
Fingerprinting for Dynamic Honeypots

Brandon N. Stock
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

stock400@morris.umn.edu

ABSTRACT
Honeypots are intentionally vulnerable hosts that can be
used to lure attackers to easily detect them and thus, im-
prove the security of the system they are being used in. A
honeypot can be either static or dynamic. A static honeypot
must be completely configured by an administrator. On the
other hand, a dynamic honeypot is able to configure itself
with the assistance of fingerprinting tools such as Ettercap
or Nmap. Fingerprinting tools scan a network to determine
the operating systems of the computers in a network. This
is important because in order for a honeypot to best emu-
late another another system, it needs to know the operating
system of what it is emulating. A honeypot being dynamic
provides it some advantages over a static honeypot. This
paper will discuss two systems where tools like Nmap were
used to configure honeypots and were tested for their effec-
tiveness in networks.

Keywords
cyber-physical system, intrusion detection, honeypot, hon-
eynet

1. INTRODUCTION
Honeypots are a deceptive intrusion detection tool that

is meant to lure intruders in. Honeypots emulate real ma-
chines and are intentionally vulnerable systems. A honeypot
should not have any traffic inside of it and because of that,
they are always able to detect intrusions inside of them. This
makes honeypots an effective tool for intrusion detection.

Honeypots can be static or dynamic. A static honeypot
must be completely managed and configured by an admin-
istrator. A dynamic honeypot can do some of the managing
and configuring on its own with the assistance of fingerprint-
ing tools such as Ettercap or Nmap. Fingerprinting tools
scan a network to determine the operating systems of the
computers in a network. This is important because in order
for a honeypot to best emulate another another system, it
needs to know the operating system of what it is emulating.
A dynamic honeypot can also be manually configured. This
will overwrite any configuration choices that the dynamic

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
.

honeypot may have chosen to do on its own.
Section 2 will give a brief background on intrusion detec-

tion, cyber-physical system, and honeypots and honeynets.
In section 3 three different techniques of intrusion detec-
tion are covered. This is followed by an experiment using
dynamic honeypots in a cyber-physical system in section 4
and a experiment using a dynamic honeypots in section 5.
Finally, the conclusion is in section 6.

2. BACKGROUND
In this section I will briefly explain intrusion detection,

cyber-physical systems, honeypots and honeynets, what a
dynamic honeypot is, and introduce networks and their ele-
ments.

2.1 Networking Terminology
There are several networking terms that need to be un-

derstood for this paper. Those terms will be defined here. A
MAC address is a unique identifier that is assigned to net-
work adapters. An IP address is a numerical label assigned
to computers in a network. A host is a computer connected
to a network. A port is an endpoint of communication in
an operating system. ICMP is a protocol used by network
devices such as routers to send error messages. A packet is
a collection of data that can be used by computers to com-
municate. Finally, a packet sniffer is a program that targets
packets transmitted over the Internet.

2.2 Intrusion Detection
Intrusion attacks are classified according to several cate-

gories such as how they affect the system, the threat they
pose, if they are an active or passive attack, etc. To evaluate
the effectiveness of an intrusion detection system (IDS), re-
searchers usually use three metrics to measure the system’s
performance, false positive rate, false negative rate, and true
positive rate. A false negative would occur if an IDS mistak-
enly identifies a malicious node as one that is well-behaved.
A true positive is the opposite of a false negative and occurs
when an IDS correctly identifies a malicious node. Similar
to a false negative, a false positive occurs when an IDS mis-
takenly identifies a node that is well-behaved as malicious.
[3]

2.3 Cyber-physical System
Cyber-physical systems (CPS) are large-scale, geograph-

ically dispersed, federated, heterogeneous, life-critical sys-
tems that comprise sensors, actuators, and control and net-
working components [3]. Examples of cyber-physical sys-
tems would be smart grids, hydro-electric dam controls, and
flight control systems. Essentially, a cyber-physical system
is a system where its control affects human lives or interacts



with the environment [8].

