
Heuristics for the Generalized Traveling Salesman Problem

Molly Grove
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

grove266@morris.umn.edu

ABSTRACT
The generalized traveling salesman problem (GTSP) is a
variation of the traveling salesman problem, a classic NP-
hard optimization problem. The goal of the GTSP is to
find a minimum-cost cycle that visits one node from every
subset, or category, of vertices. This paper presents several
algorithms for finding approximate solutions to the GTSP.

Keywords
generalized traveling salesman problem, hybrid algorithms,
parameterized algorithms, consultant-guided search, vari-
able neighborhood search, combinatorial optimization

1. INTRODUCTION
Many problems with practical applications involve com-

pleting a required task with as little cost as possible, whether
cost is defined as time, money, distance, or some other mea-
sure. While some problems, such as finding the shortest
route from one location to another, are relatively easy to
solve, others do not have known easy solutions. One exam-
ple of this is the traveling salesman problem. The traveling
salesman problem is a well-known problem where a sales-
man must travel to all of a specific selection of cities in one
trip and wishes to find the shortest route available without
repeating any cities. This problem has many applications,
including some such as task scheduling where no actual trav-
eling is involved.

The generalized traveling salesman problem is like the
traveling salesman problem except that instead of going to
every city, the cities are divided into groups and the trav-
eler must go to one city in each group. The ‘cities’ in each
group may be relatively close together, as would be the case
for a traveler going to one city in each of several states, or
they may not be, as would be the case for someone run-
ning errands who needs to go to one of each of several types
of stores. This means that the generalized traveling sales-
man problem has potential for even more variation than the
traveling salesman problem.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

21

3

5

4

6

g b

h d

a

i

e

f

c

Figure 1: A graph with vertices and edges labeled

Like the traveling salesman problem, the generalized trav-
eling salesman problem has many applications, and cannot
be solved optimally without essentially trying all possibili-
ties. For this reason, approximate algorithms, which give a
solution that is good, but not always optimal, are used.

This paper presents some approximate algorithms, or heuris-
tics, for the generalized traveling salesman problem. Sec-
tion 2 provides some background necessary to understand
the algorithms. Section 3 introduces a parameterized algo-
rithm used for road networks. Section 4 describes a hybrid
algorithm that combines several search techniques. Section 5
introduces some search algorithms that can be combined
with variable-neighborhood search, as well as some instances
that illustrate why combining them is beneficial.

2. BACKGROUND
To understand the problem and heuristics, we must first

understand some graph theory, some computation theory,
and the precise definition of the generalized traveling sales-
man problem.

2.1 Graphs
This section defines some graph theory terms necessary to

understand the generalized traveling salesman problem.
A graph G = (V,E) is an ordered pair of two sets: a set

V of vertices and a set E of edges. Each edge is defined by
a pair of vertices. For example, an edge (a, b) connects ver-
tices a and b. The edges may have weight or cost values, ci,j ,
where (i, j) is an edge in E. Vertices are said to be adjacent
if they are connected by an edge. Vertices are sometimes
referred to as nodes, and I will be using these terms inter-
changeably. Figure 1 is an example of a graph with vertices
and edges indicated by numbers and letters, respectively.

In non-technical terms, a graph is a set of points (vertices
or nodes) with lines (edges) connecting them. Cost values

can be thought of as the cost of traversing the edges. For
some applications, this corresponds to the length of the edge.

Given a graph G = (V,E), a path is a sequence of unique
nodes and edges (v1, e1, v2, e2, ..., en−1, vn) where each node
is adjacent to the previous one and the edges between the
nodes connect the two nodes. For example, in Figure 1,
(4, e, 3, i, 5, g, 1) is a path. Notice that there are no repeated
nodes. A cycle is a path except that v1 = vn; that is, a path
that starts and ends at the same place. One example of a
cycle in Figure 1 is (2, a, 1, g, 5, f, 6, b, 2). Notice that the
sequence has no repeated nodes except the first one, which
is repeated at the end of the sequence.

2.2 The class NP-hard
In this section, I define some terms used to classify prob-

lems based on computational complexity.
A decision problem is a problem that, when solved, results

in a ‘yes’ or ‘no’ answer [9]. A decision problem is said to
be in the class P if, in the worst case, it can be solved by an
algorithm in polynomial time [4]. A problem can be solved
in polynomial time if an algorithm with an input of size n
can solve the problem in no more than nk steps, where k is
a constant that does not depend on n.

Exact algorithms are generally used for problems in the
class P, because most computers can use polynomial time
algorithms to solve them quickly enough for most practical
purposes, even when n is fairly large. However, there are
many problems for which no polynomial-time solution has
been found.

A decision problem is in the class NP if a polynomial-
time algorithm can verify it, meaning that the algorithm can
check in polynomial time if a given candidate for a solution is
indeed a solution. Note that this definition does not exclude
problems in P. In fact, P is a subset of NP.

There are some problems that can be proven to be at least
as hard as every problem in NP. These are referred to as
NP-hard. A problem is NP-hard if every problem in NP can
be polynomially reduced to it [4]. This means that if there
is a polynomial-time algorithm that can solve an NP-hard
problem, the algorithm can be changed into an algorithm to
solve any problem in NP in polynomial time.

Because the traveling salesman problem is not a decision
problem, it is not in NP. However, it is NP-hard, along with
the generalized traveling salesman problem and many other
optimization problems. Problems that are not in P, includ-
ing NP-hard problems, are much more computationally in-
tensive when the input is large, since the number of steps
increases more quickly (often exponentially) as the input
size increases. For this reason, approximate algorithms are
often used for NP-hard optimization problems. These algo-
rithms don’t always lead to the optimal solution. However,
some of them can generate solutions that are good enough
for practical purposes in a reasonable amount of time.

2.3 Generalized Traveling Salesman Problem
The generalized traveling salesman problem is, as the name

suggests, a generalization of a different problem, the travel-
ing salesman problem.

The traveling salesman problem (TSP) is defined as fol-
lows: Given a graph G = (V,E), find the minimum-cost
cycle that contains all nodes in G. The TSP is known to be
NP-hard [4].

