
Password Strength Meters: Implementations and
Effectiveness

Dalton J. Gusaas
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

gusaa004@morris.umn.edu

ABSTRACT
A password strength meter is a function that takes a user-
created password as input and outputs a measure of that
password’s strength. The general purpose of a password
strength meter is to eliminate weak passwords and provide
users with feedback and guidelines to help them strengthen
their password. This paper will cover three implementations
of password strength meters: rule-based meters, an adaptive
meter (APSM) [2], and an analyze-modify meter (AMP) [3].
Of these three meters, the AMP is the most effective as it
provides an accurate measure of a password’s strength, ad-
vice on how to further strengthen a password, and modifies
its training data every time a user enters a password in order
to maintain a uniform distribution of passwords.

Keywords
password strength meters, password checking, password poli-
cies, usability, information security, user authentication

1. INTRODUCTION
The usage of passwords is necessary for user authentica-

tion and security. Ideally, only randomly generated pass-
words would be used, as they are the hardest guess [7]. Un-
fortunately, a randomly generated password is also the least
memorable and usable for the majority of users. Since user-
created passwords tend to be fairly weak, password strength
meters are required to improve the quality of passwords.
Since the majority of users do not necessarily know what
a strong password is, or simply do not care, it is impor-
tant for the meter to provide helpful feedback. In order
to reduce user frustration and improve the usability of the
password, it is also important that the requirements are not
too stringent. A user who is frustrated with requirements
or does not understand them, will generally choose a weak
password that barely meets the requirements [5].

One of the more significant developments for password
strength meters was the release of the National Institute of

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

Technology and Standards (NIST) Electronic Authentica-
tion Guideline Special Publication 800-63-1; we will refer
to this document as SP-800-63-1 [1]. NIST is a govern-
ment organization that publishes standards and guidelines
for government and private usage. Naturally, SP-800-63-
1 contained guidelines and recommendations for the devel-
opment of authentication systems, including a recommen-
dation for measuring password strength based on Shannon
entropy [1]. This recommendation served as the basis for
many rule-based meters — meters with requirements relat-
ing to minimum length, number of uppercase letters, num-
ber of digits, and number of symbols [3]. Researchers, in-
cluding Weir et al., discovered that the NIST recommenda-
tion contained significant flaws in estimations of password
strength [7]. This gave rise to researchers working on other,
better methods of approximating password strength based
on probabilistic password cracking methods.

This paper is laid out in four sections. In Section 2 we de-
scribe background information required to understand the
three discussed password meters as well as a few general
terms to help understand password cracking and the mea-
surement of password strength. Section 3 focuses on the
description of the three password meters: the NIST SP-
800-63-1 document and the resultant rule-based meters, the
APSM created by Castelluccia et al., and the AMP created
by Houshmand and Aggarwal. In Section 4 the three meth-
ods are compared and discussed. In Section 5 we conclude.

2. BACKGROUND
Before moving on to the password strength meters, the

necessary background information needs to be introduced.
Shannon entropy is described first. Next, the password
cracking concepts: guessing entropy, brute-force attacks,
and dictionary-based attacks. Finally, the method-specific
concepts: n-gram models and PCFGs.

2.1 Shannon Entropy
Shannon entropy can be defined as a way “to determine

the randomness of a variable based upon knowledge con-
tained in the rest of the message” [7]. Since Shannon’s work
dealt with storing information, entropy is measured in bits.
The randomness is expressed with the following equation:
let x be a random variable and P (xi) be the probability
that x is equal to xi [3]. The entropy of x, H(x), is then:

H(x) = −
n∑
i=0

P (xi)log2P (xi) (1)

If a character that is present in the language of the message

but, is not present in the ”message” it is not included in the
summation as the log0 = 0o. For example, given the random
string of characters, mom: m has a frequency of 2

3
and o has

a frequency of 1
3
. With these frequencies the entropy of a

character from mom can be calculated with Equation 1: [4]

H(x) = −[(0.33 ∗ log20.33) + (0.67 ∗ log20.67)]

= −[(−0.53) + (−0.39)]