2.4 Honeypots and Honeynets
A honeypot is an intentionally vulnerable system that

is set up to lure in attackers and to gather data on the
attacker’s activities and methods. Honeypots deceive at-
tackers to infiltrate their systems by mimicking operational
hosts. Honeypots can only detect attacks on themselves and
not on other systems like some other intrusion detection sys-
tems can. To improve the chance of attacks being detected
with honeypots, a large number of them can be deployed. A
large network of honeypots is called a honeynet.

A honeypot can be static or dynamic. A static honeypot
must be completely deployed and managed by an adminis-
trator. On the other hand, a dynamic honeypot is able to
determine how many of them are needed and deploy, shut-
down, and redeploy when it deems it to be necessary. A
dynamic honeypot is able to scan the network based on a
set time interval and change based on the current state of
the network it is running in [4]. Section 3 discusses methods
for this process.

3. TECHNIQUES
This section covers the different types of techniques that

are used in intrusion detection systems.

3.1 Intrusion Detection in CPSs
An IDS for a cyber-physical system implements two core

functions, which are collecting data about suspects and an-
alyzing the data about those suspects. Intrusion detec-
tion in a CPS addresses the embedded physical components
and physical environment in a CPS. When under attack,
the physical components and physical environment mani-
fest physical properties and usually require a closed con-
trol loop to react to those physical instances of attacks. A
few of the existing intrusion detection techniques used in
a CPS are knowledge-based, behavior-based, and behavior-
specification-based intrusion detection methods. [8]

3.1.1 Knowledge-Based Intrusion Detection
In knowledge-based intrusion detection, run-time features

that match a specific pattern of misbehavior are searched
for. This approach is sometimes also referred to as misuse
detection. A big advantage of using knowledge-based intru-
sion detection is that it has a low false-positive rate since
this technique only searches for behavior that is known to
be malicious. A good node will not exhibit the behavior
that is being searched for, so it will not be falsely detected
as malicious. [8]

A disadvantage to this technique, though, is that it will
only search for a specific pattern. This means that the IDS
must have a dictionary of attacks and stay current. So in or-
der for this method to be effective, the dictionary of attacks
needs to be constantly updated.

3.1.2 Behavior-Based Intrusion Detection
In behavior-based intrusion detection, run-time features

that are not normal are searched for. What is normal is de-
fined based on the history of the test signal or with respect
to a collection of training data. For an IDS, behavior that is
categorized as good or malicious would be labeled data and
behavior that is not categorized would be unlabeled. If an
approach of this technique is unsupervised, meaning that an
IDS is trying to find hidden structure in data that is unla-
beled, then researches use machine learning and train the
IDS with live data. An example of this is called clustering,
which takes a set of objects, in this case intrusion attacks,

is grouped with other objects that are similar to each other
than objects in another group [6].

A semi-supervised approach can also be used to train a
behavior-based IDS. Semi-supervised machine learning takes
a small amount of labeled data and a large amount of un-
labeled data to train an IDS. This could involve training
an IDS with a set of truth data, which is data that is pro-
vided by direct observation. The approach that researchers
take for training the IDS depends on the data that is being
protected. [8]

One of the biggest advantages to a behavior-based IDS is
that they do not look for something specifically, which rids
the need of the IDS knowing all the information about cur-
rent attacks and keeping an updated and current attack dic-
tionary. One big disadvantage, however, is behavior-based
intrusion detection is more susceptible to false positives.
Also, if the IDS is semisupervised, the IDS is vulnerable
during its training phase.

3.1.3 Behavior-Specification-Based Intrusion
Detection

Behavior-specification-based intrusion detection is a vari-
ation of behavior-based intrusion detection. This technique
formally defines how a good node behaves and will detect an
intrusion when the system behaves differently from that defi-
nition of good behavior. For behavior-specification-based in-
trusion detection, one of its major advantages is that it has
a low false-negative rate since only situations where the be-
havior of a node is different from what is defined as good be-
havior are detected [8]. A malicious node should behave dif-
ferently than one that is well-behaved and therefore, should
be detected.

A second advantage to a behavior-specification-based IDS
is that the system does not need any amount of training
to be effective and will not have any period of vulnerability
like a behavior-based IDS. The main disadvantage is the
effort required to define a formal specification of what a well-
behaved node will act like. A behavior-based-specification
IDS does not use any user, group, or data profiling and
instead, an expert defines what is legitimate behavior [8].
The IDS will then detect malicious behavior based on if a
node deviates from the behavior that is specified as good.