In the generalized traveling salesman problem (GTSP),

2. GENERALIZED TRAVELING SALESMAN
PATH PROBLEMS

Let G = (V, E, w) be a weighted, directed graph, with node
set V , edge set E ✓ V ⇥ V , and edge weight function w :
E ! R>0, such that n = |V | and m = |E|. Let Ps,t =
hv1, v2, . . . , vqi be any path in G from s = v1 2 V to t = vq 2
V , such that, for 1  i < q, (vi, vi+1) 2 E. The total weight,
or cost, of any Ps,t is w(Ps,t) =

P
1i<q w(vi, vi+1). Let P ⇤

s,t

be any minimum-weight, or“shortest”, path from s to t. The
shortest path “distance” is referenced as d(s, t) = w(P ⇤

s,t).

A category set, C = {C1, C2, . . . , Ck}, defines a set of gen-
eralized node subsets within the graph where, for 1  i  k,
Ci = {ci,1, ci,2, . . . , ci,|Ci|} ✓ V represents a distinct cate-
gory of locations, each of which provides the same general
type of service (e.g., the set of gas station locations). Note
that V \ (C1 [C2 [. . . [Ck) 6= ;, in general (i.e., not ev-
ery graph node has to belong to a category). The primary
structural measures of a category set are the category count,
k = |C|, representing the total number of distinct categories,
and the category density, g = max

1ik
{|Ci|}, representing the

maximum number of optional locations per category. Thus,
the total number of category locations ||C|| =

P
1ik |Ci|

is upper-bounded by O(kg).

A path, Ps,t, is said to be a hitting path for a category set
C i↵, for 1  i  k, Ps,t \Ci 6= ; (i.e., Ps,t contains at least
one node from each category). Therefore, for any GTSPP
instance I = hG, s, t, Ci, for some s, t 2 V (G) and category
set C (defined on G), we seek to compute a minimum-weight
hitting path, referenced as P C

s,t (see Fig. 1 for an example).

s t

c1,1

c1,2

c2,1

c2,2

G

Figure 1: Example GTSPP instance (taken from
[22]) for a graph G (with unit-cost edge weights),
s, t 2 V , and category set C = {C1, C2}. The
minimum-weight hitting path is shown in green.

For a given category set, C, the GTSPP product graph,
introduced in [22], is defined as GC = (V ⇥P(C), E1 [E2),
with product nodes hu, ci such that u 2 V and c 2 P(C)2,
where E1 = {(hu, ci, hv, c0i) | c = c0 ^ (u, v) 2 E} and
E2 = {(hu, ci, hv, c0i) | u = v ^ c0 \ c = Ci 2 C ^ v 2 Ci}.

The E1 edges are structured to represent a unique copy of
each original edge from G for every subset of C. For all
(hu, ci, hv, c0i) 2 E1, we define w(hu, ci, hv, c0i) = w(u, v).
The E2 edges are structured to represent the accumula-
tion of a new category by inclusion of a specific node from
within that category. For all (hu, ci, hv, c0i) 2 E2, we de-
fine w(hu, ci, hv, c0i) = 0. Any path from hs, ;i to ht, Ci
2P(C) represents the power set of C.

in GC therefore represents a valid hitting path in the orig-
inal graph, based on a specific accumulation sequence of
category nodes from each category. As shown in [22], the
shortest path from hs, ;i to ht, Ci in GC thus represents an
equivalent-cost, optimal solution for the GTSPP query in
the original graph G. See Fig. 2 for an example product
graph, based on the GTSPP instance from Fig. 1.

hs, ;i

ht, Ci

;

C1 C2

C

Figure 2: Example product graph of graph G (from
Fig. 1) for category set C = {C1, C2}. E1 edges are
shown as solid edges whereas E2 edges are shown as
dashed edges. The shortest path from hs, ;i to ht, Ci
is shown in grey.

As noted in [22], the full product graph need not be explicitly
constructed to perform any related GTSPP searches, but
may instead be implicitly constructed, as needed, during
the search. We further denote the product subgraph induced
by any subset of nodes V 0 ✓ V as G[V 0]C ⌘ GC [V 0⇥P(C)].

2.1 Related Work
GTSP was initially examined in [13, 28] and has since been
approached via various algorithmic strategies. Dynamic pro-
gramming formulations for GTSP have been explored in
[13, 25, 28]. Integer- and linear-programming techniques
for GTSP are presented in [8, 14, 15, 19]. Algorithms for
transforming GTSP instances into standard TSP instances
with O(kg) nodes are given in [2, 5, 17]. Heuristics have
been proposed for this problem type in [3, 27]. Approxi-
mation algorithms for GTSP have also been considered in
[1, 7, 11, 16, 18, 23, 26]. In general, however, (even met-
ric) GTSP cannot be approximated to within any constant
factor in polynomial time unless P = NP [24].

In the field of parameterized complexity theory [6, 9], a prob-
lem is said to be fixed parameter tractable (FPT) if there ex-

ists an algorithm for solving the problem in time f(k)nO(1)

for some arbitrary function f (independent of the problem
size, n) with respect to some problem-specific parameter k
(e.g., solution size, structural properties such as treewidth,
or, as in our case, the number of distinct categories). Such
algorithms help confine the true combinatorial explosion of
the problem to the parameter k, which is hopefully small
(and thus, manageable) in practice (even if n is very large).

GTSPP may be solved to optimality using FPT algorithms
with f(k) 2 O⇤(k!)3 [21, 23], requiring only polynomial
space. Exact FPT algorithms with f(k) 2 O⇤(2k) have also
been considered in [22], by way of using the GTSPP prod-

3The O⇤-notation omits any polynomial factors. Only small
polynomials (e.g., similar to those in [22]) are omitted here.

115

Figure 2: The product graph GC with the shortest
path highlighted (taken from [8])

instead of going to all nodes, the nodes are divided into
disjoint subsets and the cycle has to go to one node in each
subset. Mathematically, it can be defined as follows: Given
a graph G = (V,E) and disjoint subsets V1, V2, ..., Vn of the
set V , find the minimum cost cycle containing one node from
each subset Vi.

Rice and Tsotras [8] show that the TSP can be reduced
to the GTSP, so the GTSP is also NP-hard.

2.4 The Generalized Traveling Salesman Path
Problem

The generalized traveling salesman path problem (GT-
SPP) is similar to the generalized traveling salesman prob-
lem, except that the starting and ending node are defined,
and they are not necessarily the same node. Formally, it
can be defined as follows: Given a graph G = (V,E), dis-
joint subsets V1, V2, ..., Vn of the set V , and nodes s and t in
V , find the minimum cost path from s to t containing one
node from each subset Vi.