= 0.92

The probabilities of English characters not present in mom
are not included in this summation as their frequency is 0
and the log2(0) = 0. The entropy of a character chosen
at random from m and o for the string mom is about 0.92
bits. The total entropy of mom is then 3 bits, rounded up
from 2.76 bits. Essentially this entropy score measures how
random a given string is. Because it applies to strings, Shan-
non entropy has been applied in cryptography as a way to
measure the strength of a password, as the more random a
password is the harder it is to guess. There are some issues
with using Shannon entropy to measure password strength.
In the above example, we assumed that mom is a random
string of characters. In reality, it is an English word and not
a random string of characters. If we switch to this specifi-
cation, then the entropy becomes 0 bits as there is no other
English word that can expressed with these three charac-
ters. If a password strength meter assumes the first specifi-
cation and not the second it would greatly overestimate the
strength of mom as a password. In order for Shannon en-
tropy to be applicable for passwords, or even English strings,
the probability of each character needs to be known. With-
out knowing the probability and distribution of passwords,
the Shannon entropy of a password will not be an accurate
measure of the password’s strength, as shown in Section 3.1

2.2 Guessing Entropy and Minimum Entropy
Guessing entropy is the approximate amount of work re-

quired by an attacker to guess a given password. This
measure is often equated with the strength of a password.
In practice, the guessing entropy is equal to the number
of guesses made on a password before the correct one is
guessed. The most efficient strategy for an attacker is then
to guess weaker, more common passwords first and stronger,
less common passwords later [2].

Minimum entropy is the measurement of the amount of
work needed to guess the easiest password in a system. If an
attacker is attempting to gain access to a system and not a
given user, the minimum entropy is the approximate amount
of guesses that need to be made before gaining access to the
system as it will be through a high probability password.

2.3 Attack Methods
Though this paper focuses on meters, it is important to

briefly discuss a couple of password cracking techniques for
comparison of meters and context for why meters developed.
A hash is an object created by sending a password through
a hash function, a function that attempts to obfuscate what
the actual password is. Most password cracking methods
work by comparing the actual hash of the password with the
hash of a guess until a match is found. Attackers can obtain
hashes in multiple ways, such as watching network traffic or
breaking into the password hash database. An attacker may
also simply enter password guesses into a log-in screen until
they are locked out or guess the password.

The first is brute-force attacks. These attacks work by
trying every possible combination characters starting with
a single character and increasing until it has cracked the
password. Though inefficient for long and varied passwords,
this method can quickly crack shorter passwords.

The second is dictionary attacks. These attacks use a
dictionary of common passwords, or an actual dictionary, to
compare the hash of password to entries from its dictionary.
Dictionary attacks rely on the assumption that most users
choose actual words or phrases as passwords or predictable
variations of these words or phrases.

Castelluccia et al. as well as Houshmand and Aggarwal
both cited probabilistic cracking methods as the basis for
the development of their respective meters. Probabilistic
cracking methods combine the best of the above methods.
Training on leaked passwords provides a dictionary to base
more intelligent brute-force attack that follows the strategy
outlined in the previous subsection. The concepts that the
probabilistic password strength meters discussed in this pa-
per rely on are n-grams and PCFGs.

2.4 n-gram Models
An n-gram is a sequence of n consecutive items taken from

a larger sequence [8]. For example, the sequence of English
characters password can be broken down into a number of
English character n-gram sequences. The 1-gram sequence
of password would be: p, a, s, s, w, o, r, d and the 2-gram
sequence would be pa, as, ss, sw, wo, or, rd.

An n-gram model is a sequence of n-grams that can be
used to determine the probability of the next occurring n-
gram based on the probability distribution, i.e. the fre-
quency of each n-gram, gathered from training the model
on sequences in a language [8]. For a given sequence of
n-grams xi−(n−1), ..., xi−1, the n-gram xi can be predicted.
This can also be written as:

P (xi|xi−(n−1), ..., xi−1) (2)

Lets say we have a language made up of the 1-grams a, e, l,
t, and r. Furthermore lets say that these 1-grams can com-
bined into 3-grams that must be English words, e.g. eat, let,
and ate. Using all the different combinations of the 1-grams
into 3-grams a probability distribution can be determined
to guess what a given 1-gram is based off of the preceding
1-gram. For example, given the a what is the most probable
1-gram to follow? In this case only three of the five 1-grams
(l, t, r) can be used to form actual three-letter words. From
these three 1-grams the words ale, ate, art, and are can be
formed. This gives us a probability distribution for the 1-
gram following a to be l = 0.25, t = 0.25, and r = 0.50.
The most likely 1-gram to follow a would be r. As shown in
Section 3.2, n-gram models can be a powerful for guessing
passwords, especially if they are trained on actual passwords.

