
Interpreting Multitouch Gestures

Michael Schuweiler
Division of Science and Mathematics

University of Minnesota, Morris
schuw012@morris.umn.edu

ABSTRACT
Interpreting multitouch interactions can be as simple as un-
derstanding code that handles these multitouches and this
code’s associated actions. As more touch events are added to
an input, inputs become more complex. There are multiple
approaches to interpreting these inputs between users and
touchscreens. Researchers in this field find answers to com-
mon problems and provide developers with tools that make
interactions with multitouch devices easier to describe and
incorporate into their systems. These tools are then used
to create gestures through different approaches, specifically
through demonstration and by declaration. In this paper,
these researchers’ tools are described and compared.

Keywords
Multitouch gestures, regular expressions, gesture tablature

1. INTRODUCTION
Developments in touchscreens have made them readily

available to the average user. Touchscreens can be found on
almost any device, from smart phones to desktop comput-
ers. As these devices come out, developers are increasingly
creating new forms of software that are used in touchscreen
interpretation, including lead smart phone producers Apple
and Android [3, 2]. While their software systems are being
created, it can be hard for other developers to understand
how these platforms interpret multitouches.

Developers talk about multitouch interactions in terms
of gestures. These gestures can be hard to capture and de-
scribe in ways that are understandable to both the developer
and the computer. Gestures can be easily recognized, from
a simple pinch-to-zoom action on a touchscreen to a swipe
across the screen to change pages. Developers have a gen-
eral idea of what a gesture looks like in the real world, but
have a hard time translating that understanding into code
to capture gestures as inputs. This is where multitouch in-
terpretation comes into view.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2014 Morris, MN.

To understand multitouch interpretation it is important
to understand what is meant by both “multitouch” and “in-
terpretation”. This topic may be clearer if it is broken down
into parts. Multi-touch [5] is“functionality allowing a touch-
screen, track-pad, etc., to register multiple points of contact
made on the surface simultaneously.” Likewise, interpreta-
tion [5] is defined as “the action of explaining the meaning
of something”. In essence, multitouch interpretation is how
a touchscreen can interpret interactions involving multiple
points of contact between a user and a device, over time.

2. BACKGROUND
A few researchers [6, 7, 8, 9] have created tools to help

others understand multitouch inputs. In their systems and
applications, there are three main low-level touch events:
touch down, touch move, and touch up [6, 7, 8]. Touch
down is the action of initially touching a point of contact on
the screen. Touch move is the action of moving that same
point of contact across the screen in any fashion. Touch
up is when the point of contact is removed from the sur-
face. A multitouch gesture is comprised of combinations of
these three events. The researchers have been able to create
tools that simplify developers’ ability to describe and create
multitouch gestures.

Some simple tools that researchers have used are regular
expressions, gesture tablature and gesture sets. Regular ex-
pressions are found in many different fields and are mainly
used for matching patterns. These expressions help stream-
line understanding of code and prevent“spaghetti-code”that
clogs up programs. A regular expression is a form of expres-
sion to which a unique gesture is linked, and is used to sim-
plify inputs to understandable code as seen in section 4.1.1
and in Figure 1. Regular expressions are especially helpful
in matching sequences, in this case gestures. These regular
expressions also help find ambiguity in inputted gestures.

Gesture tablature comes from the idea of musical nota-
tion of a guitar tablature [6, 7]. To try and learn a certain
musical chord, one may look at a guitar tablature and learn
where to place your fingers on different frets and strings.
This idea is just a representation of what a gesture would
look like as an input, and is also a tool that researchers [6,
7] created to help developers create gestures as seen in Fig-
ure 2. A gesture set contains all gestures of matching pre-
fixes, described in section 4.2. These gesture sets allow for
easy matching, which allows the system to find the correct
callback functions and is further explained in section 4.1.3.