Rice and Tsotras [8] show that the GTSP can be reduced
to the GTSPP. Any GTSPP algorithm can also be used for
the GTSP, by setting s = t and taking the minimum cost
over all possible choices of s. Since the GTSP is NP-hard,
this means that the GTSPP is also NP-hard.

3. PARAMETERIZED ALGORITHMS AND
THE GTSPP

One method of finding an approximate solution to the
GTSPP or the GTSP is to use parameterized algorithms.
Parameterized complexity theory defines complexity not just
by the size of the input, but also by other parameters. This
helps distinguish between algorithms that are inefficient in
theory and practice and algorithms that are inefficient in
theory but actually not that inefficient for many practical
purposes.

This section summarizes the algorithm presented by Rice
and Tsotras [8]. The algorithm that follows is most useful
in cases where the nodes in each node subset are scattered.
This algorithm is for the GTSPP, from Section 2.4. However,
as mentioned before, the same algorithm could be used for
the GTSP. This algorithm also allows repeated nodes.

3.1 The Product Graph
The algorithm starts by constructing a product graph. For

a set C of node subsets, the product graph is defined as

GC = (V ×P(C), E1 ∪E2), where P(C) is the power set, or
set of all subsets, of C. E1 is the set of edges in G copied
for each subset of C, and E2 is a set of edges from each
node in each proper subset c of C to the same node in every
other subset c′ such that c is a proper subset of c′ but there
are no proper subsets c′′ of c′ such that c is a proper subset
of c′′. This is shown in Figure 2. The original graph G is
duplicated for every subset of C. The E1 edges are within
each duplicate and shown as solid lines. The E2 edges go
between the duplicates of G, and are shown as dashed lines.

This construction turns the problem into a shortest-path
type problem from s in the first state, the empty set, to t in
the last state, C. Reaching a node from a node subset results
in advancing to a state that reflects having already visited
that subset.

3.2 Contraction Hierarchies
The algorithm uses a technique known as contraction hi-

erarchies (CH) on the product graph. This process assigns a
unique rank, φ(u), to each node u. The method of ranking
nodes used in this algorithm is from Geisberger et al. [1]. It
assigns higher values to nodes in more shortest paths.

After the nodes are ranked, for every unique shortest path
from v to w containing u, if φ(u) is less than φ(v) and φ(w),
a short-cut edge is added with a cost equal to the sum of
the costs of (u, v) and (v, w). The “upward” graph, G↑, is
defined as (V,E↑), where E↑ contains all edges (u, v) such
that φ(u) < φ(v), and the “downward” graph, G↓, is de-
fined as (V,E↓), where E↓ contains all edges (u, v) such that
φ(u) > φ(v).

3.3 Establishing the Upper Bound
The next step in the algorithm is to calculate an upper

bound, µ, on the possible solution. This is accomplished
by constructing a path on the CH product graph starting
with s and going along the shortest (or minimum cost) edge
such that the destination node is in a node subset where no
node has been visited, until all subsets have been visited.
After all subsets have been visited, the total cost of the
path plus the distance from the last node to t is an upper
bound µ on the possible cost (meaning that the optimal
solution cannot have a higher cost). This is a variation of
an approximate algorithm for the TSP known as the“nearest
neighbor” algorithm.

3.4 ∆-Corridors
The next step in the algorithm is to establish ∆-corridors.

∆-corridors are based on the idea that it’s not necessary to
consider nodes that are far away from the space between s
and t, assuming that there are nodes from all node subsets
near the direct path between s and t.

This step establishes V∆, defined as V∆ = {v ∈ V |d(s, v)+
d(v, t) ≤ ∆}. To find this, Dijkstra’s algorithm, a shortest-
path algorithm, is used on the CH graph once from s on G↑

and once from t on G↓. The details of this step can be found
in [8]. The algorithm uses ∆ = µ/(1 + ε), where ε ≥ 0. If
ε = 0, this algorithm is an exact algorithm.

3.5 A* Search
In A∗ search, a value is assigned to each node with the

formula f(v) = d(v) + h(v), where d(v) is the cost of the
minimum cost known path from the starting node s to v
and h(v) is the estimated cost for minimum cost path from

Given a sequence in which the clusters are visited (i.e. a global
Hamiltonian tour), there are several generalized Hamiltonian tours
corresponding to it. The best corresponding (with respect to cost
minimization) generalized Hamiltonian tour can be determined
either by using a layered network as we will describe next or by
using integer programming.

We denote by ܩ’ the graph obtained from ܩ after replacing all
nodes of a cluster ௜ܸ with a supernode representing ௜ܸ. We will
call the graph ܩ’ the global graph. For convenience, we identify
௜ܸ with the supernode representing it. Edges of the graph ܩ′ are

defined between each pair of the graph vertices ௜ܸ , … , ௠ܸ.

Given a sequence ௞ܸభ , … , ௞ܸ೘ in which the clusters are visited, we
want to find the best feasible Hamiltonian tour ܪ∗ (with respect to
cost minimization), visiting the clusters according to the given
sequence. This can be done in polynomial time by solving | ௞ܸభ|
shortest path problems, as we describe below.

We construct a layered network, denoted by LN, having ݉ ൅ 1
layers corresponding to the clusters ௞ܸభ , … , ௞ܸ೘ and in addition we
duplicate the cluster ௞ܸభ . The layered network contains all the
nodes of ܩ plus some extra nodes ݒ′ for each ݒ ∈ ௞ܸభ . There is an
arc ሺ݅, ݆ሻ for each ݅ ∈ ௞ܸ೗ and ݆ ∈ ௞ܸ೗శభ (݈ ൌ 1, . . . , ݉ െ 1), having
the cost ܿ௜௝. Moreover, there is an arc ሺ݅, ݆′ሻ for each ݅ ∈ ௞ܸ೘ and
݆′ ∈ ௞ܸభ having the cost ܿ௜௝ᇲ .

Figure 1. Example showing a Hamiltonian tour in the

constructed layered network LN

For any given ݒ ∈ ௞ܸభ , we consider paths from ݒ to ݒ ,′ݒ′ ∈ ௞ܸభ,
that visits exactly one node from each cluster ௞ܸమ , … , ௞ܸ೘ , hence it
gives a feasible Hamiltonian tour.

Conversely, every Hamiltonian tour visiting the clusters according
to the sequence (௞ܸభ , … , ௞ܸ೘) corresponds to a path in the layered
network from a certain node ݒ ∈ ௞ܸభ to ݒ′ ∈ ௞ܸభ .

