
Mobile App Privacy and Security Recommendation
Systems

Dillon V. Stenberg
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

stenb061@morris.umn.edu

ABSTRACT
With the rapid increase of smart phones, the number of mo-
bile applications (Apps) have increased dramatically. Ex-
isting recommendation systems have recommended Apps to
users based on the popularity of an App or based on the
user’s interest in other Apps. However, these recommen-
dation systems do not take into account the user’s privacy
and security preferences. In this paper, I looked at two dif-
ferent recommendation systems that considers user privacy
and security preferences.

Keywords
mobile apps, privacy, security, recommendation systems

1. INTRODUCTION
Over the years, there has been a rapid growth of smart

phone use and because of this growth a huge number of mo-
bile Apps have been developed for mobile users. At the end
of July 2015, there were over 1.5 million Apps on Google
Play and as of July 2013 there were over 50 billion down-
loads. However, a lot of mobile Apps are poorly understood
when it comes to activities and functionality related to pri-
vacy and security. Mobile Apps, like location service and
social service Apps, usually involve permissions that require
access to the user’s personal data, such as location and the
contact lists.

There are some Apps that may require certain access to
your device that has nothing to do with the App. Some
Apps (i.e. Games) will require location, so that they can
transfer that data to third party ad libraries so they can
give you targeted advertisements based on your location [3].
People can become very sensitive to the fact that an App
can access certain private information that they feel is inva-
sive. Specifically on Android devices, Apps require certain
access to security permissions such as reading your contacts
or knowing your location. One survey revealed that 54% of
U.S. mobile App users, that were surveyed, would not down-
load an App based on the required security permissions for
that App, and 30% of App users uninstalled an App after
learning what kinds of personal information some Apps were

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

collecting [1]. There are many systems out there that recom-
mend mobile Apps to mobile users based upon popularity
or functionality, but none of them recommended Apps based
off a user’s privacy and security preferences.

This paper describes two recommendation systems that
use the user’s privacy and security preferences when recom-
mending Apps. The first recommendation method (SPAR)
considers popularity and privacy and security when recom-
mending Apps, while the second recommendation considers
both the functionality of an App as well as the privacy and
security preferences of the user. The focus of the meth-
ods are on Android Apps, because the Android system is a
permission-based framework.

2. BACKGROUND
Recommendation systems are used in most of today’s digi-

tal marketplaces. Websites like Amazon and Netflix use rec-
ommendation systems to help recommend different products
to consumers based on what they rate, what they watch, and
what they buy. The Google Play and Apple App store both
recommend Apps to you based on what you have bought
and downloaded. However, these recommendation systems
do not recommend apps based on users’ preference of an
App’s privacy and security.

2.1 Privacy and Data Permissions
On Android devices, Apps require access to certain pri-

vacy and data permissions (i.e accessing location and in-
ternet) on your mobile device. A permission is related to
a critical resource (e.g. Internet, contact, location) on the
mobile device. By downloading that App, you are granting
it permission to either read or write the corresponding re-
source. Some of these permissions could be considered as
invasive to one’s privacy. People may not download an App
after knowing what permissions are required to be accessed
such as the Facebook mobile App, which requires you to al-
low it to read and store your contacts from your phone onto
your Facebook account [4].

2.2 Latent Matrix Factorization
In previous recommendation systems [2, 6], matrix factor-

ization methods were used to recommend certain products
or entertainment to consumers/users. A latent factorization
model is a technique to recommend products to users. Web-
sites like Amazon and Netflix use this method when recom-
mending products or shows to consumers. Matrix factoriza-
tion characterizes both items and users by vectors of factors
inferred from item rating patterns. A latent variable is a
variable that is not directly observed (directly measured),
but is inferred from other variables that are observed. For
example, if a user rates a product highly, the system will

Figure 1: An example of the App permission bipar-
tite graph [11]

look at other users who have also rated that same product
highly. From that rating, the system will look at other prod-
ucts that the other users rated highly and recommend those
products to the original user [6]. In the study [7], a latent
factorization model is created and used when recommending
Apps based on their functionality, as well as users’ privacy
preferences.

