
XSS Attacks and Possible Defenses

Travis Starkson
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
stark451@morris.umn.edu

ABSTRACT
Cross-site scripting (XSS) is one of the most serious threats
to web security. It has been one of the top web security vul-
nerabilities on Open Source Web Application Consortium
(OWASP) for over a decade. Much research has gone into
this field to defend browser users against XSS, but with each
new advancement attackers quickly find ways to circumvent
them, staying abreast of each new countermeasure. In this
paper, we look at some of the previous defenses against XSS
and their flaws. More specifically we discuss how previous
solutions are either too slow or can be circumvented by some
types of XSS attacks. Then we introduce more recent so-
lutions and how they improve upon from older solutions.
These more recent solutions are not the answers to all XSS
attacks, or even some older types of XSS attacks. They are,
however, one step in a cycle that will help make the next so-
lutions stronger, so understanding these solutions is a crucial
step in understanding how to combat XSS attacks.

1. INTRODUCTION
As the Internet continues to grow and develop, so do the

methods web site attackers use. Much research has gone
into web-based attacks and ways to combat them. In par-
ticular cross-site scripting (XSS) is one of the most serious
threats in web security. It has been said to be one of the
most serious vulnerabilities to web security for over a decade
[1]. XSS attacks can vary from harmless pranks to the at-
tacker acquiring personal information such as bank account
numbers.

One example of an XSS attack is in 2008 when an attacker
redirected the link to Obama’s web page so that instead it
went to Hillary Clinton’s. This example, of course, is on
the lighter side of XSS attacks, and the person who hijacked
the site admitted to the prank [3]. Recently, on eBay it was
discovered that a script could be injected into the product
listing pages. By doing this the attacker can steal the user’s
credentials, resulting in a much more serious attack than the
previous. This is not the first report of XSS attacks on eBay

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2014 Morris, MN.

[4]. There are numerous accounts of XSS attacks on major
web sites all the time. Some of the most prominent sites
include Twitter, Facebook, Youtube, and eBay [8][4].

Exploiting an XSS vulnerability involves three steps. The
first is that the attacker uses some means to deliver a pay-
load to a vulnerable site, or in other words a malicious script.
Then the payload is used by the site when generating a web
page sent to the user’s browser in response to a request.
If the site is vulnerable to the type of XSS attack that was
sent, then in the third step the user’s browser would execute
the attacker’s injected code in the page returned by the site
[7]. Thus the attacker can gain elevated access-privileges
to sensitive page content, session cookies, and a variety of
other information maintained by the browser on behalf of
the user [8]. The amount of steps required to execute an
XSS attack may seem too numerous and difficult to imple-
ment, but XSS attacks account for over 84% of all security
vulnerabilities documented by Symantec, an American tech-
nology company, in 2007[8]. In this paper we define what
an XSS attack is, what were previous solutions to defend
against it, and talk about some more recent solutions. We
discuss how previous solutions either are too slow or can be
circumvented by some types of XSS attacks. We then de-
scribe how some more recent solutions, as well as how they
improve upon previous solutions.

2. DEFINITIONS
Here are a few definitions of terms used in the paper.

• Cross-site scripting (XSS): A type of injection attack
on the server-side in which malicious script is inserted
into a returned web page. This is usually done using
a scripting language like JavaScript [5][7].

• Sanitize: Sanitizing a request means that the XSS de-
fense tries to remove or replace characters that can be
considered part of a malicious script [7].

• Attack vector: This is the form or path by which an
XSS attack inserts malicious script.

• Attack surface: The set of attack vectors that pass for
a browser.

• HTTP requests/responses: An HTTP request is a re-
quest from a browser to a web site for information on
the site in order to display its contents. An HTTP
response is the sites response to the browsers HTTP
request, of which it sends the appropriate information,
specified on the request, back to the browser.

• Scriptless attack: This form of XSS attack is per-
formed by not using any form of script-based code. In-
stead it is carried out by using other web applications
such as Cascading Style Sheets (CSS). An example of
this is the use of a CSS property called content which
in combination with the value property attr can ex-
tract sensitive attribute values like password-field val-
ues.

