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Von Neumann Architecture

Current computing architecture:

Memory and processing are physically separate

Transmission of information is becoming a bottleneck
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Main memory and Processor

Leakage is currently one of the main factors limiting increased computer
processor performance

Main Memory:

DRAM: Dynamic Random Access
Memory

Capacitors leak energy

Need to be continually reset

Processor:

Transistors

Need a constant current to
maintain state

Has SRAM caches (Static
Random Access Memory)
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Memristor
Crossbar Array

The Memristor

mem: memory, -ristor: resistor

Non-volatile, memory and switching device

Originally used resistive TiO2 and conductive TiO2−x

Applying current alters the state

In the figure: nm (nano meters), Pt (platinum electrodes)
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Memristor
Crossbar Array

History Abridged

Originally theorized in 1971 by L. Chua

Physical memristor construction published in 2008 by S. Williams et al.

Long story short: the theoretical and 2008 memristor are not equivalent
(S. Vongehr and X. Meng)

More proper to call the memristor a resistance switching device

Despite this, the memristor is a promising device
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Memristor
Crossbar Array

Crossbar Array

Scalable, layerable

Potential to store Petabits of memory
within a cm3

Can be mass produced using current
techniques
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Other Potential Non-volatiles

STT-RAM

Spin transfer torque random
access memory

New implementation of
magnetoresistive RAM

Requires a significant current to
alter state

PCM

Phase change memory

Alters state by melting into either
a conductive or resistive state

11 / 32



Introduction
Background

Memristors as Memory
Memristors for Logic Computations

Computation in Memory
Conclusion

Comparison to other prospective memories

Retention: How long the device will retain its state after a write

Endurance: How many writes before the device fails

3D capability: Whether or not the device can be constructed in layers
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Newer Implementation

Tantalum-Oxide based memristor: S. Williams et al.

Switching times from 105 to 120 pico seconds

Associated energies: 1.9 and 5.8 pico joules

The device in question was 2 micro meters in length
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Material Implication Logic

IMP: (p → q) ` (¬p ∨ q)

Kvatinsky et al.

Like the nand gate, the imply gate implements any
boolean function

Memristors P and Q with initial values p and q

Memristor Q is treated as the output

Vcond and Vset are voltages where
(|Vcond| < |Vset|)
RG has a resistance between ROff and ROn
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Material Implication Logic

IMP

Apply voltage Vcond to P and Vset to Q
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Material Implication Logic

IMP

If p = q = 0 (high resistance)

Voltage on Q is approximately
Vset

Q is switched to 1.
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Material Implication Logic

IMP

If p = 0 and q = 1,

the state of Q is unchanged
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Material Implication Logic

IMP

If p = 1 (low resistance)

Voltage on Q is Vset − Vcond

Voltage on Q is small enough that
the state of Q is unchanged.
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Basic Design
Results on Large Data Sets

Von Neumann Bottleneck

Issues:

Information between processor
and main memory is shared by a
system bus

The bus can only access the
processor or memory, one at a
time

Memory Input and
Output

Control bus

Address bus

Data bus S
ys
te
m
b
u
s

CPU
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Basic Design
Results on Large Data Sets

Von Neumann Bottleneck

Issues:

Processor will be idle while the
bus is getting information from
main memory

Study from 1996 found that 3 out
of 4 CPU cycles spent waiting for
memory

Processor processing and main
memory transfer rate are more
than the data transfer rate of the
bus
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Basic Design
Results on Large Data Sets

Von Neumann Bottleneck

Some current mitigations:

SRAM based caches between the
CPU and main memory

Providing the CPU a limited
stack or scratch-pad memory

Memory Input and
Output

Control bus

Address bus

Data bus S
ys
te
m
b
u
s

CPU

23 / 32



Introduction
Background

Memristors as Memory
Memristors for Logic Computations

Computation in Memory
Conclusion

Basic Design
Results on Large Data Sets

Computation in Memory Architecture

Computation in Memory (CIM) as propsed by Hamdioui et al. aims to combine
main memory and processing into a single crossbar array. The
memory/computing crossbar array allows for:

Massive parallelism

Little to no power leakage (no longer accessing SRAM caches)

Performance improvement at lower energy and area (no communication
bottleneck)
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Basic Design
Results on Large Data Sets

Specifics of Architectures Compared

Von Neumann architecture:

22nm multi-core implementation

64 clusters

Each cluster has 32 ALUs that
share an 8KB L1 cache

Computation in Memory architecture:

5nm memristor crossbar

Crossbar size is equal to total
cache size of the VN architecture
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Basic Design
Results on Large Data Sets

Data Sets to Compare VN vs CIM

DNA comparison:

A sorted index of reference DNA
is created in order to identify the
locations of matches or
mismatches in another sequence.

Comparing 200 GB of DNA to a
3 GB healthy reference.

106 parallel additions
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Basic Design
Results on Large Data Sets

Results

Energy-delay / operations: Energy consumed per operation (joules)

Computing efficiency: Number of operations per energy (n/J)

Performance Area: Operations per area

Metric Archit. DNA Sequencing 106 additions

Energy-delay/
operations

Computing
efficiency

Performance
area

VN

VN

VN

CIM
2.02e-03
2.34e-06

1.50e-18
9.26e-21

4.11e+01
3.70e+04
5.73e+06
8.28e+09

5.11e+09
4.92e+12

3.91e+12
6.52e+09

CIM

CIM
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The Good

On their own memristors seem to be a very competitive memory

They are scalable and potentially cheap to manufacture

Computation in memory architecture has excellent potential
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The Bad

Completely new logic operations could require significant changes to
software

Combined with a complete overhaul of the architecture, CIM could take
some time to be developed
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Discussion

Questions?
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