2.3 Probability Distributions
Probability distributions are useful by finding the “shape”

of the data given or of future possible data and they de-
scribes possible values and their probability. In the study [7],
they look over the data given from the users’ ratings on Apps
to help model one user profile latent factor ui ∈ RK , which is
a K -dimension vector in which probability distributions are
used. The Gaussian distribution is typically ”bell-shaped”
curves and is more generalized to higher dimensions. The
Poisson distribution has an increasing or decreasing shaped
curve and is a discrete frequency distribution that calcu-
lates the probability of independent events occurring in a
fixed time over a distance (K -dimension).

3. SPAR
A type of recommendation method known as Security and

Privacy aware mobile App Recommendation (SPAR), rec-
ommends Apps to users while considering both the popu-
larity of an App and the users’ privacy preferences. The
method uses a flexible approach that is based on modern
portfolio theory for recommending Apps by balancing the
Apps’ popularity and the users’ privacy preferences. SPAR
first estimates a risk score for each App based on security
permissions. Second, a risk score is assigned to an App, then
each App is ranked by their risk score and popularity. Fi-
nally, an App hash tree is created to efficiently recommend
Apps.

3.1 Estimating Risk Score
SPAR generates a risk score to reflect the security level

of an App, where the lower the score, the safer the App is
to use. The score is generated by looking directly at the
data permissions of each App that is requested. However,
there are challenges that must be faced when evaluating
the risk score. First, it is difficult to define a risk func-
tion with respect to different permissions for evaluating risk
scores for Apps, since a lot of permissions are ambiguous and
are poorly understood [11]. For example, some permissions

that could be considered dangerous (i.e. location) are com-
monly used in the Apps of some categories (i.e. navigation
Apps). However, there are some App categories (i.e. games)
that use location to send to ad libraries, so they can better
target you with advertisements. Second, the latent relation-
ships between Apps and permissions should be considered,
because some Apps will have the same risk score. Finally,
a scalable approach should be developed to refine the risk
scores, since external knowledge can be leveraged for evalu-
ating potential risks of Apps. To deal with these challenges,
Zhu et al. suggests an approach based on a bipartite graph,
which can connect each App to the permission automati-
cally without using any predefined risk function. The App-
permission bipartite graph is used to build the connections
between Apps and permissions.

Figure 1 shows an example of an App-permission bipartite
graph. In the figure, it shows a set of Apps (Angry Birds,
Facebook, etc.) being connected to different permissions,
but some of the Apps shown have the same permissions as
other Apps. The weight wij can be estimated by the per-
mission records of all Apps in ai’s category c (i.e. games,
tools) where fij is the number of Apps in category (ai ∈ c)
and E is the edge set, requesting permission pj :

wij =
fij∑

eik∈E
fik

To estimate App risk scores with the App-permission bi-
partite graph, two risk scores Risk(ai) (objective App risk
score) and Risk(pj) (global permission risk score) for nodes
ai ∈ V a and pj ∈ V p, where V a denotes the set of Apps and
V p denotes the set of permissions, are computed.

3.2 Assigning Risk Score to Apps
In SPAR, a probabilistic approach called Naive Bayes with

information Priors (PNB) is used for assigning the risk scores
to each App. PNB is a technique that constructs classifiers:
models that assign class labels to problem instances [10]. In
this case, we are assigning risk scores to Apps. This model
is based on Bayes theorem, which describes the probability
of an event based on conditions that might be related to
the event. In this model, P (pj |θ) has a parameter θ that is
assumed to follow the Beta prior Beta(θ;α0, β0). The Beta
prior distribution is a family of continuous probability distri-
butions defined on the interval [α, β] [8]. The Beta distribu-
tion calculates the probability based on previous “evidence”
related to the event. The probability can be estimated by

P (pj |θ) =

∑M
i xi,j + α0

M + α0 + β0
,

where M is the total number of Apps and xx,j is a binary
function which is equal to 1 (requests the permission pj)
or 0 (ai does not request the permission pj). PNB also
defines three categories of permissions: normal permission,
dangerous permissions, and signature/system permissions
(e.g. permission to delete Apps) which each category has
a specific Beta(θ;α0, β0).