2.5 Probabilistic Context-Free Grammars
A context-free grammar is a 4-tuple (V,Σ, R, S) where:

1. V is a finite set called the variables,

2. Σ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable
and a string of variables and terminals, and

4. S ∈ V is the start variable. [6]

For example, lets say we have a grammar G with starting
variable A, variables B and C, and terminals x, y, and z.
The grammar is formalized as G = ({A, B, C}, {x, y, z},
{set of 3 rules}, S = A).

A⇒ xBz

B ⇒ A|xCz

C ⇒ y

From these substitution rules derivations can be made, such
as xyz which looks like:

A⇒ xBz ⇒ xxCzz ⇒ xxyzz

String xBz is substituted for starting variable A, string xCz
is substituted for variable B, and finally terminal y is sub-
stituted for string xCz.

CFGs are a powerful tool for modeling languages, adding
probabilities allows for the modeling of languages such as
passwords. A probabilistic CFG is the same as a CFG ex-
cept that its definition has an added set – making it a 5-tuple
instead of a 4-tuple. The added set, P, is the set of proba-
bilities on substitution rules [10]. By assigning probabilities
to the rules in the previous example CFG, it becomes a
PCFG. Adding a 100% probability that A substitutes for B
(B ⇒ A) means that only derivations xnzn, such as xxxzzz,
occur. Section 3.3 shows that applying PCFGs to passwords
allows for effective prediction of password layouts by deter-
mining the probabilities of certain patterns.

3. METHODS
In this section, we go over three different implementations

of password meters. The first, rule-based meters, are the
most widely used with a presence in the sign-up pages for
Google, Facebook, and the University of Minnesota, Morris.
The other two have not been encountered due to only re-
cently been proposed by researchers. Note that the studies
and reports cited here generally assume that an attacker is
not targeting a single user, but is either trying to gain ac-
cess to any user in the system or gain access to the system
itself [2, 3, 7]. Therefore, the meters are used in order to
strengthen a system’s security as well as the user’s.

3.1 Rule-Based Meters

3.1.1 Description
The NIST Electronic Authentication Guideline SP-800-

63-1 [1], which rule-based meters are based off, reasoned that
the Shannon entropy of a password can be used as a starting
point to approximate the entropy of a given password. The
authors noted that this is a difficult assumption to make
given the jump from English words, which Shannon used
in his work, to passwords [1]. The approximation is broken
down into a set of rules developed by transferring Shannon’s
assumptions on a 27 character alphabet, a-z and the space,
to the 94 character alphabet that is present on standard
QWERTY keyboards. The following rules are taken directly
from SP-800-63-1: [1]

1. The entropy of the first character is taken to be 4 bits;

2. The entropy of the next 7 characters are 2 bits per
character; this is roughly consistent with Shannon’s
estimate that “when statistical effects extending over

not more than 8 letters are considered the entropy is
roughly 2.3 bits per character;”

3. For the 9th through 20th character the entropy is taken
to be 1.5 bits per character;

4. For characters 21 and above the entropy is taken to be
1 bit per character

5. A bonus of 6 bits of entropy is assigned for a com-
position rule that require both upper case and non-
alphabetic characters.

6. A bonus of up to 6 bits of entropy is added for an
extensive dictionary check.

NIST intended these rules to provide a rough estimate of a
password’s entropy. The idea was the rules would be used
in combination with other security measures so the rough
estimation of password strength would not be an issue.