Therefore, it follows that the best (with respect to cost
minimization) Hamiltonian tour ܪ∗ visiting the clusters in a given
sequence can be found by determining all the shortest paths from
each ݒ ∈ ௞ܸభ to the corresponding ݒ′ ∈ ௞ܸభ with the property that
it visits exactly one node from each of the clusters ௞ܸమ , … , ௞ܸ೘ .

The overall time complexity is then | ௞ܸభ|ܱሺ|ܧ| ൅ log ݊ሻ, i.e.
ܱሺ݊|ܧ| ൅ n	log ݊ሻ, in the worst case, where by |ܧ| we denote the
number of edges. We can reduce the time by choosing ௞ܸభ as the
cluster with minimum cardinality.

Notice that the above procedure leads to an ܱሺሺ݉ െ 1ሻ! ሺ݊|ܧ| ൅
n	log ݊ሻሻ time exact algorithm for the GTSP, obtained by trying
all the ሺ݉ െ 1ሻ! possible cluster sequences.

Clearly, the algorithm presented is an exponential time algorithm,
unless the number of clusters ݉ is fixed.

3. THE CGS METAHEURISTIC
In this section, we briefly describe the Consultant-Guided Search
(CGS) metaheuristic. We refer the reader to [7] for a detailed
presentation.

CGS is a swarm intelligence technique for solving hard
combinatorial optimization problems, which takes inspiration
from the way real people make decisions based on advice received
from consultants.

CGS is a population-based method. An individual of the CGS
population is a virtual person, which can simultaneously act both
as a client and as a consultant. As a client, a virtual person
constructs at each iteration a solution to the problem. As a
consultant, a virtual person provides advice to clients, in
accordance with its strategy. Usually, at each step of the solution
construction, there are several variants a client can choose from.
The variant recommended by the consultant has a higher
probability to be chosen, but the client may opt for one of the
other variants, which will be selected based on some heuristic.

At the beginning of each iteration, a client chooses a consultant
based on its personal preference and on the consultant's
reputation. The reputation of a consultant increases with the
number of successes achieved by its clients. A client achieves a
success, if it constructs a solution better than all solutions found
until that point by any client guided by the same consultant. Each
time a client achieves a success, the consultant adjusts its strategy
in order to reflect the sequence of decisions taken by the client.

Because the reputation fades over time, a consultant needs that its
clients constantly achieve successes, in order to keep its
reputation. If the consultant's reputation sinks below a minimum
value, it will take a sabbatical leave, during which it will stop
offering advice to clients and it will instead start searching for a
new strategy to use in the future.

4. THE HYBRID ALGORITHM FOR THE
GTSP
We propose in this section an algorithm for the GTSP that
combines the consultant-guided search technique with a local-
global approach and improves the solutions using a local search
procedure. Most GTSP instances of practical importance are
symmetric problems with Euclidean distances, where the clusters
are composed of nodes that are spatially close one to the other.
We design our algorithm to take advantage of the structure of
these instances.

4.1 The Algorithm
At each iteration, a client constructs a global tour, that is, a
Hamiltonian cycle in the global graph. The strategy of a
consultant is also represented by a global tour, which the
consultant advertises to its clients. The algorithm applies a local
search procedure in order to improve the global tour representing
either the global solution of a client or the strategy of a consultant
in sabbatical mode. Then, using the cluster optimization procedure
described in section 2, the algorithm finds the best generalized
tour corresponding to the global tour returned by the local search
procedure.

In order to compare the strategies constructed during the
sabbatical leave, a consultant uses the cost of the generalized tour
corresponding to each strategy. Similarly, the success of a client is

482

Figure 3: The local-global approach (taken from [5])

v to the end node t.
The algorithm begins by inserting all nodes adjacent to s

into a set F , the “fringe” set, and setting d(s) = 0. For all
other nodes, d(v) is defined as ∞.

Next, a node u with minimum f value (as defined above)
is removed from F . For every node v adjacent to u, if d(v) >
d(u) + c(e), where e is the edge between u and v, then d(v)
is set to be d(u) + c(e) and v is inserted into F . This is
repeated until t is reached and chosen to be removed from
F , when d(t) is returned.

The algorithm uses A∗ search on the CH product graph
within Vµ/(1+ε), the ∆-corridor established in Section 3.4.
Rice and Tsotras [8] prove that their A∗ search heuristics
will return the correct shortest path.

After A∗ search is completed, min{µ,w(P ∗)} is returned,
where µ is the upper bound calculated in Section 3.3 and
P ∗ is the path calculated in A∗ search. Rice and Tsotras
[8] prove that this algorithm runs in O∗(2k) time, where k
is the number of node subsets and the O∗ notation means
that polynomial factors are omitted.

3.6 Experimental Results
Rice and Tsotras [8] conducted experiments using the road

network of North America.
In the first experiment, the algorithm was implemented

with the number of subsets Vi fixed at 5, varying ε and the
numbers of nodes in each subset. They found that query
time decreased from 1 second to 0.002 seconds as the num-
bers of nodes increased from 10 to 1,000,000. The query
time also decreased as ε increased. The cost of the solu-
tions found are worse than optimal by less than 25%, and
are significantly lower in most cases.

In the second experiment, the number of nodes in each
subset was fixed at 10,000 and the number of nodes and ε
were varied. The results showed errors of less than 5%.

4. LOCAL-GLOBAL SEARCH AND CON-
SULTANT GUIDED SEARCH

Often, combining several algorithms to make a hybrid al-
gorithm can generate an algorithm that is more effective
than the original algorithms alone. This can be useful for
solving NP-hard optimization problems like the GTSP. In
this section, I present an algorithm from Pop and Iordache
[5]. This algorithm is a hybrid of two algorithms: local-
global search and consultant-guided search (CGS). Unlike
the algorithm in Section 3, this algorithm assumes that the
nodes in each node subset are close together.

4.1 Local-Global Search
Local-global search is a technique that distinguishes be-

tween edges connecting nodes within the same subset and

V
1 V

2

V
3

V
4

2

4

2

4

5 5

Figure 4: Local-global search given the sequence
(V1, V2, V3, V4), with costs as labeled

edges connecting nodes of different subsets.
A new graph, G′, is constructed with a supernode that

represents each subset Vi. Supernodes are denoted with the
name of the subset Vi.

