Concurrent Compaction in JVM Garbage Collection J

Jacob P. Opdahl

University of Minnesota, Morris

opdah023@morris.umn.edu

December 5, 2015

Overview Introduction

Automatic Memory Management

Implicit allocation and deallocation of memory
Languages: Java, C#, Python, and more
o We focus on the Java Virtual Machine

and languages it supports

Abstracts details away from the developer

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC

December 5, 2015

2/30

Overview Introduction

Implicit Deallocation

Memory is a finite resource
Garbage: objects that are no longer reachable

Garbage Collection (GC): detecting and
removing garbage

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC

December 5, 2015

3/30

Overview Introduction

Stopping the World

GC requires processing resources

When only one processor is used, collectors

stop the world ONE DOES HI!LI‘.

SIMPLY
3

Problem: applications today are subjected to
increasing pauses

@ More memory

i :
. ALWAYS CLEAN UP AFTER
o More strenuous applications o vou o |

Use parallel processing to solve!

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 4/30

Overview Outline

Outline

@ Background
o Garbage Collection
o Parallel Processing
o Garbage Collection with Parallel Processing

@ Continuously Concurrent Compacting Collector (C4)
(@ Field Pinning Protocol

@ Conclusions

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 5/30

Background

Outline

@ Background
o Garbage Collection
o Parallel Processing

o Garbage Collection with Parallel Processing

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC

December 5, 2015

6/30

Background GC Basics

Memory

Heap: contiguous memory location used by the JVM
@ Objects are stored here

Stack: memory for short-lived, method-specific values
o Stores references: memory addresses of objects

Stack Q__—-;I Heap

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

7/30

Background GC Basics

GC Cycle

Set Condemnation: determine which objects are garbage

Compaction: reclaim memory while fighting heap fragmentation

Set condemnation done by tracing
o Detect all reachable objects by chaining references

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 8/30

Compaction

Consists of two steps
o Relocation: move objects
o from-space and to-space

@ Remapping: update object references

a) Start of Compaction (Heap before)

X< XX L X[X

b) End of Compaction (Heap after)

L LI Ll FreeSpace |

9/30

Background PP Basics

Processes and Threads

Process: instance of a program being run
o Examples: JVM, word processor
o Has its own memory space

Thread: sequence of independent instructions
that can run on its own

o Component of a process
@ Possible to run multiple in parallel

Parallel Processing: running multiple threads
simultaneously with multiple processors

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC

Process

Time

v

wikipedia.org/wiki/Thread_

%28computing%29

December 5, 2015

10/30

wikipedia.org/wiki/Thread_%28computing%29
wikipedia.org/wiki/Thread_%28computing%29

Background PP Basics

Synchronization

Threads do not coordinate automatically

@ Independent instructions!

COPY MODIFY

Poses new challenges

o Example: losing object modifications

Need to keep threads synchronized

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 11/30

Background GC with PP

Concurrency

We distinguish between application threads and GC threads

Concurrent GC: collector runs at the same time as the application
o Does not stop the world

Our focus: concurrent compaction!

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

12/30

Outline

1) Background
Q Continuously Concurrent Compacting Collector (C4)
3) Field Pinning Protocol

43 Conclusions

C4

Continuously Concurrent Compacting Collector (C4)

Researchers: G. Tene, B. lyengar, and M. Wolf at Azul Systems

Compaction

Tracin
J Relocation Remapping

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 14/30

C4 Explanation

Loaded Value Barrier (LVB)

Read Barrier: instructions to run before a thread accesses memory

LVB protects from-space from application threads
o From-space: where objects were located before moving

—

|[][][] Heap | BR;ﬁgr Threads

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

15/30

C4 Explanation

Loaded Value Barrier (LVB)

Rule: application can only use moved objects
o If a thread breaks this, the barrier will correct the situation

This facilitates concurrent relocation and remapping

—

|[][][] Heap | BR;ﬁgr Threads

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

15/30

C4 Explanation

Concurrent Relocation

GC threads simply relocate objects

All references point to from-space!
o Application threads certain to trigger LVB

Vbl

To-Space From-Space

LVB

Heap

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

16/30

C4 Explanation

Concurrent Relocation

LVB instructions for applications threads
o If the object was moved, find it
o If the object is being moved, wait
o If the object is unmoved, move it

In all cases, update the reference after using the object in to-space

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 16/30

C4 Explanation

Concurrent Remapping

To update all references, need to traverse all reachable ones
Combine remapping with next tracing phase

Current GC Cycle
"Trace Relocate Remap !