With these rules, the password Daltong!u would have a
total entropy of 25.5 bits; 4 bits for D, 14 bits for altong!,
1.5 bits for u, and a bonus 6 bits for having uppercase and
non-alphabetic characters D and ! — if the password had
only one of these it would not get the bonus. This score
does not factor in a dictionary test which could increase the
score by up to 6 bits. From these six rules, rule-based meters
were derived, often including rules such as a minimum length
of eight, at least one uppercase letter, at least one symbol,
and at least one digit — all of which have precursors in the
NIST rules. These rules act as a guide or requirement to help
users create passwords that are more difficult to guess. Rule-
based meters serve as a reasonable method for improving
password strength; however, they were knowingly built on
a rough estimation of password strength, arguably making
them unsuitable for high security environments.

3.1.2 Weaknesses
The greatest weakness of the NIST guideline is that it did

not have access to a large corpus of user-created passwords
to base its assumptions on [7]. As a result, several of its
assumptions and guidelines do not reflect reality. In their
study of NIST entropy, Weir et al. [7] used the leaked Rock-
You password database in combination with the password
cracking software John the Ripper1 to test if the NIST as-
sumptions held up with real passwords. RockYou is a com-
pany that creates games for various social media websites
such as Facebook and Myspace [9]. In 2009 an attacker was
able to gain access to the RockYou password database and
leaked 32 million passwords. The RockYou password leak is
perfect for this study as it provided a large corpus passwords.
Furthermore, since RockYou was integrated with numerous
websites, the leaked passwords do not share a uniform cre-
ation policy. This means the RockYou leak contains a better
representation of user behavior than a password leak from a
uniform password creation policy.

One assumption disproved was that the Shannon Entropy
of a password could be used to estimate its guessing en-
tropy. The writers of SP-800-63-1 made it clear that this
assumption was a rough one and should only be used a rule
of thumb. Nonetheless, SP-800-63-1 defined two levels of
acceptable risk. For Level 1 the chance of an attacker ran-
domly guessing a password should be less than 0.097% and

1Official website: http://www.openwall.com/john/

Value 7+ Chars 8+ Chars 9+ Chars 10+ Chars

NIST Entropy 16 18 19.5 21

Level 1 # of
Guesses

64 256 724 2048

% Cracked Using
Guesses allowed
by Level 1

3.21% 6.04% 7.19% 7.12%

Acceptable Level
1 Failure Rate

0.097% 0.097% 0.097% 0.097%

Level 2 # of
Guesses

4 16 45 128

% Cracked Using
Guesses Allowed
by Level 2

0.98% 2.19% 2.92% 2.63%

Acceptable Level
2 Failure Rate

0.0061% 0.0061% 0.0061% 0.0061%

Figure 1: Testing the NIST rules against a simulated
attack using password cracking software John the
Ripper. Taken from [7].

for Level 2 the chance should be less than 0.0061% [7]. These
levels were supposed to allow systems to tailor their security
based on the following equation, where H(x) is the entropy
of a given password:

Level 1: Number of Allowed Guesses = 2H(x) ∗ 2−10

Level 2: Number of Allowed Guesses = 2H(x) ∗ 2−14

Thus, even with a rough entropy measure it would be pos-
sible for defenders to ensure the security of their system by
limiting the number of allowed guesses for a given password
based off its entropy. As Figure 1 shows, the percentage of
cracked passwords is well above the acceptable amount. The
number of guesses in Figure 1 correlates to the upper limit
of guesses before an attacker would be locked out of an indi-
vidual account. This disproves the assumption of Shannon
entropy equaling, or even being a rough estimate, of guessing
entropy. For this assumption to have held the percentage of
cracked passwords should have been below the acceptable
level of failure.

Other assumptions that Weir et al. investigated related to
the distribution and composition of actual passwords. For
example, instead of each symbol or digit having an equal
probability, certain characters such as ! and 123 were shown
to be much more prevalent then others. Furthermore, it was
discovered that certain structures are much more common.
If a password had a special character in it, 28.20% of the time
there would be only one special character and it would be
at the end of the password. Though these are only a couple
of examples, the study ultimately concludes that users tend
to make predictable passwords that follow patterns. This
means that passwords are not uniformly distributed across
the standard available key-space, allowing attackers to tailor
an attack if they know what the rules are for password cre-
ation. The results also demonstrate that the rules set out by
NIST were a naive application of Shannon entropy, as they
had no actual password data to back up the entropy scores
provided by their six rules. Without knowing the actual dis-
tribution of passwords or the probability of each character

the NIST specification is unable to accurately measure the
strength of passwords.

