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Introduction

Many real-world problems involve optimization.
Some problems are relatively easy for computers to solve
optimally.

Shortest path is an example.
Other problems are much harder to solve with large input.

The traveling salesman problem and many of its variations are hard
to solve.

Heuristics, or approximate algorithms, are often used for problems
that are hard to solve.
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Background

Graph Theory

A graph is a pair of sets G = (V ,E).
V is a set of vertices (sometimes called nodes).
E is a set of edges connecting the vertices.
Each edge has a cost value.

21

3

5

4

6

g b

h d

a

i

e

f

c

Grove (U of Minn, Morris) Heuristics for the GTSP December 5, 2015 5 / 26



Background

Graph Theory

A path is a sequence of connected vertices and edges with no
repeated vertices
A cycle is a path except that the first vertex is the same as the last
vertex
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Background

Computational Complexity

A decision problem returns a ‘yes’ or ‘no’ answer.
Polynomial time algorithms increase in steps by a factor of nk as
input size n increases.
Decision problems that can be verified by a polynomial time
algorithm are in the class NP.
Verifying is not solving!

"Given a bag of 1000 keys and a door, is there a key in the bag that
unlocks the door?"
"Given one key, does it unlock the door?"

Problems that are NP-hard are at least as hard as every problem
in NP.
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Background

The Generalized Traveling Salesman Problem

The traveling salesman problem (TSP) is an NP-hard problem.
The goal is to find the minimum-cost cycle with all vertices.

The generalized traveling salesman problem (GTSP) is a
generalization of the TSP.

Vertices are divided into disjoint subsets.
The goal is to find the shortest cycle that contains one vertex from
each subset.
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Local-Global Search and Consultant Guided Search

Local-Global Search

Pop and Iordache
A sequence (Vk1 ,Vk2 , ...,Vkn) of vertex subsets is chosen.
Subset Vk1 is duplicated and added to the end of the sequence.
Shortest path that contains vertices from all subsets is found.
Local-global search does not lead to an optimal solution.

Figure: Adapted from Pop and Iordache
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Local-Global Search and Consultant Guided Search

Local-Global Search

(V1,V2,V3,V4,V1)
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Local-Global Search and Consultant Guided Search

Consultant Guided Search

Swarm Intelligence
Simulated individuals each take on roles of “consultant” and
“client.”
Each virtual client chooses a consultant based on consultants’
“reputation.”
The consultant gives the client suggestions.
The client may or may not take the consultant’s suggestion.
The consultant’s reputation changes based on the performance of
the clients.
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Local-Global Search and Consultant Guided Search

The Hybrid Algorithm

The consultant constructs a cycle of vertex subsets.
The client builds a sequence of vertex subsets.
The consultant suggests the next vertex subset.
After a sequence is found, local-global search is used to find the
best cycle given the sequence.
Variant: Each edge has a confidence value.

Consultant Client
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Local-Global Search and Consultant Guided Search

Results

Regular algorithm and variant were compared to the best known
algorithm at the time.
Variant was statistically similar to the best known algorithm.
Variant was much better in some cases.
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Variable Neighborhood Search

Cluster-Based Local Search

CBLS starts with a sequence, finds best vertices within each
vertex subset (or cluster ).
The sequence is changed after every iteration.
The algorithm returns the best cycle after certain permutations are
tried.

 (V1, V2, V3, VV44, V, V55, V, V66, V, V77,, V8)

 (V1, V2, V3, VV77, V, V66, V, V55, V, V44,, V8)
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Variable Neighborhood Search

Node-Based Local Search

Starts with a vertex chosen in each subset, then finds the best
sequence of vertices.
Exact or approximate algorithms can be used to find the sequence
of vertices.
The vertices chosen are changed after every iteration.
The algorithm returns the best cycle and vertices after certain
vertices are tried.
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Variable Neighborhood Search

Variable Neighborhood Search

VNS combines the two search algorithms.
Cluster-based local search is used first.
Once CBLS has found a local optimum, node-based local search
is used.
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Variable Neighborhood Search

Advantages and Disadvantages

Cluster-based local search and node-based local search could
each be used alone.
Which method is best in what situations?
Why use variable-neighborhood search?
Pourhassan and Neumann, University of Adelaide, Australia
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Variable Neighborhood Search

Advantages of Node-Based Local Search

Algorithm 3 Node Exchange Neighbourhood Local
Search* (NEN-LS*)

1: Choose P = {p1, p2, · · · , pm}, pi 2 Vi.
2: Find a minimum-cost permutation ⇡ for G[P ] and let

S = (P,⇡) be the resulting solution.
3: for P 0 2 N 0(P ) do
4: Find a minimum-cost permutation ⇡0 for G[P 0] and

let S0 = (P 0,⇡0) be the resulting solution.
5: if c(S0) < c(S) then
6: S = S0

7: GO TO 3
8: end if
9: end for

Algorithm 4 Variable Neighborhood Search (VNS)

1: Choose an initial solution S = (P,⇡).
2: l = 1
3: while l  2 do
4: for S0 2 Nl(S) do
5: if c(S0) < c(S) then
6: S = S0

7: GO TO 3
8: end if
9: end for

10: l = l + 1
11: end while

LS* and show where it gets stuck in local optima even if the
travelling salesperson problem on the lower level is solved to
optimality.

