Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Aviation Data Mining

David Pagels

University of Minnesota, Morris

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

The Issue

Aviation Data Mining	
David Pagels	
Background	
Methods Multiple Kernel Learning Hidden Semi-Markov Models Text Classification	January 31st, 2000 Puerto Vallarta, Mexico to Seattle, Washington
Results Multiple Kernel Learning Hidden Semi-Markov Models	

Classification Conclusions

Text

The Cause

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

"A loss of airplane pitch control resulting from the in-flight failure of the horizontal stabilizer trim system jackscrew assembly's acme nut threads. The thread failure was caused by excessive wear resulting from Alaska Airlines' insufficient lubrication of the jackscrew assembly"

Figure: The jackscrew with acme nut threads [5].

Figure: Alaska Airlines Flight 261 Memorial [3].

Outline

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Background

2 Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

3 Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

4 Conclusions

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Multiple Kernel Learning

Hidden Markov Models & Hidden Semi-Markov Models

Text Classification

849-3-3-3999999

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Background

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

- The Data
- Kernels
- Hidden Markov Models and Hidden Semi-Markov Models

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Natural Language Processing
- Types of Learning

Aviation Data

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

- Real Flight Recorder Data
- Synthetic Flight Recorder Data (generated by the flight simulator FlightGear)
- Aviation incident reports

Narrative: 1

ON SHORT FINAL TWR TOLD ME TO GAR. I ACKNOWLEDGED AND PULLED UP GEAR IMMEDIATELY, TWR SAID 'DO A 360 DEG TURN TO THE R AND YOU'RE #1 TO LAND'. I THEN PUSHED GEAR CTL LEVER DOWN AND DID AS I WAS TOLD. R SEAT PAX SAID SHE HAD THE R WHEEL AND I VISUALLY CHKED L WHEEL, WHICH WAS DOWN, NO WARNING HORN. NEXT SOUND WAS THE SCRAPING OF THE BELLY ON THE RWY.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Aviation Data Mining
David Pagels
Background
Methods
Multiple Kernel Learning
Hidden Semi-Markov Models
Text Classification
Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Kernels

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Kernels

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Similarity between vectors Support Vector Machine

(日)、

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Hidden Markov Models and Hidden Semi-Markov Models

Hidden Markov Models

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hidden Semi-Markov Models

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Natural Language Processing

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Natural Language Processing

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Extracting data from text generated by humans Labels & text classification

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Learning

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

- Supervised
- Semi-Supervised

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unsupervised

Methods

Aviation Data Mining
David Pagels
Background
Methods
Multiple Kernel Learning
Hidden Semi-Markov
Models Text
Classification
Results
Multiple Kernel
Hidden Sami Maalaa
Models
Text

Conclusions

Multiple Kernel Learning

Aviation	Data
Minir	ıg

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Multiple Kernel Learning

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza. 2010 [1]

イロト 不得 トイヨト イヨト

3

The Problem

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Heterogeneous Data: Discrete & Continuous

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Compared to two baseline algorithms:

- Orca Continuous
- SequenceMiner Discrete

Longest Common Subsequence

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Found using the Hunt-Szymanski Algorithm [2] \overrightarrow{x}_i : ABB CBB AC \overrightarrow{x}_j : AB A BA A C B ABBAC

$$K_d(\overrightarrow{x}_i, \overrightarrow{x}_j) = \frac{5}{\sqrt{8*8}} = 0.625$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Discrete Kernel

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

$$\mathcal{K}_{d}(\overrightarrow{x}_{i},\overrightarrow{x}_{j}) = \frac{5}{\sqrt{8*8}} = 0.625$$
$$\mathcal{K}_{d}(\overrightarrow{x}_{i},\overrightarrow{x}_{j}) = \frac{|LCS(\overrightarrow{x}_{i},\overrightarrow{x}_{j})|}{\sqrt{I_{\overrightarrow{x}_{i}}I_{\overrightarrow{x}_{j}}}}$$

-

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Multiple Kernel Learning

Models Text Classification

Continuous Kernel

Aviation Data Mining	
David Pagels	
Background	
Methods	
Multiple Kernel Learning	
Semi-Markov	Symbolic Aggregate approXimation (SAX) Representation
Text Classification	The same function as the discrete kernel.

SAX Representation

Lin, E. Keogh, L. Wei, and S. Lonardi. 2007

イロト 不得 トイヨト イヨト

J.

э.

Combined Kernel

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

$$k(\overrightarrow{x}_i, \overrightarrow{x}_j) = nK_d(\overrightarrow{x}_i, \overrightarrow{x}_j) + (1-n)K_c(\overrightarrow{x}_i, \overrightarrow{x}_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hidden Semi-Markov Models

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Hidden Semi-Markov Model

I. Melnyk, P. Yadav, M. Steinbach, J. Srivastava, V. Kumar, and A. Banerjee. 2013 [4]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Normal Dataset

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

To find the probability of sequences, a set of 110 normal landings were generated using the flight simulator, FlightGear.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Anomalies

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

50 anomalies 10 of each:

- Throttle is kept constant and flaps are not put down. The rest of the flight is the same as in normal case.
- 2 No initial throttle increase, the rest of the operation is normal.
- 3 The flight is similar to normal, except that the flaps are not put down.
- At the end of the flight the brakes are not applied, the rest of the operation is normal.
- **6** Pilot overshoots the airport runway and lands somewhere behind it.

