
Concurrent Compaction in JVM Garbage Collection

Jacob P. Opdahl

University of Minnesota, Morris

opdah023@morris.umn.edu

December 5, 2015

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 1 / 30



Overview Introduction

Automatic Memory Management

Implicit allocation and deallocation of memory

Languages: Java, C#, Python, and more
We focus on the Java Virtual Machine
and languages it supports

Abstracts details away from the developer

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 2 / 30



Overview Introduction

Implicit Deallocation

Memory is a finite resource

Garbage: objects that are no longer reachable

Garbage Collection (GC): detecting and
removing garbage

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 3 / 30



Overview Introduction

Stopping the World

GC requires processing resources

When only one processor is used, collectors
stop the world

Problem: applications today are subjected to
increasing pauses

More memory
More strenuous applications

Use parallel processing to solve!

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 4 / 30



Overview Outline

Outline

1 Background
Garbage Collection
Parallel Processing
Garbage Collection with Parallel Processing

2 Continuously Concurrent Compacting Collector (C4)

3 Field Pinning Protocol

4 Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 5 / 30



Background

Outline

1 Background
Garbage Collection
Parallel Processing
Garbage Collection with Parallel Processing

2 Continuously Concurrent Compacting Collector (C4)

3 Field Pinning Protocol

4 Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 6 / 30



Background GC Basics

Memory

Heap: contiguous memory location used by the JVM
Objects are stored here

Stack: memory for short-lived, method-specific values
Stores references: memory addresses of objects

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 7 / 30



Background GC Basics

GC Cycle

Set Condemnation: determine which objects are garbage

Compaction: reclaim memory while fighting heap fragmentation

Set condemnation done by tracing
Detect all reachable objects by chaining references

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 8 / 30



Background GC Basics

Compaction

Consists of two steps
Relocation: move objects

from-space and to-space

Remapping: update object references

Free Space

(Heap before)

(Heap after)

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 9 / 30



Background PP Basics

Processes and Threads

Process: instance of a program being run
Examples: JVM, word processor
Has its own memory space

Thread: sequence of independent instructions
that can run on its own

Component of a process
Possible to run multiple in parallel

Parallel Processing: running multiple threads
simultaneously with multiple processors

wikipedia.org/wiki/Thread_

%28computing%29

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 10 / 30

wikipedia.org/wiki/Thread_%28computing%29
wikipedia.org/wiki/Thread_%28computing%29


Background PP Basics

Synchronization

Threads do not coordinate automatically

Independent instructions!

Poses new challenges
Example: losing object modifications

Need to keep threads synchronized

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 11 / 30



Background GC with PP

Concurrency

We distinguish between application threads and GC threads

Concurrent GC: collector runs at the same time as the application
Does not stop the world

Our focus: concurrent compaction!

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 12 / 30



C4

Outline

1 Background

2 Continuously Concurrent Compacting Collector (C4)

3 Field Pinning Protocol

4 Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 13 / 30



C4

Continuously Concurrent Compacting Collector (C4)

Researchers: G. Tene, B. Iyengar, and M. Wolf at Azul Systems

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 14 / 30



C4 Explanation

Loaded Value Barrier (LVB)

Read Barrier: instructions to run before a thread accesses memory

LVB protects from-space from application threads
From-space: where objects were located before moving

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 15 / 30



C4 Explanation

Loaded Value Barrier (LVB)

Rule: application can only use moved objects
If a thread breaks this, the barrier will correct the situation

This facilitates concurrent relocation and remapping

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 15 / 30



C4 Explanation

Concurrent Relocation

GC threads simply relocate objects

All references point to from-space!
Application threads certain to trigger LVB

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 16 / 30



C4 Explanation

Concurrent Relocation

LVB instructions for applications threads
If the object was moved, find it
If the object is being moved, wait
If the object is unmoved, move it