O
p

er
a

3
.6

2
O

p
er

a
4
.0

2
O

p
er

a
5
.1

0
O

p
er

a
6
.0

O
p

er
a

6
.0

5
O

p
er

a
7
.0

1
O

p
er

a
7
.2

3
O

p
er

a
7
.5

0
O

p
er

a
7
.5

4
O

p
er

a
8
.0

2
O

p
er

a
8
.5

1
O

p
er

a
8
.5

3
O

p
er

a
9
.1

0
O

p
er

a
9
.2

0
O

p
er

a
9
.2

5
O

p
er

a
9
.5

2
O

p
er

a
9
.6

4
O

p
er

a
1
0
.1

0
O

p
er

a
1
0
.5

0
O

p
er

a
1
0
.6

0
O

p
er

a
1
1
.0

1

0

5

10

15

20

25

30

Vectors pass

ASD

Figure 1: Opera regression [1].

3. PREVIOUS SOLUTIONS
In this section, we will look at how XSS attacks have been

dealt with in the past. Some well-known defenses against
XSS attacks include NoScript, IE8 (Internet Explorer 8),
noXSS, and XSSAuditor. All of these defenses have been
found with faults that allow a number XSS attacks. Some of
these vulnerabilities have been addressed in newer solutions
which provide a better defense against XSS attacks, and
shall be discussed later in section 4.

NoScript and IE8 are filters that utilize regular expres-
sions to identify the pressence of JavaScript in HTTP re-
quest parameters and attempts to sanitize them before sub-
mission. The problem with this is that it can lead to overly
strict filtering. Which can prevent some web pages from
being loaded or interfere with the functionality of the web
page [7]. NoScript also incurs many of false positives [7].
While IE8 induces fewer false positives, it does so by dis-
abling itself for same-origin requests, which are requests to
a web page previously visited safely. This, however, causes
more false negatives to occur due to the potential that ma-
licious script may have been added since the last visit [2].
NoScript’s high false positive rate is due to its use of regu-
lar expressions, which have to be stringent enough to han-
dle the worst case scenarios. Since both filters sanitize the
outgoing request, they can set the parameters of the out-
going request to a very different set of values from what

they were originally. This can make the request fail on the
server-side, corrupt data stored on the server-side, or re-
turn an incorrect page [7]. Also, just the sheer number of
regular expressions casues issues for maintenance. NoScript
has about 40 non-trivial regular expressions invovled in de-
tection and sanitation [7]. Even with this complex set of
regular expressions, parsing tricks can still bypass the fil-
ter. This is partially due to the fact that NoScript uses a
same-origin request system similar to IE8’s. A parsing trick
is adding certain characters into an attack script that al-
lows it to bypass a filter. One such trick is the character /
which can be used to do some complex modifications such
as <a<img/src/onerror=alert(1)//< [2]. In this example
the attack can only be carried out due to the same-origin
response system NoScript has in place. With this fault in
place, this allows an attack to use the <img/src> tag to post
a hyperlink on the site. The / character can be interpreted
as a closing JavaScript marker, which is done so in this ex-
ample. Also, neither filter can detect scriptless attacks [5].

XSSAuditor and noXSS are filters that use exact sub-
string matching to match reflected content. Exact sub-string
matching checks the content in an HTTP response with the
content in the HTTP request that generated the response,
which tries to look for entire malicious scripts [7]. noXSS
achieves a high fidelity rate, the rate at which it follows
the protocols set within itself in real-time, but at the cost
of slower performance (14% overhead load time on average)
[2]. Also, noXSS does not handle HTML entity encoded
JavaScript URLs. An HTML entity is a character reference
using an ampersand followed by the reference name and a
semicolon. These are used instead of the actual character
since a browser can mistake them for specialy operations,
like < and > could be mistaken as tags by the browser.
This allows a hacker to bypass the filter by inserting a full-
page hyperlink which, if the user clicks anywhere on the
page, allows the attacker to run arbitrary script as the tar-
get site [2]. XSSAuditor is implemeted on the client-side and
has improved upon most of the faults that noXSS and IE8
present. However, XSSAuditor cannot handle partial-script
injections, which can alter the structure of an existing script
on the web page. This in turn can allow attackers to insert
malicious script onto the page. Partial-script injection is a
type of XSS attack that changes part of a web pages script
in order for the web page to run malicious script, which is
quite different from its counterpart whole-script injection.
With this inability to handle partial-script injections, XS-
SAuditor can not determine the beginning and end of an
injected string when sanitizing [7]. XSSAuditor also can not
handle attacks that are not script-based, such as an attack
carried out by CSS. Using non script-based web applications,
attackers can bypass the filter and inject malicious code [5].