3. GESTURES
Gestures are defined as “a movement or position of the

hand, or arm...that is expressive of an idea, opinion, emo-
tion, etc.” and“the use of such movements to express thought,
emotion, etc. ” [1]. A gesture is a result of moving a finger
or other touch point across a screen; the action that is pre-
formed by the system. These are seen as the ground-works
of touchscreen manipulation and interaction. They allow
users to interact with touchscreens in ways that are spec-
ified by the developers. Each device has its own gestures
and interactions. Cellphones are single user platforms where
only one person will be operating the phone at a time. The
DiamondTouch table [10] is an example of a multiple user
system, where multiple users can operate this table at one
time. This table and system can support up to four users
at a time, and take in multiple inputs at a time for each
user [10]. Computers are starting to turn towards touch-
screens as well. MacBook Pro touch-pads contain a multi-
tude of different gestures, e.g. a three finger swipe to change
desktop screens [3]. The list of touchscreen devices goes on.
Creating code and testing of this code is an ever increasing
challenge for developers.

4. MULTI-TOUCH RESEARCH
Researchers [6, 7, 8] have taken multiple approaches to

help developers use multitouch effectively and with ease. In
general, multitouch gestures can be quite difficult to under-
stand and to turn into code. This can be understood by first
realizing that writing code is a form of communication, and
deciphering this code can be tricky. The following study was
designed to support understanding of multitouch gestures
and to provide tools to developers for creating multitouch
gestures.

4.1 Proton
Proton [7] is the first of many solutions to help develop-

ers understand gestures for multitouch systems. Proton is a
multitouch framework [7] that is declaration-based; allowing
programmers to directly inform the system of their intended
behavior. Proton does this through a unique technique by
using both regular expressions and an easy to understand
gesture tablature. To better understand the researchers’ di-
rection, it is important to take a look at the original prob-
lems that Proton addresses.

A large problem for developers during creation of new ges-
tures is the ability for the system to recognize inputs as truly
unique gestures [7]. In other words, ambiguity in gestures is
a problem. For example, two gestures could possibly start
with the same sequence. Take a pinch-to-zoom gesture and
compare it to a rotate gesture. Both of these sequences’ pre-
fixes start with two fingers down on the screen before any
other movement is added to the gesture. This ambiguity of
touch input can be hard for systems to recognize and find
the correct functionality associated with that input. Proton
solves this by taking in a new gesture during creation and
identifying already existing gestures that match this new
gesture, if any exist. This allows ambiguity of the input
to be caught during compile-time through Proton’s static
analysis process [7]. Also, developers can have troubles un-
derstanding exactly what the gesture they are creating looks
like. Proton helps developers understand their gestures in
two unique ways; through regular expressions and gesture
tablature.

Figure 1: Proton [7] regular expressions demonstrat-
ing translation, rotation and scale gestures.

4.1.1 Regular Expressions
Proton developers were able to use regular expressions as

a way of identifying their unique gestures. They made three

basic touch actions whose structure is E
Otype

TID
, where E ∈

{D,M,U}. These touches are: D (touch-down), M (touch-
move), and U (touch up). Each of these actions were given
two attributes: O-type (object that the action hits) found
in the superscript, and T-ID found in the subscript, which
groups related touches together [7]. An example of this can
be seen in Figure 1. The second regular expression in this
figure, rotation, has two different touch-ids. Each touch-id
represents a touch on the screen. It could consist of multiple
fingers, but most touch events are from only one finger. If
there was a time attribute involved, then the touch-id could
be easier to understand. If there exists time between two
different fingers touching the screen, then those two touches
have different touch-ids. Therefore, this gesture requires two
touches from two different fingers. These different touch
events create the overall gesture in regular expression form.

Once the developer has created the regular expression for
their gesture, they are able to apply “triggers” in the code to
activate their specific callback functions. Once a touch input
is completed, the system’s response a user physically sees
on the screen is that gesture’s intended callback function.
Some input touches may involve multiple touches prior to
ending a complete gesture, e.g. deleting multiple images on
an application for image manipulation. It is required to hold
down a finger on the delete button, and with another finger
the user must tap the objects they wish to be deleted [7].
The Kleene star * denotes that zero or more touches will
come after holding the first finger down. The “|” symbol is
the notation for the logical statement “or”.