In all cases, update the reference after using the object in to-space

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 16 / 30



C4 Explanation

Concurrent Remapping

To update all references, need to traverse all reachable ones

Combine remapping with next tracing phase

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 17 / 30



C4 Test Results

Testing Environment

Tested against two collectors with non-concurrent compaction

Improvements from concurrent compaction

Server environments used

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 18 / 30



C4 Test Results

Results

C4:
Fastest response times
Maintains them for largest
range of heap sizes
Least impact on application

Worst Case Response Times

C4

Serial

Serial

Heap Size (Gb)
0 5 10 15 20 25 30 35

10

1

0.1

0.01

W
or

st
 C

as
e 

R
es

po
ns

e
 T

im
es

 (
se

cs
)

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 19 / 30



FPP

Outline

1 Background

2 Continuously Concurrent Compacting Collector (C4)

3 Field Pinning Protocol

4 Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 20 / 30



FPP

Field Pinning Protocol (FPP)

Implemented into a host GC algorithm

Differs from C4 - barrier-free!

Researchers: E. Österlund and W. Löwe at Linnaeus University

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 21 / 30



FPP Explanation

Hazard Pointers

Hazard Pointers: values that show which objects an application thread
is accessing

Inform other threads of objects that are in use

Main goal: safely access objects without worrying about relocation

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 22 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup
Relocation Thread =
Person
* = Responsible
! = Impeded

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup
Relocation Thread =
Person
* = Responsible
! = Impeded

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup
Relocation Thread =
Person
* = Responsible
! = Impeded

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup
Relocation Thread =
Person
* = Responsible
! = Impeded

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Example

Object = Coffee
Application Thread =
Person w/ Coffee Cup
Relocation Thread =
Person
* = Responsible
! = Impeded

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23 / 30



FPP Explanation

Concurrent Relocation and Responsibility

Responsibility: thread required to try relocating an object
Comes from hazard pointers (coffee cups) impeding copying

Relocation with FPP
GC threads attempt to relocate objects
Impeding application threads are made responsible

When finished with the object, try to move

Responsibility passed to impeding threads until relocation
succeeds

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 24 / 30



FPP Test Results

Testing Environment

Implemented in the Garbage-First (G1) Garbage Collector
Concurrent tracing and remapping
Relocation requires stop-the-world pauses

Tested against the default G1 collector

Improvements from solely concurrent relocation

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 25 / 30



FPP Test Results

Results

G1 with FPP on average
50% shorter delays than
standard G1

Less impact on
application
performance

Concurrent relocation
without barriers is feasible!

Benchmark G1 G1 w/ FPP
pmd 40.82 ms 5.02 ms
lusearch 2.73 ms 2.72 ms
tomcat 12.31 ms 5.48 ms
tradebeans 31.73 ms 11.81 ms
fop 37.39 ms 13.22 ms

Table: Average GC Delays

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 26 / 30



Conclusions

Outline

1 Background

2 Continuously Concurrent Compacting Collector (C4)

3 Field Pinning Protocol

4 Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 27 / 30



Conclusions

Conclusions

Moving toward concurrent compaction without barriers
C4 - heavily relies on barriers
FPP - barrier-free

Tough to compare them directly

All tests showed that concurrency can improve application
performance

Approach used will depend on intended environment

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 28 / 30



Conclusions

Thanks for your time!

Questions?

Contact: opdah023@morris.umn.edu

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 29 / 30



References

References

G. Tene, B. Iyengar, and M. Wolf.
C4: the continuously concurrent compacting collector.
2011 ACM SIGPLAN International Symposium on Memory
Management (ISMM 2011). ACM, New York, NY, USA, 79-88.

E. Österlund and W. Löwe.
Concurrent compaction using a field pinning protocol.
2015 ACM SIGPLAN International Symposium on Memory
Management (ISMM 2015). ACM, New York, NY, USA, 56-69.

See the UMM Opdahl Fall ’15 paper for additional references.

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 30 / 30


	Background
	Garbage Collection
	Parallel Processing
	Garbage Collection with Parallel Processing

	Continuously Concurrent Compacting Collector (C4)
	Field Pinning Protocol
	Conclusions