Given a sequence of supernodes Vk1 , Vk2 , ..., Vkn , the local-
global search algorithm finds the minimum-cost cycle that
visits one node from each subset in the order of the sequence.
This is accomplished by duplicating Vk1 and putting it at the
end of the sequence, then considering each path from each
node in Vk1 to the corresponding node in Vkn+1 , visiting the
subsets in the order of the sequence, as shown in Figure 3.

This algorithm is a polynomial time algorithm. This may
seem like it contradicts the GTSP being an NP-hard prob-
lem. However, the algorithm does not actually find the over-
all optimal solution for the GTSP; rather, it only finds the
optimal solution for a particular sequence of node subsets.
One example of this is shown in Figure 4. This is indeed
the shortest cycle given the sequence (V1, V2, V3, V4), but
it’s not the best solution overall. An optimal solution would
use the same nodes with the dotted edges and the sequence
(V1, V2, V4, V3), but local-global search doesn’t rearrange the
sequence order. Using the algorithm to find the optimal
solution over all possible sequences is an exponential time
algorithm, as expected.

4.2 Consultant-Guided Search
Consultant-guided search is also used. The following in-

formation is from Iordache [3].
Consultant-guided search (CGS) is a swarm intelligence

algorithm, meaning that it is decentralized. It is based on
the way people take advice from consultants.

The algorithm has simulated individuals that take on two
roles, consultants and clients. Each iteration, each virtual
client chooses a virtual consultant based on the consultants’
reputation. A consultant’s reputation increases when the
consultant’s clients succeed. A success is defined as a so-
lution that is better than any other solution that has been
found by the algorithm. Reputation generally decreases over
time unless prevented by successes. The exception to this
rule is that for some consultants who have had a very high
reputation at some point, the reputation is prevented from
going below a certain level.

Another factor that influences a client’s choice is the con-

sultant’s personal preference. This factor is different for each
problem where CGS is used.

In addition to reputation, each consultant also has a strat-
egy, which they use to help the client to solve the problem.
Using the strategy, the consultant offers a suggestion, and
the client may or may not take the suggestion offered. This
introduces some randomness into the construction process.

The consultants also have a sabbatical mode, where they
do not give advice to clients and change their strategy. Sab-
batical mode is activated if the consultant’s reputation goes
below a certain level, and is deactivated after a certain amount
of time.

4.3 The Hybrid Algorithm
The algorithm Pop and Iordache propose is a hybrid of

the local-global and CGS techniques.
The consultant uses virtual distances between subsets as

described in Section 4.1, with each supernode at the center
of mass of the subset, to generate a cycle that visits all
supernodes. This cycle is improved with methods that are
beyond the scope of this paper, and can be found at [5].
The consultant then uses this cycle to advise the clients. In
each step of generating the cycle, the consultant randomly
chooses the next supernode from the supernodes not yet
visited within a candidate list of the n closest supernodes.
The probability of choosing supernode j from supernode i
is given by the formula

pkij =
1/dij∑

l∈Nk
i

(1/dil)

where N k
i is the set of possible supernodes and dij is the

distance between the two supernodes i and j.
When a client chooses a consultant, the consultant recom-

mends the next subset for the client to visit. The consultant
accomplishes this by looking at the client’s current supern-
ode and finding it in the consultant’s constructed cycle. If
the client has not visited either the supernode before or af-
ter the client’s current supernode, the consultant will rec-
ommend the one that has not yet been visited, or randomly
pick one of the two if neither one has been visited. If the
client has already visited both supernodes, the consultant
does not make a recommendation.

The client may or may not take this recommendation. If
there are still supernodes within the candidate list that have
not been visited by the client, the client’s choice is dictated
by the formula

j =

{
v v 6= null ∧ q ≤ q0
random

(
N k
i

)
otherwise

where i is the current node subset, v is the recommended
node subset, q0 is a parameter, and q is a random variable
between 0 and 1 (inclusive).

If all supernodes in the candidate list have been visited,
the client chooses a supernode not in the candidate list.

After a sequence of supernodes is chosen, the local-global
search technique in Section 4.1 is used to find the best overall
cycle.

4.4 A variant using confidence
Pop and Iordache also present a variant where each con-

sultant’s confidence in each edge of a cycle factors in the
client’s decision to take the suggestion. In this variant, each
edge in a consultant’s strategy cycle has a strength. When

a consultant uses an edge in the cycle for the first time, it
is given a strength of 0. Each time the consultant re-uses
the same edge, the edge’s strength is incremented. A client
is more likely to choose the recommended supernode if the
edge between the supernodes has a higher strength.

4.5 Experimental Results
The algorithm and the variant with confidence were tested

on GTSP instances adapted from TSP instances from the
TSPLIB library [7]. The results from the algorithm variant
with confidence were statistically similar to the best known
heuristic at the time the paper was written, and in some
cases, the variant with confidence was significantly better.

5. VARIABLE NEIGHBORHOOD SEARCH
This section presents another algorithm that combines

several techniques, this time using variable neighborhood
search. Although this algorithm was originally presented
by Hu and Raidl [2], most of what is presented below is
from Pourhassan and Neumann [6]. Pourhassan and Neu-
mann present some instances that illustrate the strengths
and weaknesses of each individual technique and the com-
bined algorithm.

5.1 Cluster-Based Local Search
The cluster-based approach starts with a permutation of

the node subsets (or clusters), then finds the optimal set
of nodes within the clusters for this permutation. First,
a permutation of clusters π = (Vk1 , Vk2 , ..., Vkm) is chosen.
The 2-opt neighborhood of π is defined as

N(π) =
{
π′|1 ≤ i < j ≤ m,

π′ = (Vk1 , ..., Vki−1 , Vkj , Vkj−1 , ..., Vki , Vkj+1 , ..., Vkm)
}

where m is the number of clusters. In other words, part of
π is reversed (specifically, the part between Vki and Vkj).
Note that this does not include all possible permutations of
the node subsets.

Cluster-based local search (CBLS) searches through every
permutation from the 2-opt neighborhood of π and finds
optimal nodes for the permutation. For each permutation,
if the cost of the cycle is less than the cost of the current
lowest cost cycle, that cycle is stored as the new lowest cost
cycle and π is set to the new permutation. This finds the
minimum cost cycle from the permutations that are tried.