The rotation regular expression taken from Figure 1 will
be broken down into parts to help the reader understand
its functionality. Ds

1M
s
1∗ is translated into touch-down on

shape with touch-id one, and touch-move on shape with that
same finger for zero or more movements. Next, Da

2 (Ms
1 |Ma

2 )∗
can be broken down to touch-down on any, which consists of
shape or background, with touch-id number 2. The second
part in parentheses is touch-move on shape with touch-id 1
or touch-move on any with touch-id 2, with either one occur-
ring zero or more times. To break down the next part, each
part in the “or” statement will be assessed individually. The
first part, Us

1M
a
2 ∗Ua

2 says touch-up on shape with touch-id
one, touch-move on any with touch-id 2 for zero or more
times, and touch-up on any with touch-id 2. The second
part, Ua

2M
s
1 ∗ Us

1 says almost the exact opposite; touch-up
on any with touch-id 2, touch-move on shape with touch-id 1



Figure 2: Proton [7] gesture tablature. A) Two-
touch rotation gesture. B) Delete gesture. C)
Double-tap zoom.

for zero or more times, and touch-up on shape with touch-id
1.

The gesture can be summarized as follows: touch down
with finger one, and if this finger moves it is accepted. Then
touch down with a second finger, and allow either of the two
fingers to move. Once the rotation is finished, it doesn’t
matter which of the two fingers are lifted off the screen first,
as either are accepted in the final“or”statement. This is how
Proton uses regular expressions to express gestures. Proton
also provides a system to help developers create regular ex-
pressions via declaration with gesture tablature.

4.1.2 Gesture Tablature
Gesture tablature is a touch tool that supports the easy

creation of regular expressions. It helps developers create
and understand gestures that run in parallel with other ges-
tures. The idea came from musical notations of a guitar.
Using this tablature, developers are able to create multiple
touch events and build them into one multitouch gesture.
As developers use this tablature to create graphical nota-
tions, Proton then takes this tablature and creates regular
expressions from these inputs.

Proton is able to “determine” what regular expressions
depict the input stream from the tablature through a unique
process. This process is possible through the touch-ids T-
ID and touch-down D events. From the tablature, Proton
finds each touch-down D event, and within each of those
touch-down events, there could be other touches happening
until the touch-up U event is found. Each sequence has a
specific T-ID. For example, in the regular expression Ds

1M
s
1 ∗

Us
1 , all touch events are associated with the same touch-id,

from touch down to touch up. If this sequence was in a
larger regular expression, separating touch down to touch
up events based on the touch-ids helps match touch events
in one sequence to that id. From this example, the “other
touch events in one sequence” refers to simply the Ms

1∗.
Originally, touch events are not associated with a touch-

id. Proton uses a priority queue to assign touch-ids to touch
events based on whether or not it is between a touch down

Figure 3: A Proton tablature and its correlating
regular expression [7].

and a touch up event. Once a touch up event has been
reached, that touch-id is “recycled” and put back into the
set of possible touch-ids. Through this process, Proton is
able to eliminate unlikely gestures from the gesture set that
correspond to the input stream until the correct regular ex-
pression is found. This is possible through Proton’s [7] ges-
ture matcher and picker.

4.1.3 Proton Architecture and Processing
There are three main components to Proton’s overall sys-

tem. The main purpose of these three functions working in
unison is to ensure that the input stream does indeed provide
and execute the correct callback function. Proton works un-
der the assumption that there is only one gesture that can
be preformed at a time. This restricts users from using two
hands to preform two synchronous gestures. According to
Figure 4 [7], when a user touches a screen, these touches be-
come the raw input. From these touches, the stream gener-
ator creates regular expressions that define specifically that
input, which will be called the input stream. Once all fingers
are lifted from the screen, or more precisely when the touch
is completed, the stream generator resets and prepares for
the next input.

The input stream is then sent to the gesture matcher [7].
The gesture matcher contains the set of all possible gestures
that could match the input stream. Before comparisons be-
gin, each gesture in the possible gesture set is just as likely
to match the input stream as the next. As the input stream
is compared to gestures in the possible gesture set, candi-
dates that are unlikely to match are removed from the set.
At this point, all gestures are in the form of regular ex-
pressions. The gesture matcher is able to pick the correct
corresponding regular expression in the possible candidate
set through the use of derivatives.