3.3 Ranking System
Once the risk score for each App is computed, the Apps

are ranked in ascending order based on their risk scores.
Moreover, if some of the Apps have the same risk scores,
they will be ranked based on their popularity scores (overall
rating from users). The Apps are put into clusters where
they have the same security level (e.g. low or high). How-
ever, by doing this, it is not possible to get an accurate and
appropriate segmentation of Apps with respect to their risk

Algorithm 1 Automatic Detection of Security Levels

Input: The set of Apps A = {ai}; Parameter δ;
Output: The set of security levels Ψ;

1: Rank A in descending order according to Risk(a);
2: L=∅;
3: for each i ∈ [1, |A|] do
4: A∗ = L ∪ {A[i]};
5: calculate CV (A∗) > δ in terms of Risk(a) (a ∈ A∗);
6: if (CV (A∗) > δ) then
7: Ψ∪ = L; L = ∅ is a new level;
8: else
9: L∪ = {A[i]};

10: end if
11: end for
12: return Ψ

scores [11]. To solve this problem, an algorithm, Coefficient
of Variation (CV), is developed to automatically segment
Apps. Two adjacent Apps in the ranked list are assigned
different security levels if their risk scores have dramatic dif-
ferences. CV determines whether the difference of risk score
will put the App in one security level or another. Algorithm
1 shows the specifics, where the parameter δ is a thresh-
old to specify the CV difference required to assign adjacent
Apps to different security levels. The risk scores of Apps ai
are put into the algorithm where it loops through the set of
Apps A, and checks whether the risk score of a is greater
than the parameter δ. If the risk score is greater than δ, the
App is put into a new security level. If the risk scores are
close enough to the previous scores, then the Apps are put
into the appropriate security level. The lower the security
level, the higher the security risk.

Apps are now able to be recommended to users: given
a specific security level L∗ and a category c, Apps will be
treated in category c with security L ≥ L∗ as candidates.
There are three types of ranking principles for recommend-
ing Apps:

• Security Principle: The App candidates are first
ranked in ascending order by their risk scores and if
they have the same scores, they will be ranked further
by popularity scores

• Popularity Principle: The App candidates are ranked
in descending order by their popularity scores (e.g.
overall rating), and Apps with the same popularity
scores are then ranked by their risk scores.

• Hybrid Principle: It helps balance a user’s security
preferences and an App’s popularity, which is based on
the modern portfolio theory.

The modern portfolio theory is originally theorized in the
problem of investment of the financial market. An example
would be that an investor wants to select a portfolio of n
stocks with a fixed investment budget, which, in turn, will
return the maximum future return with the minimal risk [5].
So instead of stocks, they are Apps and the future return and
risk would be the popularity of the App and security risk.

After ranking Apps with respect to the three different
principles, the Apps are organized with respect to their se-
curity levels and categories. They are then put into a data
structure for App retrieval, namely an App hash tree. A
hash tree is a tree that has labelled nodes of values that
have child nodes in different hierarchies. This tree contains
two hierarchies: a category level and a security level. For
each node in the tree, it contains a hash table that stores

Figure 2: Percentage of (a) Apps at each security
level and (b)-(d) App categories at different security
levels 1, 3, and 6 [11]

the index of an App. The reason why a hash tree is used is
so Apps can be divided into different categories (i.e. tools,
games) and into different security levels.

3.4 Experimental Results
The experimental data that was collected in 2012 from

Google Play included 170,753 Apps in 30 App categories,
and the Apps have 173 unique security access permissions.
The Apps were categorized into six segmented security levels
(1-6). To organize each App into their respective risk level,
the risk scores in Algorithm 1 set δ = 0.01 ∗ CV (A), where
CV (A) is the Coefficient of Variation (CV) of all App risk
scores. Figure 2 (a) shows the percentage of Apps inside of
each risk level (6 is the most secure and 1 is the most inse-
cure) where most of the Apps fall under level 6 and levels 1-4
are relatively even. This shows that most Apps are secure
while only a few Apps have security risks. (b)-(d) shows the
percentage of App categories at levels 1, 3, and 6. The figure
shows what Apps have more permissions, such as the cat-
egories ”Tools”, ”Travel and Local”, and ”Communication”,
and therefore are more likely to have potential risks.