3.2 Adaptive Password Strength Meters
Building off the weaknesses of NIST SP-800-63-1, as out-

lined by Weir et al., Castelluccia et al. proposed a new
password meter called an Adaptive Password Strength Me-
ter (APSM) [2]. The APSM works by using n-gram models
to predict the next character that will occur given a string
of length m. Thus a string can be broken down into its n-
grams. The probability of a given string ci, ..., cm can then
be written as the product of the probability of the ith char-
acter given the preceding characters.

P (ci, ..., cm) =

m∏
i=0

P (ci|ci−n+1, ..., ci−1) (3)

For example, the probability of string hello can be broken
down into its sub-probabilities.

P (hello) = P (h)P (e|h)P (l|he)P (l|hel)P (o|hell)

The meter is also tied to a database that keeps track of the n-
gram counts, allowing the APSM to base its prediction of the
next character on the collected n-grams. Whenever a new
password is added, for each present n-gram in the password,
the count of the n-gram in the database is incremented.
Using are as a password would increment the n-grams of
a, r, e, ar, re, and are by one. Additional noise is added
to the n-grams database in the form of additional n-grams
unrelated to the entered password. This noise has only a
small impact on meter performance and increases the overall
security of the actual passwords should there be some form
of data breach. This is important because if an attacker
were able to get access to an n-gram database that did not
add noise, they would be able to tailor an attack using the
present n-grams. Equation 3 can be rewritten as a fraction
with the numerator as the count of the next probable n-gram
and the denominator as the count of the current n-gram.
The count() function returns the count of the given n-gram.

P (ci|ci−n+1,...,ci−1)

=
count(ci−n+1, ..., ci)

count(ci−n+1, ..., ci−1)

=
count(ci−n+1, ..., ci)∑

xεΣ count(ci−n+1, ..., ci−1, x)

The previous equation can be further simplified so that f(c)
equals the approximate strength of a given password c

f(c) = −log2(

m∏
i=0

P (ci|ci−n+1, ..., ci−1)) (4)

Castelluccia et al. used the 5-gram from password, asswo,
as an example to show that the probability of an o following
assw in the RockYou database is 0.97.

p(o|assw) =
count(asswo)

count(assw)
=

98450

101485
= 0.97

The overall probability of password was then calculated to be
0.0016%. The actual occurrence of password in the RockYou
database was 0.0018%. With such a close approximation of
frequency, these results suggest the meter can accurately rec-
ognize weak passwords. Since this meter bases its measure
of strength off of passwords in the system, it can be used to

Preprocessing Phase

Training on real user
passwords

Producing Context-
Free Grammar

Setting the
Threshold

User enters
password

Estimating strength of
entered password

Reject FunctionModifying the original
password

Reject Accept

Figure 2: Flow chart of the AMP. Taken from [3].

maintain uniform distribution of passwords, making it more
resistant to attacks. [2]

3.3 Analyzer and Modifier for Passwords
The Analyzer and Modifier for Passwords (AMP) is a of

password meter created by Houshmand and Aggarwal [3]
that uses PCFGs to measure the strength of passwords. The
PCFG is composed of the components: L for alphabet let-
ters, D for digits, S for symbols (!, @, %, etc), and M for
uppercase letters. In this PCFG, the password Password123!
is represented as a group of components M1L7D3S1; a collec-
tion of these components is also known as a base structure.
To make this a true PCFG, the probabilities are computed
by determining the frequency of the base structures in the
training data. The training data is taken from the numerous
password leaks that have occurred in the last decade, includ-
ing the RockYou leak. The probability of alphabet letter
components, e.g. L7, is not determined by the training data
as the probability would not be considered a sufficient sam-
ple size. Instead, the probability of a given Ln is 1

x
where n

is the length of the string and x is the number of strings of
that length that appear in a dictionary. For base structures
and variables that do not occur in the training data, Housh-
mand and Aggarwal used probability smoothing to assign
low probability values so the PCFG still accounts for them.
As shown in Figure 2, the training and generating of the
PCFG are the first steps in the preprocessing phase.