The gesture matcher reads in the input stream and tries to
match this regular expression with all other gestures in the
gesture set through the use of regular expressions. Accord-
ing to Kin et. al., the regular expression R with respect to s
is a new regular expression that will match R with respect
to s [4]. For example, the candidate set will contain all pos-
sible gestures that could match the regular expression that
is about to be derived. In Figure 5, Ds

1M
s
1 ∗Us

1 is the regular
expression is trying to be matched to the possible gesture
set. The derivative of this regular expression is taken in re-
spect to its first touch event. Therefore, it is trying to match
Ds

1 to all other gestures in the possible gesture set. It then



Figure 4: Proton’s [7] architecture for matching in-
puts with gestures.

takes the next derivative to the remaining regular expres-
sion, Ms

1 ∗ Us
1 , with respect to the first touch event in this

sequence. Now the system is looking to match Ms
1∗ to all

gestures left in the gesture set. The gesture matcher contin-
ues taking the derivative until an empty string is reached.
At this point, it has found the matching regular expression.
However, if an empty gesture set is reached, the gesture try-
ing to be matched with the input stream is not found. There
can be multiple candidate gestures left in the set after this
process. An example of multiple gestures in a candidate set
that come from the same input stream would be matching
sequences, e.g. rotation and scale, found in Figure 1.

From the gesture matcher, the possible candidate gesture
set is then sent to the gesture picker [7]. Here is where
the correct gesture is picked from candidate set. This is
possible through the use of a confidence calculator. This
confidence calculator gives the gesture being performed a
specific score. These calculators assign each gesture in the
set with one confidence score between 0 and 1. The gesture,
and its associated callback function, that returns the highest
score is the gesture that is performed. The score is found
by taking certain attributes into account. For our example,
the rotation and scale gestures depend upon the trajectory of
their touches. The scale gesture will move either away or to-
wards each touch point, while the rotation gesture will move
around one of the touch points. These attributes contribute
to these specific gestures, where other attributes may need
to be taken into account for other gestures. The confidence
score is created from taking these attributes into account.

4.1.4 Static Analysis Process
Proton has the ability to determine whether there is con-

flict of regular expressions during creation. This is possible
through their static analysis algorithm. Essentially, if two
gestures’ regular expressions match close to the prefix, the
system will find this ambiguity through this algorithm by
turning each regular expression into a non-deterministic fi-
nite automata(NFA) [7]. The system then finds the inter-
section between the two NFAs. From the intersection, the
longest common prefix expression is obtained by converting
the NFAs back into regular expressions. The disjunction is
then found from these resulting expressions, and alerts the
developer at compile-time. The developer must then either
rewrite the code for the gesture, or write code to handle
ambiguous situations.

4.2 Proton++
Proton researchers built upon their previous work, cre-

ating an extended declarative multitouch framework called
Proton++. This extended framework provides five new touch
attributes to be assigned to regular expressions. These new
attributes consist of: direction, pinch, touch area, finger ori-
entation, and screen location. The direction attribute is ex-

Figure 5: Regular expressions being matched to pos-
sible gestures in the gesture set.

plored more in detail in 4.2.1. With these new attributes,
more declared inputs are available for developers to create
more complex multitouch events. Proton++ [6] also allows
users to match more than one gesture at a time, which is a
significant improvement from Proton. It does this by split-
ting the input stream into multiple streams, each one getting
its own gesture matcher. This allows for multi-user applica-
tion.

Proton++ is much like Proton in the aspect that it also
uses regular expressions to define specific gestures and it
still holds the same process to finding matching gestures.
This process follows the pattern seen in Figure 4, which
was discussed earlier in section 4.1.3. Unlike regular ex-
pressions in Proton, regular expressions in Proton++ have
the basic structure of: EA1:A2:A3...

TID
. The superscript An

are the attributes associated with the touch E. An exam-
ple of using multiple touch attributes would be: Ms:NE

2 .
This would be a move-with-second-touch-on-star-object-in-
northeast-direction. Proton++ includes a new character,
the wildcard, which denotes that an attribute may take any
form. For example, instead of specifying what direction a
move touch may take, using the wildcard symbol • states
that any direction is allowed.

4.2.1 Trajectory
When describing Proton in section 4.1, we covered regular

expressions and how each touch event had special attributes
that went with it. Proton++ brought in more attributes
including a direction attribute. A sequence of direction at-
tributes make up a trajectory. This attribute is determined
from a single point of contact on a touchscreen via finger or
stylus. For example, in order to turn writing on a screen
into text for a text message, the application has to track
trajectory of that touch input to understand the intended
letter being drawn. It does this with a coordinate system.