The recommendation method SPAR is compared to two
different methods of ranking App risks: Naive Bayes with in-
formation Priors (PNB) and RankSVM. RankSVM is learning-
to-rank approach that analyzes data and recognizes patterns
by the relationship of a specific query. 200 secure and 200
insecure Apps were used as training data. From all those
Apps, Zhu et al. selects the top 100 ranked Apps (most in-
secure) and the bottom 100 ranked Apps (most secure) and
merges them into a pool of unique Apps, that totalled to 496
Apps, into a data set. Three users were brought to manually
label each App with a score of 2 (insecure), 1 (not sure), and
a 0 (secure). Each user gave their own judgement on the App
based on their experience with it (i.e. downloading and us-
ing the App). Then each App was given a judgement score
f(a) ∈ [0, 6]. Finally, the 496 Apps were then ranked by
each method and were made into three ranked lists of Apps.
Then a popular metric evaluation tool was used: Normal-
ized Discounted Cumulative Gain (NDCG) to determine the
ranks of performance between each result. The DCG given

Figure 3: Overall performance of the different meth-
ods based on user judgement [11]

a cut-off rank K is calculated by

DCG@K =

K∑
i=1

2Rel(ai)−1

log2(1 + i)
,

where f(ai) is the App a’s assigned judgment score (f(a) ∈
[0, 6]) and Rel(ai) = f(ai) is the judgement score. K is the
number Apps being recommended. Figure 3 shows the over-
all performance between the three methods by four different
information retrieval metrics [9]:

• NDCG measures the performance of a recommenda-
tion system based on the graded relevance of the rec-
ommended entities.

• Precision@K is the proportion of retrieved instances
that are relevant to the query and ignores anything
below the cut-off rank K.

• Recall@K is the proportion of relevant instances that
are retrieved successfully.

• F@K is the balance of precision and recall.

Figure 3 shows the results of the three methods compared
with respect to the four different evaluation metrics. It can
be seen that the method SPAR outperforms the other two
methods: PNB and RankSVM, over all four evaluation met-
rics and the improvement is more significant when K is
smaller. Since SPAR uses PNB for assigning risk scores
to Apps, if PNB had used the bipartite graph as described
in this section, its overall performance would improve ac-
cording to Zhu et al. Both SPAR and PNB outperform
RankSVM in every evaluation metric. Learning-to-rank ap-
proaches are not as effective for estimating App risks, be-
cause they mainly rely on the effectiveness of feature extrac-
tion [11]. Overall, SPAR performed better when estimating
risk scores for Apps.

4. PRIVACY-RESPECT APP RECOMMEN-
DATION MODEL

Figure 4: Illustration of the three privacy levels [7]

This section presents a proposed user privacy-respect App
recommendation model with App functionality in mind. A
new latent factorization model is constructed to capture the
trade-off between functionality and user privacy preference.
Three levels of privacy information are used to character-
ize users’ privacy preferences. For testing their model, Liu
et al. crawls a real-world dataset (collection of data) from
Google Play and uses it to evaluate the model as well as
other previous methods [7].

4.1 User Privacy Levels
Each user has their own preference of privacy and security.

This method defines three privacy levels when determining
a user’s privacy concern, which each consists of a set of re-
sources and their corresponding security permissions. Liu
et al. compares each of the different privacy levels when
testing. The privacy levels are also used in determining the
privacy respect score in 4.2. Figure 4 describes the mapping
of each level.

Level I: This level consists of 10 resources (including loca-
tion, contact, message) as private. However, this level does
not access the security permissions that are associated with
each resource (security permission).

Level II: This level consists of the same 10 resources as in
Level I, but can distinguish the different security permissions
that are associated with that resource. In this level, a user
can be flexible when choosing what sort of privacy concern
is more important to them. In total, this level is expressed
by the 10 resources and a total of 23 security permissions.

Level III: This level consists of all resources and distin-
guishes the associated security permissions from level I and
II as well as other resources (e.i. Internet and bluetooth)
on a mobile device. This level is more complete and can
express all dangerous Android permissions. In total there
are 72 security permissions.

4.2 Constructing a Latent Factorization Model
The aim of this method is to quantify the trade-off of

both App functionality and user privacy preference [7]. The
study introduces gfunc,i,j as the functionality match score of
the interest of user i and functionality of App j and gprivacy,i,j
is the privacy respect score of the privacy preference of user

i and the privacy information used by App j.

