a set of 110 normal
landings were generated using the flight simulator, FlightGear.
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Anomalies

50 anomalies
10 of each:

1 Throttle is kept constant and flaps are not put down. The
rest of the flight is the same as in normal case.

2 No initial throttle increase, the rest of the operation is
normal.

3 The flight is similar to normal, except that the flaps are
not put down.

4 At the end of the flight the brakes are not applied, the rest
of the operation is normal.

5 Pilot overshoots the airport runway and lands somewhere
behind it.
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Sequence Probability

log p(o1, o2, . . . , ot)

t
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State Probability

p(ot |o1, o2, . . . , ot−1)
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Receiving Operating Characteristic Curve
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Text Classification

Classifying Aviation Incident Reports

I. Persing and V. Ng. 2009 [6]
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Shapers and Expanders

Shapers are labels
Expanders indicate shapers
E.g. the expander ’snow’ would indicate the ’Environment’
shaper.
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Shapers with Expanders

Shaping
Factor

Positive
Expanders

Negative
Expanders

Physical
Environment

cloud, snow,
ice, wind

Physical
Factors

fatigue, tire,
night, rest,
hotel, awake,
sleep, sick

declare,
emergency,
advisory,
separation
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Bootstrapping Algorithm

• A set of positive examples of a shaper

• A set of negative examples of a shaper

• A set of unlabeled narratives

• Expand the largest set (positive or negative)

• Find 4 expanders
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Finding the value for each word

Physical Factors shaper

t ← arg maxt /∈W (log

(
C (t,A)

C (t,B) + 1

)
)
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Finding the maximum of those values

t ← arg maxt /∈W (log

(
C (t,A)

C (t,B) + 1

)
)

Tire: log( 3
1+1 ) = .176

Awake: log( 2
0+1 ) = .301

W: Fatigue, Night, Rest, Hotel, Sleep, Sick, Awake
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Label Narratives

Assign shaper to narratives that contain ≥ 3 words in W
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Results

Results of the three methods.



Aviation Data
Mining

David Pagels

Background

Methods

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Results

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Conclusions

MKL Baseline Overlap

Algorithms
Overlap of anomalous
flights (with MKAD)

Discrete Continuous Heterogeneous

O 21% 59% 34%
S 53% 0% 54%
O & S 58% 59% 67%

MKAD 19 94 114

Table: Overlap between MKAD approach and baselines. The
baselines are represented by O for Orca and S for SequenceMiner.
The values of O & S are the union of their anomalous sets [1].
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HMM vs. HSMM

HSMM: Scenarios 1 and 2
Both: Scenarios 3, 4, and 5

1 Throttle is kept constant and flaps are not put down. The
rest of the flight is the same as in normal case.

2 No initial throttle increase, the rest of the operation is
normal.

3 The flight is similar to normal, except that the flaps are
not put down.

4 At the end of the flight the brakes are not applied, the rest
of the operation is normal.

5 Pilot overshoots the airport runway and lands somewhere
behind it.
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Text Classification Algorithm Comparison

Measured by a score composed of precision and recall.
Precision: Fraction of reports that were correctly labeled.
Recall: Fraction of reports that were correctly labeled out of
the true number of reports that should have been labeled.
This score was 6.3% higher than the score from a purely
supervised baseline [6]
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Conclusion

Data mining techniques improving in aviation. We have
discovered:

• How to detect heterogeneous anomalies more effectively

• HSMMs are better at detecting anomalies in aviation than
HMMs

• A bootstrapping algorithm to find causes in aviation
incident reports



Aviation Data
Mining

David Pagels

Background

Methods

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Results

Multiple Kernel
Learning

Hidden
Semi-Markov
Models

Text
Classification

Conclusions

Questions?
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J. W. Hunt and T. G. Szymanski.
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