A practical use of trajectory in a multitouch program
could be in an application used for image manipulation. One
finger could select a object to be scaled, while the second fin-
ger moves in a direction N-S or E-W, seen in Figure 6. This
would result in the object either scaling in the y-axis direc-
tion or the x-axis direction. Proton++ was able to provide
immediate feedback, where other applications need the en-
tire gesture to be preformed before providing a trajectory
attribute.

One area that causes trajectory/direction attributes to
fail is the time parameter. Without time, creating a tra-
jectory move in input times out. The system requires the
input to create perfect sharp angles when touch inputting a,
for example, letter “L”. With the time attribute, users are
able to slow down the touch which allows for less precise



Figure 6: Proton++ [6] tracks trajectory in real
time to provide users with instant feedback.

inputs, resulting in correct data that can be understood by
the system [6].

4.2.2 User Study
Proton++ [6] created a user study to help us understand

why developers benefit from gesture matching and tablature.
This study had two parts. The first part was how gesture
representation affected the developers’ understanding of the
gesture presented, with respect to time. The second focused
on trajectory gestures.

Three main gesture representations that were focused on
in this study were regular expressions [6, 7], tablature [6, 7],
and iOS-style event handling [3]. The developers participat-
ing were all experienced programmers. They were asked to
pick the correct video that depicted the gesture being rep-
resented by either regular expression, tablature, or the iOS
event handling code. The results were as follows: tablature
notation took an average recognition time of 23.50 seconds,
regular expressions took 49.25 seconds, and iOS event han-
dling took 110.99 seconds. From these statistics, the devel-
opers in this study had a faster recognition time on Proton
gesture tablature than the other two representations.

4.3 Gesture Coder
Gesture Coder [8] is a tool for developers to create gestures

via demonstration. Creating gestures via demonstration is
self-explanatory: a developer gives examples of what their
end resulting gesture will look like in real time via a tablet
or other input device and Gesture Coder will match this ges-
ture to already existing code. Gesture Coder is able to do
this by “guessing” the intended behavior of the gesture. The
developer is able to test these gestures during the creation at
input time, where they will decide if Gesture Coder assigned
the correct code for their desired gesture. If it is incorrect,
the developers will be able to reassign the input with the
correct gesture code. From here, developers can easily inte-
grate this code into their applications. As of now, exporting
the code makes it into a Java class. This is mainly due to
the fact that Gesture Coder is currently a Eclipse plug-in,
which is an application primarily used for Java coding.

4.3.1 State Machines
Gesture Coder [8] is able to determine what intended be-

havior is expected through the gestures provided through
demonstration by using state machines. State machines are
formed from a decision tree. This can be seen in Figure 7.

Figure 7: State Machines in Gesture Coder [8]: a)
two-finger tap, b) one-finger tap and two-finger tap,
c) double-tap, d) T1 = tap with one finger; T2 =
tap with two fingers; DT = double-tap; H = press-
n-hold; P = two-finger move to pan; Z = two-finger
pinch-to-zoom.

Each path down the tree are the possible stages that the
intended gesture could touch. The tree splits based on the
type of touch that is entered through demonstration. The
root of the tree starts with the entire set of touches that are
inputted. From this node, the tree is then split into its “sub-
touches”. Each node of the tree signifies a touch input. Leaf
nodes represent the end of a touch sequence, resulting in an
empty set. Once the decision tree reaches an empty set, the
gesture should match. Transition states between nodes are
indicated with +1/+2 and -1/-2. The positive numbers rep-
resent fingers being added to the screen, while the negative
numbers represent those fingers leaving the screen [8].

In the figure above, understanding how to step through
the state-machine is important. At each node in each tree,
there are two sets represented as {}/{∗Touchevents∗}. The
first set represents the finger configuration as a set of num-
bers; the ith finger touching the screen [8]. Originally, this
set is empty. The second set contains all the possible touch
events that could occur at a specific node. In Figure 7, the
specific touch event translations can be found in the cap-
tion. When the tree reaches a new node, this signifies a
touch event occurring. Once a touch event has occurred, it
is removed from the set and the tree continues down, until it
reaches a final state, or rather an empty set of touch events.
At each node, the state of the tree is a stage.