NEN-LS and NEN-LS* (see Algorithms 2 and 3) start
with a spanning node set P and search for a good or optimal
permutation with respect to P . Then each solution P 0 2
N 0(P ) together with its permutation ⇡0 is considered and
S0 = (P 0,⇡0) replaces the current solution S = (P,⇡) if it
is of smaller cost. Both algorithms terminate if there is no
improvement possible in the neighbourhood N 0(P ) of the
current solution P .

2.3 Variable Neighbourhood Search
Now we describe the combination of two approaches into

variable neighbourhood search. We use a general variable
neighbourhood scheme which explores di↵erent neighbour-
hood structures. The algorithm uses the two neighbourhood
structures of CBLS and NEN-LS.

Let S = (P,⇡) be a solution to the GTSP. We define the
two neighbourhoods N1 and N2 based on the 2-opt neigh-
bourhood N and the node exchange neighbourhood N 0 as

• N1(S) = {S0 = (P 0,⇡0) | ⇡0 2 N(⇡), P 0 = optimal set
of nodes with respect to ⇡0}

• N2(S) = {S0 = (P 0,⇡0) | P 0 2 N 0(P ),⇡0 = order of
clusters obtained by 2-opt from ⇡ on G[P 0]}

Combining the two local searches of Cluster-Based ap-
proach and Node-Based approach is done by alternating
between N1 and N2. N1 is the first neighbourhood to be
searched and N2 is used when a local optimum has been
found with respect to N1. The resulting variable neighbour-
hood search (VNS) algorithm is given in Algorithm 4.

3. BENEFITS OF NEN-LS
In this section, we present an instance of the problem that

can not be solved by CBLS. In contrast to this, NEN-LS
finds an optimal solution in polynomial time.

Figure 1: An instance of the problem, easy for
Node-Based approach and hard for Cluster-Based
approach

We consider the undirected graph, G1 = (V, E) which is
illustrated in Figure 1. The graph has n nodes and 6 clusters
Vi, 1  i  6. Cluster V1 contains n/12 white and n/12 grey
nodes. We denote by V1W the subset of white nodes and
by V1G the subset of grey nodes of cluster V1. Each other
cluster Vj , 2  j  6, consists of n/6 white nodes. The node
set V = [6

i=1Vi of G1 is given by the nodes of the di↵erent
clusters.

The edge set E consists of 4 types of edges which we define
in the following.

• Type A: Edges of this kind have a cost of 1. All edges
between clusters 2 and 3, and between clusters 4 and
5 and also between clusters 6 and 1, are of this kind.

A = {{vi, vj} | (vi 2 V1W [ V1G ^ vj 2 V6)

_(vi 2 V2 ^ vj 2 V3) _ (vi 2 V4 ^ vj 2 V5)}

• Type B: Edges of this kind have a cost of 3. All edges
connecting the nodes of cluster 1 to cluster 2 are of this
type. So are the edges that connect nodes of cluster 3
to 4 and cluster 5 to 6.

B = {{vi, vj} | (vi 2 V1W [ V1G ^ vj 2 V2)

_(vi 2 V3 ^ vj 2 V4) _ (vi 2 V5 ^ vj 2 V6)}

• Type C: Edges of this kind have a cost of 4. All edges
between nodes of cluster 2 and 5 and also between
clusters 3 and 6 are of this type. All edges that connect
white nodes of the first cluster to nodes of the forth
cluster are also of this type.

C = {{vi, vj} | (vi 2 V1W ^ vj 2 V4)

_(vi 2 V2 ^ vj 2 V5) _ (vi 2 V3 ^ vj 2 V6)}

467

Figure: An instance that is hard for Cluster-Based Local Search (Taken from
Pourhassan and Neumann)
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Variable Neighborhood Search

Advantages of Node-Based Local Search

Figure: An instance that is hard for Cluster-Based Local Search (Taken from
Pourhassan and Neumann)
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Variable Neighborhood Search

Advantages of Node-Based Local Search

Figure: An instance that is hard for Cluster-Based Local Search (Taken from
Pourhassan and Neumann)
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Variable Neighborhood Search

Advantages of Cluster-Based Local Search

each lower level optimization is bounded by O(m2) as either
permutations are locally optimal with respect to the span-
ning nodes or there are at most two improvements of the
permutation in the case that a grey node of cluster V1 is
selected.