Sequence Probability

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

State Probability

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text

Results

Multiple Kerne Learning Hidden Semi-Markov Models Text Classification

Conclusions

 $p(o_t|o_1, o_2, \ldots, o_{t-1})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Receiving Operating Characteristic Curve

David Pagels

Background

Methods

Multiple Kernel Learning

Hidden Semi-Markov Models Text

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Text Classification

Aviation	Data
Minir	ıg

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text

Classification Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Classifying Aviation Incident Reports

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

I. Persing and V. Ng. 2009 [6]

Shapers and Expanders

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text

Classification Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification shaper.

Conclusions

Shapers are labels Expanders indicate shapers E.g. the expander 'snow' would indicate the 'Environment'

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < Θ < Φ

Shapers with Expanders

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models

Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Shaping	Positive	Negative
Factor	Expanders	Expanders
Physical	cloud, snow,	
Environment	ice, wind	
Physical	fatigue, tire,	declare,
Factors	night, rest,	emergency,
	hotel, awake,	advisory,
	sleep, sick	separation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bootstrapping Algorithm

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text

Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

- A set of positive examples of a shaper
- A set of negative examples of a shaper
- A set of unlabeled narratives
- Expand the largest set (positive or negative)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Find 4 expanders

Finding the value for each word

Physical Factors shaper

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Multiple Kerne Learning Hidden Semi-Markov Models Text

Conclusions

W: Fatigue, Night, Rest, Hotel, Sleep, Sick

э

Finding the maximum of those values

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models

Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

$$t \leftarrow \arg \ \max_{t \notin W} (\log \left(\frac{C(t, A)}{C(t, B) + 1} \right))$$

Tire: $\log(\frac{3}{1+1}) = .176$
Awake: $\log(\frac{2}{0+1}) = .301$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

W: Fatigue, Night, Rest, Hotel, Sleep, Sick, Awake

Label Narratives

U:

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text

Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Assign shaper to narratives that contain \geq 3 words in W

W: Fatigue, Night, Rest, Hotel, Sleep, Sick, Awake

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Results

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Results of the three methods.

MKL Baseline Overlap

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning

Hidden Semi-Markov Models Text Classification

Conclusions

Algorithms	Overlap of anomalous flights (with MKAD)			
	Discrete	Continuous	Heterogeneous	
0	21%	59%	34%	
S	53%	0%	54%	
0 & S	58%	59%	67%	
MKAD	19	94	114	

Table: Overlap between MKAD approach and baselines. The baselines are represented by O for Orca and S for SequenceMiner. The values of O & S are the union of their anomalous sets [1].

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

HMM vs. HSMM

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kerne Learning

Hidden Semi-Markov Models Text

Conclusions

HSMM: Scenarios 1 and 2 Both: Scenarios 3, 4, and 5

- Throttle is kept constant and flaps are not put down. The rest of the flight is the same as in normal case.
- 2 No initial throttle increase, the rest of the operation is normal.
- 3 The flight is similar to normal, except that the flaps are not put down.
- 4 At the end of the flight the brakes are not applied, the rest of the operation is normal.
- **6** Pilot overshoots the airport runway and lands somewhere behind it.

Text Classification Algorithm Comparison

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Measured by a score composed of precision and recall. Precision: Fraction of reports that were correctly labeled. Recall: Fraction of reports that were correctly labeled out of the true number of reports that should have been labeled. This score was 6.3% higher than the score from a purely supervised baseline [6]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Data mining techniques improving in aviation. We have discovered:

- How to detect heterogeneous anomalies more effectively
- HSMMs are better at detecting anomalies in aviation than HMMs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• A bootstrapping algorithm to find causes in aviation incident reports

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Resources I

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kerne Learning Hidden Semi-Markov Models Text Classification

Conclusions

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. In *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 47–56. ACM, 2010.

J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subsequences.

In *Communications of the ACM: Volume 20-Number 5*, pages 350–353. ACM, 1997.

Resources II

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

D. Jenkins.

Sundial memorial to alaska airlines flight 261, port hueneme, california.

http://lost-at-sea-memorials.com/wp-content/ uploads/2011/01/Mon1.jpg, 2011.

I. Melnyk, P. Yadav, M. Steinbach, J. Srivastava, V. Kumar, and A. Banerjee.

Detection of precursors to aviation safety incidents due to human factors.

In Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, pages 407–412. IEEE, 2013.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Resources III

Aviation Data Mining

David Pagels

Background

Methods

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Results

Multiple Kernel Learning Hidden Semi-Markov Models Text Classification

Conclusions

NTSB.

Alaska airlines flight 261.

http://en.wikipedia.org/wiki/Alaska_Airlines_ Flight_261#mediaviewer/File: Screwshavings2_sm.PNG, 2008.

I. Persing and V. Ng.

Semi-supervised cause identification from aviation safety reports.

In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 843–851. Association for Computational Linguistics, 2009.