5.2 Node-Based Local Search
The node-based approach starts with a set P of one node

from each cluster, then finds the minimum-cost cycle within
that set. Note that the second step is basically the standard
TSP, as described in Section 2.3. Because the TSP is NP-
hard, this step cannot be solved optimally in polynomial
time, although this doesn’t matter much if the number of
clusters is small. Alternatively, an approximate algorithm
for the TSP may be used here. Pourhassan and Neumann
[6] present two algorithms used in this step–one that finds
an optimal solution and one that approximates a solution.

The neighborhood of the set P of nodes can be described
formally as

N ′(P) =
{
P ′|P ′ = {p1, ..., pi−1, p

′
i, pi+1, ..., pm},

p′i ∈ Vi\{pi}, 1 ≤ i ≤ m
}

Algorithm 3 Node Exchange Neighbourhood Local
Search* (NEN-LS*)

1: Choose P = {p1, p2, · · · , pm}, pi 2 Vi.
2: Find a minimum-cost permutation ⇡ for G[P] and let

S = (P, ⇡) be the resulting solution.
3: for P 0 2 N 0(P) do
4: Find a minimum-cost permutation ⇡0 for G[P 0] and

let S0 = (P 0, ⇡0) be the resulting solution.
5: if c(S0) < c(S) then
6: S = S0

7: GO TO 3
8: end if
9: end for

Algorithm 4 Variable Neighborhood Search (VNS)

1: Choose an initial solution S = (P, ⇡).
2: l = 1
3: while l  2 do
4: for S0 2 Nl(S) do
5: if c(S0) < c(S) then
6: S = S0

7: GO TO 3
8: end if
9: end for

10: l = l + 1
11: end while

LS* and show where it gets stuck in local optima even if the
travelling salesperson problem on the lower level is solved to
optimality.

NEN-LS and NEN-LS* (see Algorithms 2 and 3) start
with a spanning node set P and search for a good or optimal
permutation with respect to P . Then each solution P 0 2
N 0(P) together with its permutation ⇡0 is considered and
S0 = (P 0, ⇡0) replaces the current solution S = (P, ⇡) if it
is of smaller cost. Both algorithms terminate if there is no
improvement possible in the neighbourhood N 0(P) of the
current solution P .

2.3 Variable Neighbourhood Search
Now we describe the combination of two approaches into

variable neighbourhood search. We use a general variable
neighbourhood scheme which explores di↵erent neighbour-
hood structures. The algorithm uses the two neighbourhood
structures of CBLS and NEN-LS.

Let S = (P, ⇡) be a solution to the GTSP. We define the
two neighbourhoods N1 and N2 based on the 2-opt neigh-
bourhood N and the node exchange neighbourhood N 0 as

• N1(S) = {S0 = (P 0, ⇡0) | ⇡0 2 N(⇡), P 0 = optimal set
of nodes with respect to ⇡0}

• N2(S) = {S0 = (P 0, ⇡0) | P 0 2 N 0(P), ⇡0 = order of
clusters obtained by 2-opt from ⇡ on G[P 0]}

Combining the two local searches of Cluster-Based ap-
proach and Node-Based approach is done by alternating
between N1 and N2. N1 is the first neighbourhood to be
searched and N2 is used when a local optimum has been
found with respect to N1. The resulting variable neighbour-
hood search (VNS) algorithm is given in Algorithm 4.

3. BENEFITS OF NEN-LS
In this section, we present an instance of the problem that

can not be solved by CBLS. In contrast to this, NEN-LS
finds an optimal solution in polynomial time.

Figure 1: An instance of the problem, easy for
Node-Based approach and hard for Cluster-Based
approach

We consider the undirected graph, G1 = (V, E) which is
illustrated in Figure 1. The graph has n nodes and 6 clusters
Vi, 1  i  6. Cluster V1 contains n/12 white and n/12 grey
nodes. We denote by V1W the subset of white nodes and
by V1G the subset of grey nodes of cluster V1. Each other
cluster Vj , 2  j  6, consists of n/6 white nodes. The node
set V = [6

i=1Vi of G1 is given by the nodes of the di↵erent
clusters.

The edge set E consists of 4 types of edges which we define
in the following.

• Type A: Edges of this kind have a cost of 1. All edges
between clusters 2 and 3, and between clusters 4 and
5 and also between clusters 6 and 1, are of this kind.

A = {{vi, vj} | (vi 2 V1W [V1G ^ vj 2 V6)

_(vi 2 V2 ^ vj 2 V3) _ (vi 2 V4 ^ vj 2 V5)}

• Type B: Edges of this kind have a cost of 3. All edges
connecting the nodes of cluster 1 to cluster 2 are of this
type. So are the edges that connect nodes of cluster 3
to 4 and cluster 5 to 6.

B = {{vi, vj} | (vi 2 V1W [V1G ^ vj 2 V2)

_(vi 2 V3 ^ vj 2 V4) _ (vi 2 V5 ^ vj 2 V6)}

• Type C: Edges of this kind have a cost of 4. All edges
between nodes of cluster 2 and 5 and also between
clusters 3 and 6 are of this type. All edges that connect
white nodes of the first cluster to nodes of the forth
cluster are also of this type.

C = {{vi, vj} | (vi 2 V1W ^ vj 2 V4)

_(vi 2 V2 ^ vj 2 V5) _ (vi 2 V3 ^ vj 2 V6)}

467

Figure 5: The first instance (taken from [6])

In other words, the neighborhood of P is given by all
possible sets P ′ where one node pi is removed from P and a
different node in the same subset as pi is added.

The algorithm first finds the solution for P , then searches
the neighborhood of P ′. If the solution found for P ′ is bet-
ter than the current best solution, the new solution is set
as the current best and P ′ is set as P . The algorithm ter-
minates when there are no better solutions found for the
neighborhood of P .

5.3 Variable Neighborhood Search
The Variable Neighborhood Search algorithm combines

cluster-based local search and node-based local search into
one algorithm. The combined algorithm starts with a pos-
sible solution (P, π), where P is a set of nodes and π is a
permutation of clusters, then uses two neighborhood types
based on the two algorithms, which can be defined as

• N1(P) = {(P ′, π′)|π′ ∈ N(π), P ′ = optimal set of nodes
with respect to π′},

• N2(π) = {(p′, π′)|P ′ ∈ N ′(P), π′ = order of clusters
obtained by 2-opt from π on G[P ′]}

First, N1 is used along with the CBLS algorithm to find
a possible solution. When this is found, N2 is used with
NBLS, using P and π as found by N1.