Next the system calculates a threshold value, T, such that
passwords with a higher probability than T are weak and
those with lower probability are strong. This is the last
part of the preprocessing phase in Figure 2. T is equal
to the probability used by an optimal attack, i.e., guessing
high probability passwords in decreasing order of probabil-
ity. Since the PCFG provides an accurate measure of pass-
word distribution, the number of guesses needed to reach T,
G(T), can be determined. The researchers calculated G(T)
in two ways. The first creates a table of guesses paired with
probabilities and time intervals. Since the guesses are actu-
ally being computed, this way is rather slow, despite being
accurate. The second provides a conservative lower bound
for G(T) until T is reached. Since it uses the generated
PCFG to find the lower bound of G(T) it is much faster and
nearly as accurate as the other approach.

Starting with ”User enters password” in Figure 2, the flow
of the system can be followed. Unlike other meters, the

AMP does not flat out reject a password, it instead modifies
a rejected password using its distance function. The goal of
the function is to generate a modified password that is over
the threshold value and is one edit distance, a single change,
different from the original. The researchers reasoned that an
edit distance of one would maintain the usability and memo-
rability of the password, and in most cases be stronger than
the threshold. The researchers defined two sets of operations
for modifying weak passwords divided between operations
on base structures and operations on components. For base
structures the operations are insertion, deletion, and trans-
position (swapping two adjacent components). For com-
ponents the operations are insertion, deletion, substitution,
and case (inverting the case of one letter in a component).
Before the operations can be applied the rejected password
is broken down into its base structures and put at the root
node of a tree structure. From the root node, child nodes
are randomly chosen until a leaf node is reached. Each leaf
node is the result of any number of operations performed on
the original password. If the change made at this node puts
the password above T then the system is done and the user
is handed that suggested password. The random movement
in the tree may seem inefficient, but it is meant to diversify
the passwords suggested by the system.

Now that the major parts of the AMP have been outlined,
let’s walk through the system step by step as a user. None
of the probabilities or edits in this example reflect the exact
operation of the AMP, instead they are meant to demon-
strate how it works. We start by entering the password,
Dalton123!. The password is then parsed into the base struc-
ture M1L5D3S1. The probability of the password is equal
to the product of the probabilities of the base structures and
components. For this password it is:

P (Dalton123!) = P (M1L5D3S1)P (M1)P (L5)P (D3)P (S1)

For this example let’s say that Dalton123! has a high proba-
bility in comparison with the threshold value and is rejected.
The password is then passed to the distance function which
puts it at the root node of a tree and moves randomly until
it ends on the leaf node with 123DalToN!, see Figure 3
for an example tree. This resulted from one base structure
transposition and two component case changes, totaling an
edit distance of three. This edit distance would be unusual
for the AMP as often only a single change needs to be made
to strengthen a password.

Houshmand and Aggarwal noted that after a period of us-
age it is possible that the PCFG may obtain a non-uniform
password distribution, invalidating the threshold value and
making the system vulnerable to an attack. They addressed
this by dynamically updating the grammar with each new
password, which keeps the grammar uniform and helps en-
sure that the modifier suggests less probable passwords. The
actual training data is not changed in this process, instead
the probabilities of each base structure is updated. [3]

4. DISCUSSION
In comparison to the rule-based meters, the probabilistic

meters described in this paper are more accurate at assess-
ing password strength. One benefit that rule-based meters
do have is the relative ease of implementation as the sim-
plest rule-based meters do not require training data or a
database to store probabilities. Rule-based meters need to
simply check a password against a set of required rules. For

root node:
Dalton123!

Leaf node:
Dalton!123

intermediate nodes

Leaf node:
123DalToN!

Leaf node:
DAlToN123!