3.1 Progression of Web Browser Defenses
In this section, we state that browser providers do not

have a systematic regression strategy (reducing the amount
of XSS vulnerabilities as they are found) in developing new
versions of their browers. In other words a consistant re-
duction in XSS vulnerabilities is not observed for each new
version of a browser. To validate this, [1] tests two hypothe-
ses:

H1. Browsers belonging to two different families have dif-
ferent attack surfaces. In other words, they are not sensitive
to the same attack vectors. This first hypothesis is crucial to

ve
ct

or
/b

ro
w

se
r

C
hr

om
e

11
.0

.6
96

.6
8

IE
8.

0.
60

01
.1

90
48

O
pe

ra
m

ob
ile

11

O
pe

ra
11

.1
1

re
v2

10
9

IE
m

ob
ile

Sa
fa

ri
M

ac
O

SX

iP
ho

ne
3G

S

A
nd

ro
id

2.
2

F
ir

ef
ox

5
A

nd
ro

id

F
ir

ef
ox

8.
0a

1

IE
6.

0.
29

00
.2

18
0

F
ir

ef
ox

2.
0.

0.
2

N
et

sc
ap

e
4.

8

IE
4.

0.
1

O
pe

ra
4.

00

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
9 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
11 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0
12 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
18 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
21 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
22 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
31 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0
34 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
35 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
36 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
37 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
38 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
41 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
42 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
43 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Results on vectors 1 through 42 [1].

understand whether there is a shared security policy between
web browser vendors headed against XSS attacks to protect
clients against web attacks. [1]

H2. Web browsers are not systematically tested w.r.t their
sensitivity to XSS vectors. This second hypothesis explores
whether there is a clear continuity or a convergence in the
attack surface of a given web browser over time. The valida-
tion of this hypothesis would mean that web browser providers
do not have a systematic regression strategy for improving
the robustness of their web browser from one version to the
next one. [1]

To prove H1, the researchers executed 84 different XSS at-
tack vectors against three types of browsers: modern/recent,
mobile, and legacy versions. All of the attack vectors were
obtained from either a variety of XSS cheat sheets or were
created from an n-cube test generator. The test generator
used is a combination using HTML4 tags and property sets
with Javascript calls in order to produce 6 usable vectors in
testing. The vectors choosen represent a large variety of dis-
similar XSS attack vectors [1]. Then, each attack vector was
tested against a variety of browsers from each of the three
types of browsers. The results are represented in Tables 1
and 2. Each block with a 1 represents a threat exposure
to that particular XSS attack vector while a 0 represents
no vulnerability [1]. To demonstrate the variety of the XSS

ve
ct

or
/b

ro
w

se
r

C
hr

om
e

11
.0

.6
96

.6
8

IE
8.

0.
60

01
.1

90
48

O
pe

ra
m

ob
ile

11

O
pe

ra
11

.1
1

re
v2

10
9

IE
m

ob
ile

Sa
fa

ri
M

ac
O

SX

iP
ho

ne
3G

S

A
nd

ro
id

2.
2

F
ir

ef
ox

5
A

nd
ro

id

F
ir

ef
ox

8.
0a

1

IE
6.

0.
29

00
.2

18
0

F
ir

ef
ox

2.
0.

0.
2

N
et

sc
ap

e
4.

8

IE
4.

0.
1

O
pe

ra
4.

00

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
47 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
49 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
50 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0
54 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
65 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
66 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
71 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
77 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0
86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Results on vectors 42 through 84 [1].

attack vectors we shall look into a few test cases. Vectors
#3 and #6 are basic <script> tag based XSS with various
payloads. Vectors #12 and #13 are <body> tags based
with an Onload event set to execute the payload. #17 is
a <script> tag with double brackets to evade basic filters.
Vectors #53, #54, and #59 are based on HTML5 tags and
properties.

Using these tables to explore vulnerabilities we see that
some web browsers have very similar ’signatures’, but after a
more careful consideration we see that they are unique. This
information supports H1 by showing that each browser has
its own unique threat exposure [1]. Also, if we take a look
at Table 3, which does not include all test cases, we see that
between the desktop and the mobile versions of the exact
same browsers there is still a difference in threat exposure
[1].