5.4 Example Instances
Approximate algorithms usually have some cases that are

easier for them than others. This section presents some of
these cases.

The first instance is one that is difficult for the cluster-
based local search technique, but easy for the node-based
local search technique. The graph for this instance is shown
in Figure 5. The optimal solution would visit the nodes
using the edges on the sides of the graph, and not use the
edges with cost 4. However, Pourhassan and Neumann [6]
prove that if the starting permutation is π = (1, 4, 5, 2, 3, 6),
then the cluster-based local search algorithm will never find
one of these solutions, but node-based local search does.

The second instance is difficult for node-based local search,
but easy for cluster-based local search. This instance is
shown in Figure 6. The instance includes one cluster with
a black node that is closer to the other clusters and a white
node that is farther away. The optimal solution uses all black

each lower level optimization is bounded by O(m2) as either
permutations are locally optimal with respect to the span-
ning nodes or there are at most two improvements of the
permutation in the case that a grey node of cluster V1 is
selected.

4. BENEFITS OF CBLS
We now consider a situation where NEN-LS* finds it hard

to obtain an optimal solution and CBLS with the same start-
ing solution obtains an optimum in polynomial time. The
instance G2 = (V, E) is illustrated in Figure 2. There are
m clusters where m > 2, and all the clusters contain only
2 nodes; one white and one black. We refer to the white
and black nodes of cluster i, 1  i  m, by viW and viB ,
respectively. We call cluster V1 the costly cluster as edges
connecting this cluster are more costly than edges connect-
ing the other clusters. The edge set E of G2 is partitioned
into 4 di↵erent types.

• Type A: Edges of this type have a weight of 1. All
connections between white nodes of di↵erent clusters
except cluster V1 are of this type.

A = {{viW , vjW } | 2  i, j  m}

• Type B: Edges of this type have a weight of 2. All
connections between black nodes of di↵erent clusters
are of this type.

B = {{viB , vjB} | 1  i, j  m}

• Type C: Edges of this type have a weight of m. All
edges between white node of the costly cluster and
white nodes of other clusters are of this type.

C = {{v1W , viW } | 2  i  m}

• Type D: Edges of this type have a weight of m2. All
other edges in this complete graph, which consist of
all edges between a white and a black node, are of this
type.

D = E \ {A [B [C}
= {{viW , vjB} | 1  i, j  m}

We first claim that the optimal solution consists of only
black nodes. Then we bring our main theorems on the run-
time behaviour of solving this instance with the two men-
tioned approaches.

Property 4. For the graph G2 any solution containing
all black nodes is optimal.

Proof. A solution that contains only black nodes has m
edges of type B and therefore total cost of 2m.

Choosing a combination of black and white nodes implies
a connection of type D and therefore a solution of cost at
least m2. Choosing all white nodes implies 2 edges of cost
m connected to cluster V1 and m�2 edges of cost 1. Hence,
the total cost of such a solution is 2m+(m�2) which implies
that a solution selecting all black nodes is optimal.

We now show that CBLS always finds an optimal solution
due to selecting an optimal spanning nodes in time O(n3).

Figure 2: Graph G2

Theorem 5. Starting with an arbitrary permutation ⇡,
CBLS finds an optimal solution for G2 by choosing the op-
timal spanning node set P for ⇡ in time O(n3).

Proof. As mentioned in Property 4, visiting black nodes
of the graph in any order is a globally optimal solution. For
each permutation ⇡ the optimal set of nodes is given by all
black nodes and found when constructing the first spanning
node set. Such a set P is constructed in time O(n3) by the
shortest path algorithm given in [11].

In contrast to the positive result for CBLS, NEN-LS* is
extremely likely to get stuck in a local optimum if the initial
spanning node set is chosen uniformly at random. Note,
that NEN-LS* even uses an exact solver for the lower layer.

Theorem 6. Starting with a spanning node set P chosen
uniformly at random, NEN-LS* gets stuck in a local opti-
mum of G2 with probability 1 � e�⌦(n).

Proof. Selecting P = {p1, · · · , pm} uniformly at ran-
dom, the expected number of white nodes is n

2
. Using Cher-

no↵ bounds, the number of white nodes is at least n/4 with

probability 1 � e�⌦(n). The same applies to the number of
black nodes.

Since connecting white nodes to black nodes is costly, the
lower layer selects a permutation which forms a chain of
white nodes and a chain of black nodes connected to form a
cycle by only two edges of type D.

Let p1 be the selected node of the costly cluster V1. If
p1 is initially white, the lower layer places it at one border
between the black chain and the white chain to avoid using
one of edges of type C. This situation is illustrated in Fig-
ure 3. If p1 is initially black, then the initial solution would
look like Figure 4.

Claim 7. Starting with a random initial solution, for all
the clusters Vi, 2  i  m; a change from black to white is
improving while no change from white to black is improving.

Proof. As mentioned earlier, a random initial solution
has a chain of black nodes and a chain of white nodes.

469

Figure 6: The second instance (taken from [6])

Figure 7: Graph G3 showing one node of each type
for each cluster and omitting edges of cost 100.

• Type C: Edges of this type have a cost of 4.

C = {{vi, vj} | (vi 2 V1W ^ vj 2 V4W)

_ (vi 2 V2W ^ vj 2 V5W)

_ (vi 2 V3W ^ vj 2 V6W)}

• Type D: Edges of this type have a cost of 1.5.

D = {{vi, vj} | (vi 2 VkB ^ vj 2 V(k+1)B , 1  k  5)

_ (vi 2 V6B ^ vj 2 V1B)}

• Type F : Edges of this kind have a large cost of 100.
All edges other than those of type A or B or C or D
in this complete graph are of Type F . Note that the
edges between grey nodes of the first cluster and the
white nodes of the forth cluster are also of this type.

F = E \ {A [B [C [D}

We now show that an optimal solution visits a black node
from each cluster in consecutive or reverse-consecutive order.

Property 9. The optimal solution for the graph G3 is
visiting all black nodes with the consecutive or reverse-conse-
cutive order.

Proof. There are three kinds of nodes in this graph;
white, grey and black. Any solution that contains black
and one other kind of node has at least two edges of type
F and weight 100 which makes the total cost of that solu-
tion more than 200. A solution that visits all black nodes in
consecutive or reverse-consecutive order has 6 edges of type
D and a total cost of 9. On the other hand, if we consider
only white and grey nodes, our graph is the same as the
instance of Section 3 with the optimal solution of cost 12.
Therefore, visiting all black nodes with the cost of 9 is the
optimal solution.