There are six possible stages that a gesture can be in: Pos-
sible, Failed, Began, Changed, Cancelled, and Ended. Each
movement between these stages is called a transition. At
each node of the tree, the Possible Stage is applicable for
all touches at that level. Gesture Coder [8] uses probability
and thresholds to determine if a stage is going to move into
a transition state. If the threshold is crossed, Possible stage



moves to Began or Changed when the probability is higher,
and if the probability is lower, Possible changes to Failed or
Cancelled. Once it reaches the bottom of the tree, the stage
it moves to is Ended. At each level, developers can write
specific callback functions.

Turning these state machines and decision trees into us-
able code is possible through Gesture Coder. Integers are
encoded into each step. With these integers used as labels,
Gesture Coder [8] builds Switch-Case statements to invoke
different callback functions for each transition state of the
trees.

4.3.2 Further Work
The authors Lü and Li decided to improve Gesture Coder

by creating Gesture Studio. Gesture Studio [9] is a system to
help developers create gestures via declaration and demon-
stration. This is possible through Gesture Studio’s novel UI,
an Eclipise plug-in. This plug-in contains a Gesture Collec-
tion that the user can use to access already created gestures.
The UI allows users to edit gestures much like that of editing
a video clip. Demonstrating a gesture can be metaphorically
compared to as recording a video tape; adding a gesture from
the Gesture Collection to the timeline. Revising the clip is
much like cutting the clip. Adding callbacks is analogous to
adding audio into a video clip. One feature that is necessary
for all of this to happen is a time attribute. Gesture Studio
gives each new gesture a timeline. This allows developers to
both create gestures that are in sync with time and revise
gestures [9]. Another interesting function of the timeline is
the ability to “stack” gestures by creating multiple tracks for
individual gestures. This allows for multiple gestures to be
processed at the same time. Once the developer has created
a useful gesture, they can export their code and integrate it
into their programs.

Gesture Studio went past Gesture Coder by providing a
tool for creating gestures both via demonstration and decla-
ration. Using the UI, developers are able to create basic ges-
tures that are specifically linked with one callback function.
They also allow developers to create gestures via declara-
tion. This allows developers to create compound functions,
built from multiple basic functions that have a temporal con-
straint where the order of input matters [9]. This tool also
allows developers to attach callback functions at different
areas along the timeline.

5. CONCLUSION
Developing understandable code is a challenge for devel-

opers who are creating gestures for multitouch systems. Re-
searchers [6, 7, 9, 8] have created tools to assist developers
in creating code for gestures. Proton [6, 7] accomplished
this through declarative programming. The developers used
gesture tablatures to create regular expressions that defined
specific gestures and their associated callback functions. Ges-
ture Coder and Studio provide developers with the ability
to program by both declaration and demonstration through
their novel UI. As these tools continue to come to the indus-
try, developers will have the ability to create more complex
gestures.

6. ACKNOWLEDGMENTS
I would just like to thank my adviser Kristin Lamberty for

all the help and feedback she provided me while researching

this topic. I would also like to give a special thanks to my
professor Elena Machkasova for her advice and feedback.

7. REFERENCES
[1] Dictionary.com unabridged. Jan 2015.

[2] Andriod. Handling multi-touch gestures. 2014.
http://developer.android.com/training/gestures/multi.html.

[3] Apple. Mac basics: Multi-touch gestures. 2014.
http://support.apple.com/kb/ht4721.

[4] J. A. Brzozowski. Derivatives of regular expressions.
volume 11, pages 481–494, New York, NY, USA, Oct.
1964. ACM.

[5] Google.
https://www.google.com/q=gesture+definition.

[6] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton++: A customizable declarative multitouch
framework. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’12, pages 477–486, New York, NY,
USA, 2012. ACM.

[7] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton: Multitouch gestures as regular expressions. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages
2885–2894, New York, NY, USA, 2012. ACM.

[8] H. Lü and Y. Li. Gesture coder: A tool for
programming multi-touch gestures by demonstration.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages
2875–2884, New York, NY, USA, 2012. ACM.

[9] H. Lü and Y. Li. Gesture studio: Authoring
multi-touch interactions through demonstration and
declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’13,
pages 257–266, New York, NY, USA, 2013. ACM.

[10] S. R. K. Marcello Bastéa-Forte, Ron Yeh. Pointer:
Multiple collocated display inputs suggests new
models for program design and debugging. UIST ’07,
Newport, Rhode Island, USA, 2007. ACM.