Figures 1, 2, and 3 represent the evolution over time for
3 different browsers. Figure 1 shows the regression of their
set of attack vectors with the evolution of Opera. Figures 2
and 3 show the exact same for Firefox and Internet Explorer
respectively. The attack surface distance (ASD) is the num-
ber of differences between two browsers threat exposures,
the current and previous versions, which is shown in black.
The XSS attack vectors that pass are shown in gray. We
see a choatic and unstabilized regression in these browser’s

browser 0 1 2 3 8 9 10 13 14 16 26 28 30 34 35 36 40 42 43 47 48 50 51 53 56 69 70 72 74
Opera 11 Desktop 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1
Opera 11 Mobile 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1
Firefox 4 Desktop 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
Firefox 4 Mobile 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0

Table 3: Mobile versus Desktop versions [1].

F
ir

ef
ox

0
.8

F
ir

ef
ox

1
.0

F
ir

ef
ox

1
.0

.1

F
ir

ef
ox

1
.0

.7

F
ir

ef
ox

1
.5

.0
.1

F
ir

ef
ox

1
.5

.0
.9

F
ir

ef
ox

1
.5

.0
.1

1

F
ir

ef
ox

2
.0

.0
.7

F
ir

ef
ox

2
.0

.0
.1

6

F
ir

ef
ox

3
.0

.6

F
ir

ef
ox

3
.0

.1
5

F
ir

ef
ox

3
.0

.1
7

F
ir

ef
ox

3
.5

.1
2

F
ir

ef
ox

3
.5

.1
4

F
ir

ef
ox

3
.6

.1
3

F
ir

ef
ox

3
.6

.1
4

F
ir

ef
ox

4
.0

(b
et

a
8
)

F
ir

ef
ox

4
.0

(b
et

a
1
0
)

F
ir

ef
ox

4
.0

(b
et

a
1
2
)

0

2

4

6

8

10

12

14

16

Vectors pass

ASD

Figure 2: Firefox regression [1].

testing [1]. If we take a look at Figure 1 we see that Opera
10.50 and 10.10 have about the same number of passing at-
tack vectors (23 and 17 respectively), but the attack surface
distance is quite high (12)[1]. This shows a strong instability
between these two minor versions. It also reveals a lack of
systematic regression testing between versions. If we take a
look at Figures 2 and 3 we see the same occurrence happen-
ing where we have similar number of attack vectors passing,
but a large difference in attack surface distance. In Figure
2, when we look at Firefox 2.0.0.16 and Firefox 3.0.6 we see
that the number of passing vectors is very similar, but the
attack surface distance is quite high (9). With this we can
say that H2 is validated [1].

4. POSSIBLE SOLUTIONS
In this section, we discuss some recent solutions to defend

against XSS attacks. First we will look at XSSFilt and how
it improves upon Google Chrome’s XSSAuditor and other
methods. Then we look at a browser patch that can help in
defense against some scriptless attacks. Section 4.3 discusses
other possible solutions.

4.1 XSSFilt
XSSFilt is a client-side defense that utilizes an approx-

imate string matching algorithm. This allows it to detect
whole and partial-script injections. Before that though, XSS-

Filt parses the URL into parameters. It then excludes any
parameters that cannot possibly have JavaScript code or
HTML. This includes parameters containing less than 8 char-
acters and parameters containing only alphanumeric char-
acters, underscores, spaces, dots and dashes [7]. Then it
utilizes the approximate string matching algorithm. The al-
gorithm checks the length of the parameters and the script
of the web page. If the parameters are longer than the script,
it searches within the parameters for the script for a whole-
script injection. If the script is longer than the parameter,
it searches the script for the parameters for partial-script
injection [7].

The drawbacks that XSSFilt has in comparison to XS-
SAuditor is that it runs significantly slower. XSSAuditor
uses exact substring matching, which has a linear time. Ex-
act substring matching essentially has a set of strings that it
searches for within the script of a web page that are consid-
ered harmful. This in turn is quite different from XSSFilt’s
approximate string matching which searches for strings that
match a pattern approximately. XSSFilt also has a higher
false positive rate in comparison to XSSAuditor. This is due
to XSSAuditor using exact string matching which is stricter
than XSSFilt’s approximate string matching. Because of
this, XSSAuditor’s possibility for coincidental matches for
an entire string is smaller than that for its substrings [7].
XSSFilt, however, can deal with application-specific sanita-
tions better than exact string matching. Also, XSSFilt can
deal with partial-script injections while exact string match-
ing is unable to determine them [7]. Table 4 shows how
many XSS attack vectors out of two different cheat sheets
that XSSFilt, XSSAuditor and NoScript prevent. Noscript
did well against both cheat sheets, but this is due to the fact
that the attack vectors tested used basic JavaScript com-
mands. NoScript excels at stopping these types of attacks,
but can be bypassed by using other JavaScript commands
that require more skill and effort [7].