We now show that the algorithms CBLS and NEN-LS may
get stuck in a local optimum.

Theorem 10. Starting with a spanning node set P con-
sisting of only white nodes and the permutation ⇡ = (1, 4, 5,
2, 3, 6), CBLS and NEN-LS get stuck in a local optimum of
G3.

Proof. We first show that the mentioned initial solu-
tion is a local optimum for CBLS. The cost of this solu-
tion is 15 which is less than any of the edges between black
nodes and white or grey nodes which are of type F . There-
fore, any solution consisting of two kinds of nodes, black
and another kind, cannot be accepted after this solution.
Considering only white and grey nodes, the permutation
⇡0 = (1, 2, 3, 4, 5, 6) is better than the current one, but as
we saw in Theorem 2 of Section 3 this order can not be
achieved with Algorithm 1. A solution consisting of all the
black nodes is less costly only if they are visited in the op-
timal order of ⇡0 = (1, 2, 3, 4, 5, 6) which is exactly the same
permutation that is better for white nodes as well. As we
discussed, this permutation is not achievable by searching
the 2-opt neighbourhood of the current solution and the
Cluster-Based approach can not find it.

Now we investigate the behaviour of NEN-LS which per-
forms a local search based on the Node-Based approach for
this instance. We show that this algorithm finds another
locally optimal solution. Starting with the initial solution
that is specified in the theorem, all black nodes can not be
selected in one step and trying any one of the black nodes
is rejected, because using two edges of type F are inevitable
which makes the solution worse than the initial solution.
The only spanning node set left in the NEN has the grey
node of the first cluster. For this selection of nodes, the 2-
opt TSP solver of the lower layer finds the optimal order of
clusters similar to what we described in Theorem 3 of Sec-
tion 3 which form a solution of cost 12. From this point any
Node-Exchange-Neighbourhood search fails to find a better
solution.

Using the combination of the two hierarchical approaches
by variable-neighbourhood search allows us to escape these
local optima. As a result VNS obtains an optimal solution
when starting with the same solution as investigated in The-
orem 10.

Theorem 11. Starting with a spanning node set P con-
sisting only of white nodes and the ⇡ = (1, 4, 5, 2, 3, 6), VNS
obtains an optimal solution in time O(n3).

Proof. This approach is supposed to start with Cluster-
Based algorithm and alternate between the two algorithms
whenever CBLS is stuck in a locally optimal solution. As we
saw, from the initial solution, Algorithm 1 can not find any
better solutions, because the initial solution is a local opti-
mum for that algorithm. Finding this out requires searching
all the 2-opt neighbourhood which can be done in constant
time, because the number of clusters is fixed. Then NEN-
LS manages to find another solution with the permutation
of ⇡0 = (1, 2, 3, 4, 5, 6). This can also be done in polynomial
time as we described in Theorem 3 of Section 3. Then CBLS
uses this as a starting solution. As ⇡0 = (1, 2, 3, 4, 5, 6) is an
optimal permutation the optimal set of nodes P consisting of
all black nodes is found in time O(n3) on the lower layer.

471

Figure 7: The third instance (taken from [6])

nodes. Pourhassan and Neumann [6] prove that cluster-
based local search is able to find an optimal solution, whereas
node-based local search gets stuck in local optima.

The third instance is shown in Figure 7. This instance
combines the first two, with the basic structure of the first
one, but with varying lengths of edges between nodes of the
same clusters. This makes the instance hard for both cluster-
based and node-based local search. Variable-neighborhood
search, however, doesn’t get stuck and can find a good ap-
proximation. This illustrates the advantages of variable-
neighborhood search.

6. CONCLUSIONS
I have summarized three heuristics for the GTSP. Al-

though the GTSP is NP-hard and exact algorithms are of-
ten time-consuming, approximate algorithms are effective
for many practical purposes. Additionally, as Rice and Tso-
tras [8] show, there are specific cases where in practice, exact
algorithms are feasible.

There are many different applications of the GTSP, and
sometimes, the application changes which algorithm would
work best. Rice and Tsotras [8] apply their algorithm for
road trips, which assumes that elements of each node sub-
set are spread out. Pop and Iordache [5] mention that they
assume the nodes in each subset are near each other. As
Pourhassan and Neumann [6] point out, factors like the dis-
tance between node subsets and nodes in subsets make a
significant difference in how well an algorithm will work. A
good heuristic should produce good approximations in a va-
riety of cases, but when choosing a heuristic, it’s important
to consider the application.

7. ACKNOWLEDGEMENTS
I would like to thank Elena Machkasova, Nic McPhee, and

Max Magnuson for their feedback on this paper. I would also
like to thank Michael Rice and Vassilis Tsotras for answering
questions about their work and providing a copy of one of
their earlier papers.

8. REFERENCES
[1] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.

Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In Experimental Algorithms,
pages 319–333. Springer, 2008.

[2] B. Hu and G. R. Raidl. Effective neighborhood
structures for the generalized traveling salesman
problem. In Proceedings of the 8th European Conference
on Evolutionary Computation in Combinatorial
Optimization, EvoCOP’08, pages 36–47, Berlin,
Heidelberg, 2008. Springer-Verlag.

[3] S. Iordache. Consultant-guided search: A new
metaheuristic for combinatorial optimization problems.
In Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’10,
pages 225–232, New York, NY, USA, 2010. ACM.

[4] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity.
Prentice-Hall, INC., Englewood Cliffs, NJ, USA, 1982.

[5] P. C. Pop and S. Iordache. A hybrid heuristic approach
for solving the generalized traveling salesman problem.
In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’11,
pages 481–488, New York, NY, USA, 2011. ACM.

[6] M. Pourhassan and F. Neumann. On the impact of
local search operators and variable neighbourhood
search for the generalized travelling salesperson
problem. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO
’15, pages 465–472, New York, NY, USA, 2015. ACM.

[7] G. Reinelt. TSPLIB - a traveling salesman problem
library. ORSA Journal on Computing, 3(4):376–384,
1991.

[8] M. N. Rice and V. J. Tsotras. Parameterized
algorithms for generalized traveling salesman problems
in road networks. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL’13,
pages 114–123, New York, NY, USA, 2013. ACM.

[9] M. Sipser. Introduction to the Theory of Computation.
Cengage Learning, Boston, MA, USA, 2013.

