Image Resizing Using Seam Carving

Kristin Rachor

University of Minnesota, Morris

December 5, 2015
Outline

1. Introduction
 - Background

2. Seam Carving

3. Object Carving

4. Video Retargeting

5. Conclusion
The Problem Space

http://twd3.com/responsive-web.cms
Traditional Resizing

http://jeremykun.com/2013/03/04/seam-carving-for-content-aware-image-scaling/
Seam Carving

http://jeremykun.com/2013/03/04/seam-carving-for-content-aware-image-scaling/
Outline

1. Introduction

2. Seam Carving
 - Seams
 - Energy Function
 - Computing Seams
 - Results

3. Object Carving

4. Video Retargeting

5. Conclusion
Seams

Defining a Seam

- **One pixel wide path**
- **Traverses the image’s width or height**

Let image I be a $n \times m$ image

$$s^x = \{(x(i), i)\}_{i=1}^{n}$$

$$\forall i, |x(i) - x(i-1)| \leq 1$$

Seams

Defining a Seam

- One pixel wide path
- Traverses the image’s width or height
- Let image \(I \) be a \(n \times m \) image
- \(s^x = \{ (x(i), i) \}_{i=1}^n \)
- \(\forall i, |x(i) - x(i - 1)| \leq 1 \)

Outline

1. Introduction

2. Seam Carving
 - Seams
 - Energy Function
 - Computing Seams
 - Results

3. Object Carving

4. Video Retargeting

5. Conclusion
A pixel’s energy is high if its color value is very different from its neighbors.

A pixel’s energy is low if it is similar to its neighbors.

\[
dx = \frac{|I(x + 1, y) - I(x - 1, y)|}{2} \\
dy = \frac{|I(x, y - 1) - I(x, y + 1)|}{2} \\
e(x, y) = dx + dy
\]
A pixel’s energy is high if its color value is very different from its neighbors.

A pixel’s energy is low if it is similar to its neighbors.

\[dx = \frac{|I(x+1, y) - I(x-1, y)|}{2} \]

\[dy = \frac{|I(x, y-1) - I(x, y+1)|}{2} \]

\[e(x, y) = dx + dy \]
Computing Seams

Outline

1. Introduction

2. Seam Carving
 - Seams
 - Energy Function
 - Computing Seams
 - Results

3. Object Carving

4. Video Retargeting

5. Conclusion
Computing Seams

Energy Values: Each pixel gets a value

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>19</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Use dynamic programming to compute seams from top to bottom.
Use dynamic programming to compute seams from top to bottom.

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>7</th>
<th>5</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>19</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Use dynamic programming to compute seams from top to bottom.
Use dynamic programming to compute seams from top to bottom.
Computing Seams

Use dynamic programming to compute seams from top to bottom.

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>7</th>
<th>5</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>18</td>
<td>29</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>23</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>37</td>
<td>31</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>30</td>
<td>37</td>
<td>45</td>
<td>42</td>
<td>38</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>39</td>
<td>52</td>
<td>47</td>
<td>46</td>
<td>42</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Find smallest energy value on bottom row.
Computing Seams

Find smallest energy value on bottom row.

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>7</th>
<th>5</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>18</td>
<td>29</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>23</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>37</td>
<td>31</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>30</td>
<td>37</td>
<td>45</td>
<td>42</td>
<td>38</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>39</td>
<td>52</td>
<td>47</td>
<td>46</td>
<td>42</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td>48</td>
<td>47</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Computing Seams

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>7</th>
<th>5</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>18</td>
<td>29</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>23</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>37</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>34</td>
<td>30</td>
<td>37</td>
<td>45</td>
<td>42</td>
<td>38</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>39</td>
<td>52</td>
<td>47</td>
<td>46</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td>48</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

Trace seam back up the image.
Remove seam and shift everything else to the left.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>13</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>29</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>29</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>37</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>34</td>
<td>37</td>
<td>45</td>
<td>42</td>
<td>38</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>52</td>
<td>47</td>
<td>46</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>50</td>
<td>60</td>
<td>48</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>
Reset energy values and repeat.
Outline

1. Introduction
2. Seam Carving
 - Seams
 - Energy Function
 - Computing Seams
 - Results
3. Object Carving
4. Video Retargeting
5. Conclusion
Results

Results

Image Enlarging

http://www.ulfdittmer.com/imagej/seam-carving.html
Results

Limitations

(a) Original (b) Cropping (c) SC (d) Multi-Op

Reference [4]
Outline

1. Introduction
2. Seam Carving
3. Object Carving
 - Object Detection
 - Object Removal
4. Video Retargeting
5. Conclusion
Object Carving: Removing repeated objects in an image to help avoid distortion while shrinking.

Reference [2]
Object Carving

(a) Paint Selection (b) Shape Information (c) Detection Result

Reference [2]
Outline

1 Introduction

2 Seam Carving

3 Object Carving
 - Object Detection
 - Object Removal

4 Video Retargeting

5 Conclusion
Visual Importance: The algorithm measures the layering relation between the different objects and assigns higher importance to images in the foreground.
How to Remove Objects

This displays the importance of evaluating the energy that the seam will carve out as well as the object’s energy.
The Need to Resize Videos

Outline

1. Introduction
2. Seam Carving
3. Object Carving
4. Video Retargeting
 - The Need to Resize Videos
 - Algorithm
5. Conclusion
The Need to Resize Videos

Video Resizing

Outline

1. Introduction
2. Seam Carving
3. Object Carving
4. Video Retargeting
 - The Need to Resize Videos
 - Algorithm
5. Conclusion
Each column’s energy is summed in a value C_i. Then each of these values are summed into a value W_j for each cropped window. Finally the values for the positions of all frames are combined to a 2D array.
Seam Carving in Frame

Reference [3]
In Summary

- Image/Video resizing is becoming more necessary as the number of different screen sizes.
- Seam carving works well on landscapes.
- Object carving works well on images with repeated objects or patterns.
- Videos can also effectively be resized using seam carving.
Questions?

racho008@morris.umn.edu

Special thank you to Nic McPhee, Elena Machkasova and Kirbie Dramdahl for their help and guidance.
References I

S. Avidan and A. Shamir.
Seam carving for content-aware image resizing.

Summarization-based image resizing by intelligent object carving.

SeamCrop: Changing the size and aspect ratio of videos.
In *Proceedings of the 4th Workshop on Mobile Video, MoVid '12*, pages 13–18, New York, NY, USA, 2012. ACM.

M. Rubinstein, A. Shamir, and S. Avidan.
Multi-operator media retargeting.