Appl. Thread 1
Appl. Thread n
GC Thread 1
GC Thread n - - - ' '

| Trace Relocate Remap |
Next GC Cycle

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

17/30

C4 Test Results

Testing Environment

Tested against two collectors with non-concurrent compaction
Improvements from concurrent compaction

Server environments used

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 18/30

C4 Test Results

Results

Worst Case Response Times

C4. 7 001
o Fastest response times W2 01‘
=0
o Maintains them for largest §.§ ‘ e
range of heap sizes g 1‘ ferfa:
5 ~Seria
o Least impact on application = g 10 m
3 0 5 10 15 20 25 30 35
o Heap Size (Gb)

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 19/30

Outline

1) Background
2) Continuously Concurrent Compacting Collector (C4)
@ Field Pinning Protocol

43 Conclusions

FPP

Field Pinning Protocol (FPP)

Implemented into a host GC algorithm

Differs from C4 - barrier-free!

Researchers: E. Osterlund and W. Léwe at Linnaeus University

_ Compaction
Tracing : .
Relocation Remapping
Jacob Opdahl (UMM) Concurrent Compaction in JVM GC

December 5, 2015

21/30

EEE Explanation

Hazard Pointers

Hazard Pointers: values that show which objects an application thread
is accessing

Inform other threads of objects that are in use

Main goal: safely access objects without worrying about relocation

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 22/30

EEE Explanation

Example

@ Object = Coffee

@ Application Thread =
Person w/ Coffee Cup '

Adam

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Example

*|

(%)

Object = Coffee

Application Thread =
Person w/ Coffee Cup Bob

Relocation Thread =
Person

* = Responsible '

| = Impeded @

Adam

(%)

©

© ©

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Example

(%)

Object = Coffee

Application Thread =
Person w/ Coffee Cup

Relocation Thread =
Person

*
* = Responsible

| = Impeded @

Adam

(%)

©

© ©

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Example

(%)

Object = Coffee

Application Thread =
Person w/ Coffee Cup Adam

Relocation Thread =
Person

* = Responsible
I = Impeded

(%)

©

© ©

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Example

*|
Object = Coffee
Application Thread =

Person w/ Coffee Cup Adam

Relocation Thread =
Person

* = Responsible % %
I = Impeded 8 @

Carol Diane

(%)

(%)

©

© ©

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Example

o Object = Coffee

@ Application Thread =
Person w/ Coffee Cup

o Relocation Thread =
Person

* *
o * = Responsible ' '

o | = Impeded @ @

Carol Diane

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 23/30

EEE Explanation

Concurrent Relocation and Responsibility

Responsibility: thread required to try relocating an object
o Comes from hazard pointers (coffee cups) impeding copying

Relocation with FPP
o GC threads attempt to relocate objects

o Impeding application threads are made responsible
o When finished with the object, try to move

o Responsibility passed to impeding threads until relocation
succeeds

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

24/30

FPP Test Results

Testing Environment

Implemented in the Garbage-First (G1) Garbage Collector
@ Concurrent tracing and remapping
o Relocation requires stop-the-world pauses

Tested against the default G1 collector

Improvements from solely concurrent relocation

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

25/30

FPP Test Results

Results

G1 with FPP on average

50% shorter delays than Benchmark ‘ Gi ‘ G1 w/ EPP
standard G1
_ pmd 40.82 ms 5.02 ms
° Less_ |mpact on lusearch 2.73 ms 2.72 ms
application tomcat 1231 ms | 5.48ms
performance tradebeans | 31.73ms | 11.81 ms
fop 37.39ms | 13.22ms

Concurrent relocation

without barriers is feasible! Table: Average GC Delays

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 26 /30

Outline

1) Background
2) Continuously Concurrent Compacting Collector (C4)
3) Field Pinning Protocol

O Conclusions

Conclusions

Conclusions

Moving toward concurrent compaction without barriers
@ C4 - heavily relies on barriers
o FPP - barrier-free

Tough to compare them directly

All tests showed that concurrency can improve application
performance

o Approach used will depend on intended environment

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015

28/30

Conclusions

Thanks for your time!

Questions?

Contact: opdah023@morris.umn.edu

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 29/30

References

References

[G. Tene, B. lyengar, and M. Wolf.
C4: the continuously concurrent compacting collector.
2011 ACM SIGPLAN International Symposium on Memory
Management (ISMM 2011). ACM, New York, NY, USA, 79-88.

[3 E. Osterlund and W. Léwe.
Concurrent compaction using a field pinning protocol.
2015 ACM SIGPLAN International Symposium on Memory
Management (ISMM 2015). ACM, New York, NY, USA, 56-69.

See the UMM Opdabhl Fall '15 paper for additional references.

Jacob Opdahl (UMM) Concurrent Compaction in JVM GC December 5, 2015 30/30

	Background
	Garbage Collection
	Parallel Processing
	Garbage Collection with Parallel Processing

	Continuously Concurrent Compacting Collector (C4)
	Field Pinning Protocol
	Conclusions