Functionality match model: By using latent factor mod-
els used in standard recommendation systems [6], a model
is created based on a user j ’s interest as a latent vector
uinterest
i ∈ RK and an App j ’s functionality as a latent vec-

tor vj ∈ RK , where K is the number of latent dimensions of
user interest and App functionalities. Then the functionality
match score, gfunc,i,j, is modeled as:

gfunc,i,j = f

(
uinterest
i ,vj

)
,

Privacy respect model: A latent factor model is also used
to describe user privacy preference and App’s private infor-
mation. A user i ’s privacy preference is denoted as a latent
factor uprivacy

i ∈ RK . Each privacy information is modeled
in the set of S at a given privacy level as a privacy latent
factor ps ∈ RK . Then the privacy respect score, gprivacy,i,j,
is modeled as:

gprivacy = f

(
uprivacy
i ,

∑
S∈

∏
j

ps

)
,

where
∏

j is the set of privacy information of the App j.

Trade-off between functionality and privacy: A model
that contains a user i ’s overall functionality preference for
an App j, which is denoted by matrix gi,j , is the sum of the
functionality match score and the privacy respect score, we
have:

gi,j = gfunc,i,j + λgprivacy,i,j

where λ is a coefficient used to balance App functionality
and user privacy preference.

4.3 Model Specifications
This section presents a detailed model specification for the

latent factorization model. In the previous subsection, the
representation of user interests and user privacy preferences
being two latent factors, both the privacy preference and
user interest vectors are combined into one user profile latent
factor ui ∈ RK . Combining them can reduce parameters
to learn and will improve computational efficiency [7]. In
each App j, the user profile latent factor is modeled by a
functionality latent factor and a privacy latent factor as vj +
λ
∑

s∈
∏

j
ps, where

∏
j is the privacy information set for App

j and ps is the privacy latent factor. So a user i ’s preference
score (rating), xij , for an App j is represented by

xij = uT
i

(
vj + λ

1

|
∏

j |
∑
s∈

∏
j

ps

)

where 1
|
∏

j |
is there for each App to adjust the unbalanced

number of privacy information.
To model user profile and App profile, the user-App pref-

erence score (rating) xij for an App is followed by a prob-
ability distribution Pr(yij |xij , θ), that can infer the latent
factors ui, vj , and ps. The data gathered does not follow
Gaussian distribution, so Poisson distribution was used in-
stead to approximate the data distribution, which is denoted
by yij ∼ Poisson(xij) [2]:

Pr(yij |xij) = (xij)
yij exp(−xij)

yij !
.

Poisson distribution is a better choice for modeling discrete
user-item responses [7]. It is better at capturing real user-
item response data by setting non-negative constraints on
latent factors. It forces response variables to be in a wider
range than the rating based response, thus capturing a bet-
ter preference order. Also, only the observed part of the
user-item matrix needs to be iterated during modeling, which
provides an advantage for the sparsity or user-item matrix
in recommendation problems [7].

4.4 Experimental Results
Data for the experiments were collected from Google Play.

Since a user’s ratings are publicly available, the Google ID
of a user can be seen and can locate all Apps the user has
rated. A list of users was obtained and a crawler was written
to retrieve all rated Apps of those users in that list. For each
App that was retrieved, they crawled its permissions from
Google Play. The crawls were performed between June and
July 2014. The dataset included 16,344 users, 6,157 Apps,
and 263,054 rating observations. Of the rated Apps, 80%
of them were used only for training data, while the rest of
the Apps were used for actual testing. Seven different ap-
proaches were used when conducting experiments and com-
paring the results of them. The proposed model of [7] is
compared to four previous latent factor based recommenda-
tion models:

• Singular Value Decomposition (SVD) [6]: SVD is a
low dimension decomposition based recommendation
method.

• Probabilistic Matrix Factorization (PMF): PMF is like
SVD, but instead is a probabilistic framework.

• Non-negative Matrix Factorization (NMF): Similar to
SVD, but the latent vectors have to be non-negative.

• Poisson Factor Model (Poi-FM) [2]: Poisson factor
model is an alternative for latent factor model for dif-
ferent applications.

The latent factorization model that was created by Liu et
al. is based on some of these models (i.e. SVD, PMF), how-
ever, instead of just looking at user interest in Apps, this
method also considers the user’s privacy preferences when
recommending Apps. Those four previous recommendation
models were compared to different variants of the privacy
levels that were mentioned in 4.1. The three different pri-
vacy variants compared:

• Privacy_Res: Privacy-respect App recommendation
with the Level I privacy level.

• Sensitive_Perm: Privacy-respect App recommenda-
tion with the Level II privacy level.