Figure 3: Example of how a password could be
changed by the AMP distance function.

websites and accounts that do not require a high-level of
security rule-based meters are fine. Even with lockout con-
ditions, such as locking an account after three incorrect log-
in attempts or blocking log-in attempts from a specific IP,
rule-based meters do not provide the same level of security
as probabilistic meters. By enforcing a set of rules that all
passwords in the system must adhere to, system administra-
tors provide attackers with information to optimize their at-
tacks. If passwords need to follow a set of rules, the number
of potential passwords is limited, which allows attackers to
only guess passwords that would be allowed by the password
strength meter. Since probabilistic strength meters aim to
uniformly distribute passwords across the allowed key space,
they do not suffer from this issue.

Of the two probabilistic meters discussed in this paper,
it is difficult to discern which provides a higher level of se-
curity. The AMP certainly provides a better experience for
users in suggesting similar alternatives for weak passwords,
though this functionality could probably be added to the
APSM since they function in a similar manner. Both me-
ters estimate strength using training data that is modified
as new passwords are analyzed in addition to being based on
probabilistic models. These two meters also are resistant to
the attack methods described in Section 2.3. A simple brute
force attack will have difficulty with the distribution of char-
acters, a dictionary attack may fair slightly better but will
not be able to optimize its training data, and probabilistic
attacks will have no advantage as long as the probabilistic
meters maintain a uniform distribution of passwords.

5. CONCLUSION
The probabilistic password meters proposed by Castel-

luccia et al. as well Houshmand and Aggarwal look to
be promising improvements upon the rule-based meters set
down by the NIST SP-800-63-1. Systems implementing prob-
abilistic meters are more resistant to attacks as it is more
difficult for the attacker to tailor their method to a certain
distribution of passwords as the passwords created in the
presence of a probabilistic meter will have a uniform distri-
bution. Even if the n-gram database of the training PCFG
were to be leaked, it would not give the attacker any use-
ful information. For users of a system with probabilistic
meters, there is no decrease in the usability of their pass-

words. As shown in Section 3.3, the AMP has little impact
on user-created passwords, often able to strengthen a pass-
word by suggesting only a single change. Furthermore, since
all strength measurements are based on a threshold value,
the meter can be tuned to be more or less stringent depend-
ing on the required security of the system. Of the three
password meters discussed in this paper, in terms of effec-
tiveness, flexibility, and usability the AMP as laid out by
Houshmand and Aggarwal appears to be best implementa-
tion of a password strength meter.

Acknowledgments
Thanks to Kristin Lamberty, Nic McPhee, and Brian Goslinga
for providing feedback and helping me through this process.

6. REFERENCES
[1] W. E. Burr, D. F. Dodson, E. M. Newton, R. M.

Perlner, W. T. Polk, S. Gupta, and E. A. Nabbus.
Nist Special Publication 800-63-1 Electronic
Authentication Guideline. Technical report, National
Institute of Technology and Standards, 2006.

[2] C. Castelluccia, M. Duermuth, and D. Perito.
Adaptive Password-Strength Meters from Markov
Models. In Proceedings of the 19th Annual Network
and Distributed System Security Symposium, NDSS
’12, San Diego, CA, USA, 2012. NDSS.

[3] S. Houshmand and S. Aggarwal. Building Better
Passwords Using Probabilistic Techniques. In
Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 109–118,
New York, NY, USA, 2012. ACM.

[4] L. Kozlowski. Shannon entropy calculator, 2015.
[Online; accessed 19-November-2015].

[5] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, P. G. Kelley, R. Shay, and
B. Ur. Measuring Password Guessability for an Entire
University. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’13, pages 173–186, New York, NY,
USA, 2013. ACM.

[6] M. Sipser. Introduction to the Theory of Computation
– Third Edition. Cengage Learning, Boston, MA, 2013.

[7] M. Weir, S. Aggarwal, M. Collins, and H. Stern.
Testing Metrics for Password Creation Policies by
Attacking Large Sets of Revealed Passwords. In
Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages
162–175, New York, NY, USA, 2010. ACM.

[8] Wikipedia. N-gram — Wikipedia, The Free
Encyclopedia, 2015. [Online; accessed
25-October-2015].

[9] Wikipedia. Rockyou — Wikipedia, The Free
Encyclopedia, 2015. [Online; accessed
19-November-2015].

[10] Wikipedia. Stochastic context-free grammar —
Wikipedia, The Free Encyclopedia, 2015. [Online;
accessed 25-October-2015].