4. BENEFITS OF CBLS
We now consider a situation where NEN-LS* finds it hard

to obtain an optimal solution and CBLS with the same start-
ing solution obtains an optimum in polynomial time. The
instance G2 = (V, E) is illustrated in Figure 2. There are
m clusters where m > 2, and all the clusters contain only
2 nodes; one white and one black. We refer to the white
and black nodes of cluster i, 1  i  m, by viW and viB ,
respectively. We call cluster V1 the costly cluster as edges
connecting this cluster are more costly than edges connect-
ing the other clusters. The edge set E of G2 is partitioned
into 4 di↵erent types.

• Type A: Edges of this type have a weight of 1. All
connections between white nodes of di↵erent clusters
except cluster V1 are of this type.

A = {{viW , vjW } | 2  i, j  m}

• Type B: Edges of this type have a weight of 2. All
connections between black nodes of di↵erent clusters
are of this type.

B = {{viB , vjB} | 1  i, j  m}

• Type C: Edges of this type have a weight of m. All
edges between white node of the costly cluster and
white nodes of other clusters are of this type.

C = {{v1W , viW } | 2  i  m}

• Type D: Edges of this type have a weight of m2. All
other edges in this complete graph, which consist of
all edges between a white and a black node, are of this
type.

D = E \ {A [ B [ C}
= {{viW , vjB} | 1  i, j  m}

We first claim that the optimal solution consists of only
black nodes. Then we bring our main theorems on the run-
time behaviour of solving this instance with the two men-
tioned approaches.

Property 4. For the graph G2 any solution containing
all black nodes is optimal.

Proof. A solution that contains only black nodes has m
edges of type B and therefore total cost of 2m.

Choosing a combination of black and white nodes implies
a connection of type D and therefore a solution of cost at
least m2. Choosing all white nodes implies 2 edges of cost
m connected to cluster V1 and m�2 edges of cost 1. Hence,
the total cost of such a solution is 2m+(m�2) which implies
that a solution selecting all black nodes is optimal.

We now show that CBLS always finds an optimal solution
due to selecting an optimal spanning nodes in time O(n3).

Figure 2: Graph G2

Theorem 5. Starting with an arbitrary permutation ⇡,
CBLS finds an optimal solution for G2 by choosing the op-
timal spanning node set P for ⇡ in time O(n3).

Proof. As mentioned in Property 4, visiting black nodes
of the graph in any order is a globally optimal solution. For
each permutation ⇡ the optimal set of nodes is given by all
black nodes and found when constructing the first spanning
node set. Such a set P is constructed in time O(n3) by the
shortest path algorithm given in [11].

In contrast to the positive result for CBLS, NEN-LS* is
extremely likely to get stuck in a local optimum if the initial
spanning node set is chosen uniformly at random. Note,
that NEN-LS* even uses an exact solver for the lower layer.

Theorem 6. Starting with a spanning node set P chosen
uniformly at random, NEN-LS* gets stuck in a local opti-
mum of G2 with probability 1 � e�⌦(n).

Proof. Selecting P = {p1, · · · , pm} uniformly at ran-
dom, the expected number of white nodes is n

2
. Using Cher-

no↵ bounds, the number of white nodes is at least n/4 with

probability 1 � e�⌦(n). The same applies to the number of
black nodes.

Since connecting white nodes to black nodes is costly, the
lower layer selects a permutation which forms a chain of
white nodes and a chain of black nodes connected to form a
cycle by only two edges of type D.

Let p1 be the selected node of the costly cluster V1. If
p1 is initially white, the lower layer places it at one border
between the black chain and the white chain to avoid using
one of edges of type C. This situation is illustrated in Fig-
ure 3. If p1 is initially black, then the initial solution would
look like Figure 4.

Claim 7. Starting with a random initial solution, for all
the clusters Vi, 2  i  m; a change from black to white is
improving while no change from white to black is improving.

Proof. As mentioned earlier, a random initial solution
has a chain of black nodes and a chain of white nodes.

469

Figure: An instance that is hard for Node-Based Local Search, where m is the
total number of subsets (Taken from Pourhassan and Neumann)
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Variable Neighborhood Search

Advantages of Variable Neighborhood Search

Figure 7: Graph G3 showing one node of each type
for each cluster and omitting edges of cost 100.

• Type C: Edges of this type have a cost of 4.