4.2 Scriptless Attack Defenses
Now we introduce some defense mechanisms that can be

used against some types of scriptless attacks. According to
[5], Content Security Policy (CSP) can be used to help re-
duce the potential harm that malicious injected code causes.
CSP can also restrict access to undesirable non-script-based
files such as CSS and Scalable Vector Graphics (SVG). CSP
is great at eliminating the execution of script-based attacks
like JavaScript. However, it is insufficient in covering a wide
variety of scriptless attacks. CSP is a step in the right direc-
tion since it is able to eliminate some side channels, which
are data leaks established either by accident by the site or
by an attacker, used in scriptless attacks and a few other
attack vectors [5].

In [5] the authors propose a solution to a type of script-
less attack labeled double-clickjacking. Double-clickjacking
is a form of attack that allows the attacker to leverage pop-
up windows and detached views to aquire data leakage ex-

Dataset XSSFilt XSSAuditor NoScript
xssed 399/400 379/400 400/400
cheatsheet 20/20 18/20 20/20

Table 4: Number of attack vectors protected against
[7]

ploits and perform clickjacking attacks. Clickjacking attacks
decieve the user to click on something different from what
they perceive, such as an image or a link that instead runs
malicious script when clicked on, potentially allowing con-
fidential information to be revealed. Their solution is a
patch created for Firefox that expands on the window ob-
ject by adding two properties: isPopup and loadedCross-

Domain. Both of these properties return boolean, true/false,
values and can only be accessed in read-only mode by a
web site at any time. As the names suggest, isPopup is
true when the GUI, the human-computer interface, win-
dow represented by the current DOM, the structure logic
for docuements/programs, window object is in a detached
view, while loadedCrossDomain is true if the current DOM
window object was loaded in a cross-domain. Cross-domain
means loading information from a site other than the one
currently loaded in the windows. With this ability, websites
can detect if they are being loaded in a detached view, which
can allow it to mitigate different scriptless attack vectors [5].

4.3 Server-side and Hybrid Solutions
In this section we describe a server-side defense against

cross-site scripting attacks called SWAP, developed by Peter
Wurzinger and his team, and a hybrid approach to managing
information traffic flow[9][6].

SWAP operates on a reverse proxy, or a proxy server that
retrieves information on behalf of a client, that checks each
web response with a so-called JavaScript detection compo-
nent. Within this component, SWAP puts together a fully
functional modified web browser that takes note of any script
within the content. In order to find malicious script, SWAP
modifies the hosted web application, which encodes all le-
gitimate script calls into unparsable identifiers (script IDs).
Thus this approach hides such calls from the JavaScript de-
tection component, and all remaining scripts are assumed
to have been injected. If this happens, then SWAP does
not send the response, but instead notifies the client of the
attempted XSS attack. To determine legitimate script calls,
they utilize a modified version of Firefox in the JavaScript
detection component. They adapted their version of Firefox
in three different positions in order to not overlook legit-
imate script. The first change notifies the user of scripts
that are executed automatically on the loading page. Sec-
ond, this change notifies of event handlers, most of which
are executed on user interactions. The third change allows
it to get notified of JavaScript URL link scripts, which are
opened when clicked upon. SWAP, however, has a few draw-
backs to it. The first is that with the inclusion of an extra
step between the client and server, the time it takes to re-
lay the information to its target is increased. This creates
a performance penalty due to the need of having to render
each page before delivery to the client. SWAP is also limited
by only detecting JavaScript XSS attacks [9]. The biggest
drawback to SWAP is that since it runs on a reverse proxy
it is only useful for non-encrypted content, and in the past

IE
4
.0

1

IE
5
.0

1

IE
5
.5

IE
6
.0

IE
7
.0

(b
et

a
3
)

IE
8
.0

IE
9
.0

(b
et

a
)

0

5

10

15

20

25

30

35

40

Vectors pass

ASD

Figure 3: Internet Explorer regression [1].

few years there has been a push to encrypt as much content
as possible.