• All_Danger_Perm: Privacy-respect App recommenda-
tion with the Level III privacy level.

Three of the evaluation metrics mentioned in 3.4: preci-
sion@N, recall@N, and F@N, were used to evaluate all seven
approaches. Each approach was tested at different latent
dimensions such as K = 20, 30, and 50. At each latent di-
mension, each approach was tested with N Apps such as N
= 1, 5, and 10. Figure 5 illustrates the relative performance
of the seven approaches over all of the evaluation metrics.
The relative performance measures the improvement upon
a random recommendation method. By looking at the fig-
ure, it shows that the three variants of this sections method:

Figure 5: Relative performance @N with different latent dimensions K [7]

Privacy_Res, Sensitive_Perm, and All_Danger_Perm out-
performed the other four compared approaches. NMF and
Poi-FM outperform both SVD and PMF, and that Poi-FM
outperforms NMF. There is not much difference in perfor-
mance when coming comparing each approach to itself on
a different latent dimension. When there are more Apps
tested for each latent dimension, the relative performance
decreases over all approaches.

5. CONCLUSIONS
In this paper, we have analyzed two recommendation meth-

ods that consider the privacy and security preferences of
users. Both methods considered user privacy and security
preferences, while the methods that each method compared
to, did not. The Privacy-Respect App modeled itself af-
ter the latent factorization model SVD, but considered both
functionality and user privacy preferences. SPAR and the
Privacy-Respect App are structured differently, but consider
user privacy preferences, as well as functionality (Privacy-
Respect App) and popularity (SPAR). The Privacy-Respect
App’s three main variants of the privacy levels (Level I, II,
and III) outperformed the other previous latent factoriza-
tion methods, concluding that Liu et al.’s model created,
was more efficient at recommending Apps to users. SPAR
had outperformed both PNB and RankSVM in every eval-
uation metric, concluding that SPAR is more efficient at
recommending Apps to users.

6. ACKNOWLEDGMENTS
Thank you to Nic McPhee, Elena Machkasova, Kristin

Lamberty, Peter Dolan, Chase Ottomoeller, Ashton Sten-
berg, and Sarah Drenner for their invaluable feedback.

7. REFERENCES
[1] S. A. Boyles, Jan Lauren and M. Madden. Privacy

and data management on mobile devices, 2012.
http://www.pewinternet.org/2012/09/05/
privacy-and-data-management-on-mobile-devices/
,[Online;accessed18-September-2015].

[2] P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable
recommendation with poisson factorization. CoRR,
abs/1311.1704, 2013.

[3] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 101–112, New
York, NY, USA, 2012. ACM.

[4] S. Grobart. The facebook scare that wasn’t, 2011.
http://gadgetwise.blogs.nytimes.com/2011/08/
10/the-facebook-scare-that-wasnt/,[Online;
accessed18-September-2015].

[5] Investopedia. Modern portfolio theory, 2015. http:
//www.investopedia.com/walkthrough/fund-guide/
introduction/1/modern-portfolio-theory-mpt.
aspx,[Online;accessed1-November-2015].

[6] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[7] B. Liu, D. Kong, L. Cen, N. Z. Gong, H. Jin, and
H. Xiong. Personalized mobile app recommendation:
Reconciling app functionality and user privacy
preference. In Proceedings of the Eighth ACM
International Conference on Web Search and Data
Mining, WSDM ’15, pages 315–324, New York, NY,
USA, 2015. ACM.

[8] Wikipedia. Beta distribution — wikipedia, the free
encyclopedia, 2015. https://en.wikipedia.org/w/
index.php?title=Beta_distribution&oldid=
688314127,[Online;accessed6-November-2015].

[9] Wikipedia. Information retrieval — wikipedia, the free
encyclopedia, 2015. https://en.wikipedia.org/w/
index.php?title=Information_retrieval&oldid=
685819601,[Online;accessed6-November-2015].

[10] Wikipedia. Naive bayes classifier — wikipedia, the free
encyclopedia, 2015. https://en.wikipedia.org/w/
index.php?title=Naive_Bayes_classifier&oldid=
685075040,[Online;accessed6-November-2015].

[11] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Mobile app
recommendations with security and privacy awareness.
In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’14, pages 951–960, New York,
NY, USA, 2014. ACM.