C = {{vi, vj} | (vi 2 V1W ^ vj 2 V4W )

_ (vi 2 V2W ^ vj 2 V5W )

_ (vi 2 V3W ^ vj 2 V6W )}

• Type D: Edges of this type have a cost of 1.5.

D = {{vi, vj} | (vi 2 VkB ^ vj 2 V(k+1)B , 1  k  5)

_ (vi 2 V6B ^ vj 2 V1B)}

• Type F : Edges of this kind have a large cost of 100.
All edges other than those of type A or B or C or D
in this complete graph are of Type F . Note that the
edges between grey nodes of the first cluster and the
white nodes of the forth cluster are also of this type.

F = E \ {A [ B [ C [ D}

We now show that an optimal solution visits a black node
from each cluster in consecutive or reverse-consecutive order.

Property 9. The optimal solution for the graph G3 is
visiting all black nodes with the consecutive or reverse-conse-
cutive order.

Proof. There are three kinds of nodes in this graph;
white, grey and black. Any solution that contains black
and one other kind of node has at least two edges of type
F and weight 100 which makes the total cost of that solu-
tion more than 200. A solution that visits all black nodes in
consecutive or reverse-consecutive order has 6 edges of type
D and a total cost of 9. On the other hand, if we consider
only white and grey nodes, our graph is the same as the
instance of Section 3 with the optimal solution of cost 12.
Therefore, visiting all black nodes with the cost of 9 is the
optimal solution.

We now show that the algorithms CBLS and NEN-LS may
get stuck in a local optimum.

Theorem 10. Starting with a spanning node set P con-
sisting of only white nodes and the permutation ⇡ = (1, 4, 5,
2, 3, 6), CBLS and NEN-LS get stuck in a local optimum of
G3.

Proof. We first show that the mentioned initial solu-
tion is a local optimum for CBLS. The cost of this solu-
tion is 15 which is less than any of the edges between black
nodes and white or grey nodes which are of type F . There-
fore, any solution consisting of two kinds of nodes, black
and another kind, cannot be accepted after this solution.
Considering only white and grey nodes, the permutation
⇡0 = (1, 2, 3, 4, 5, 6) is better than the current one, but as
we saw in Theorem 2 of Section 3 this order can not be
achieved with Algorithm 1. A solution consisting of all the
black nodes is less costly only if they are visited in the op-
timal order of ⇡0 = (1, 2, 3, 4, 5, 6) which is exactly the same
permutation that is better for white nodes as well. As we
discussed, this permutation is not achievable by searching
the 2-opt neighbourhood of the current solution and the
Cluster-Based approach can not find it.

Now we investigate the behaviour of NEN-LS which per-
forms a local search based on the Node-Based approach for
this instance. We show that this algorithm finds another
locally optimal solution. Starting with the initial solution
that is specified in the theorem, all black nodes can not be
selected in one step and trying any one of the black nodes
is rejected, because using two edges of type F are inevitable
which makes the solution worse than the initial solution.
The only spanning node set left in the NEN has the grey
node of the first cluster. For this selection of nodes, the 2-
opt TSP solver of the lower layer finds the optimal order of
clusters similar to what we described in Theorem 3 of Sec-
tion 3 which form a solution of cost 12. From this point any
Node-Exchange-Neighbourhood search fails to find a better
solution.

Using the combination of the two hierarchical approaches
by variable-neighbourhood search allows us to escape these
local optima. As a result VNS obtains an optimal solution
when starting with the same solution as investigated in The-
orem 10.

Theorem 11. Starting with a spanning node set P con-
sisting only of white nodes and the ⇡ = (1, 4, 5, 2, 3, 6), VNS
obtains an optimal solution in time O(n3).

Proof. This approach is supposed to start with Cluster-
Based algorithm and alternate between the two algorithms
whenever CBLS is stuck in a locally optimal solution. As we
saw, from the initial solution, Algorithm 1 can not find any
better solutions, because the initial solution is a local opti-
mum for that algorithm. Finding this out requires searching
all the 2-opt neighbourhood which can be done in constant
time, because the number of clusters is fixed. Then NEN-
LS manages to find another solution with the permutation
of ⇡0 = (1, 2, 3, 4, 5, 6). This can also be done in polynomial
time as we described in Theorem 3 of Section 3. Then CBLS
uses this as a starting solution. As ⇡0 = (1, 2, 3, 4, 5, 6) is an
optimal permutation the optimal set of nodes P consisting of
all black nodes is found in time O(n3) on the lower layer.

471

Figure: An instance that is hard for either but easy with VNS (taken from
Pourhassan and Neumann)
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Conclusions

Conclusions

The GTSP is computationally intensive.
Heuristics are effective for many practical purposes.
Different heuristics have different strengths.
Combining heuristics can increase effectiveness.
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