The hybrid approach that [6] uses static and dynamic ap-
proaches to label values during an execution of a program.
The static approach to labeling analyzes a program before
execution to determine whether all executions are secure,
while the dynamic approach monitors a program’s execu-
tion to determine whether it is secure. This system tracks
explicit flow, or clearly demonstrated flow, by updating la-
bels on modified values that influence the final result. When
dealing with implicit flow, or information controlled through
a programs control flow, they use something that is quite
similar to a dynamic control dependence. This is more gen-
erally an operation that starts at the predicate (the affirmed
statements) to its immediate post-domniator (a statement
that the flow of information must pass through in order to
reach the end). At runtime they use a stack of security
contexts, or a stack of authentication and authorization ac-
tions, which determines the label currently in the implicit
flow. With this stack, the history of the security contexts
can be labeled and monitored. This approach is able to de-
tect XSS attacks when it is a whole-script injection. This
approach is unable to deal with scriptless XSS attacks or
partial-script attacks. Currently, this hybrid approach runs
quite slowly compared to other forms of information flow
control.

5. CONCLUSION
In this paper we looked at what an XSS attack is. We dis-

cussed less recent solutions to defend against these attacks,
but found out that these defenses have flaws in them that
can be exploited. We found that a good majority of previ-
ous defenses have trouble with partial-script and scriptless
injections. Defenses that have this issue include NoScript,
IE8, noXSS, and XSSAuditor. Also, we looked at whether

web browser providers have been following a linear regres-
sive path in combating XSS. We found patterns that sug-
gest that web browser providers do not follow a systematic
regression strategy in the developement of new versions of
their browsers. Due to this neglect in testing previous XSS
attacks that were solved in a previous version have the po-
tential to pass in a future version. Next we discussed possible
solutions in combating some of the flaws that previous so-
lutions present. We looked at XSSFilt which is a client-side
defense that utilizes approximate string matching to locate
injected malicious script. Then we looked at some partially
completed scriptless attack defenses, which means they do
not cover a wide range of scriptless attack vectors, but only
specific attack vectors. We then considered a server-side de-
fense called SWAP and a hybrid approach to information
traffic flow. These most recent solutions are not enough to
combat XSS attacks completly. Each of the solutions previ-
ously stated have drawbacks and short comings that prevent
them from being able to completly prevent XSS attacks. Ad-
ditionally, due to the ever evolving nature of XSS attacks
new forms of attacks will continue to be created that will be
able to circumvent these solutions. In conclusion, continu-
ous research must be done to improve upon these solutions
due to the ever evolving nature of XSS attacks.

6. REFERENCES
[1] E. Abgrall, Y. Le Traon, S. Gombault, and

M. Monperrus. Empirical investigation of the web
browser attack surface under cross-site scripting: An
urgent need for systematic security regression testing.
In Software Testing, Verification and Validation
Workshops (ICSTW), 2014 IEEE Seventh
International Conference on, pages 34–41, March 2014.

[2] D. Bates, A. Barth, and C. Jackson. Regular
expressions considered harmful in client-side xss filters.
In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 91–100, New York,
NY, USA, 2010.

[3] L. Digman. Obama site hacked; Redirected to Hillary
Clinton, 2008.

[4] S. Gold. eBay downplays significance of ’old school’
XSS attack on its auction portal, 2014.

[5] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: Stealing the pie without
touching the sill. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 760–771, New York, NY, USA,
2012.

[6] S. Just, A. Cleary, B. Shirley, and C. Hammer.
Information flow analysis for javascript. In Proceedings
of the 1st ACM SIGPLAN International Workshop on
Programming Language and Systems Technologies for
Internet Clients, PLASTIC ’11, pages 9–18, New York,
NY, USA, 2011.

[7] R. Pelizzi and R. Sekar. Protection, usability and
improvements in reflected xss filters. In Proceedings of
the 7th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’12, pages
5–5, New York, NY, USA, 2012.

[8] Wikipedia. Cross-site scripting — Wikipedia, The Free
Encyclopedia, 2014.

[9] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and

C. Kruegel. Swap: Mitigating xss attacks using a
reverse proxy. In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Secure Systems,
IWSESS ’09, pages 33–39, Washington, DC, USA, 2009.