4. FINGERPRINTING HONEYPOTS
Fingerprinting a network is incredibly important for the

use of dynamic honeypots. In order to most effectively em-
ulate a network, a dynamic honeypot needs to know what
is in the network. Fingerprinting tools are used exactly for
this. Fingerprinting tools determine the operating system
of hosts in a network and the fingerprinting tools can either
be active or passive.

4.1 Active Fingerprinting
Active fingerprinting is done using signature detection

technique, which has unique messages sent as probes to the
target system and the responses are analyzed. The responses
received will vary based on the implementation of the finger-
printing tool [4]. To determine the OS of the target system
the header fields are analyzed and compared to a database
of known signatures.

4.2 Passive Fingerprinting
Passive fingerprinting tools also uses a signature detection

technique that is based on a database of known signatures.
Instead of sending probes and requesting replies from a host,
however, the data is obtained by sniffing the network for
packets transmitted by the target system [4]. This data is



Nmap Time to Scan (Seconds) Amount of Traffic Generated/Received
Intense Scan 242 (562.47KB) | Rcvd: (474KB)

Intense Scan plus all TCP ports 529 (31.969MB) | Rcvd: (28.866MB)
Quick Scan 157 Rcvd: (125.34KB)

Quick Scan Plus 267 (256KB) | Rcvd: (897KB)
smb-os-discovery Script Scan, ports 139/445 7.2 (13KB) | Rcvd: (19KB)

Table 1: Scanning time and generated traffic [4]

then compared to the database of signatures to determine
the OS of the system.

4.3 Setup and goals
In Mohammadzadeh et al.’s research [4], the system they

tested used the following tools: WinHoneyd, Winpcap li-
brary, Nmap, p0f, a p0f log parser, a honeypot configura-
tion file generator, and an analysis component that collects
log files from deployed honeypots and then sends those log
files to an administrator for analysis. WinHoneyd is a low
interaction honeypot. A low interaction honeypot limits the
amount of interaction an attacker can have with a system,
which secure the system and prevents an attacker from using
the honeypot to attack other systems [2]. However, little in-
formation is received from an attack because of this. P0f is a
passive fingerprinting tool and the Winpcap library provides
packet capture capability for packet sniffers like p0f. With
this honeynet system, Mohammadzadhe et al. Deployed two
honeypots for every individual host on their test network.

They performed four total experiments that tested map-
ping time for a passive fingerprinting tool and compared it to
the time it took for a active fingerprinting tool, generated
traffic, operating system detection accuracy, and then in-
trusion detection/prevention and deception system evasion.
The first goal of their experiments were to design and de-
velop a dynamic honeypot that performed network mapping,
configuration, deployment, and redeployment. The other
goal was to evaluate the effectiveness and accuracy of OS
fingerprinting techniques.

4.4 System Evaluation
The first experiment discussed in [4] involved a network

consisting of 32 Windows XP machines and 32 Windows
7 machines with their firewalls disabled. The goal of this
experiment was to measure the mapping time and generated
traffic by fingerprinting in the network. Both Nmap and p0f
were used on all 64 of the machines to measure the time
that it would take to scan and map a network. Network
mapping can be performed in real-time or it can be done in
intervals set by the user, but if the intervals are set by the
user, then the time must allow for the fingerprinting tools
used to accurately determine the network’s layout.

Figure 1 shows the difference in scanning time between
Nmap and p0f. Nmap was the active fingerprinting tool
and p0f was the passive fingerprinting tool. In all of the
cases, Nmap was able to scan the network faster. The scan-
ning time for p0f increased at a higher rate as the number
of scanned hosts increased. This is because p0f needs more
time to process and analyze sniffed packets and to determine
the total number of operating systems as traffic increases in
a network. Nmap, however, always sends a specific number
of probes to each host, no matter the network traffic or the
number of systems in a network environment [4]. The accu-
racy of the OS detection was not reported for these tests.

In the second experiment, mapping time and generated
traffic were tested again. This time the network consisted
of ten machines, all having different operating systems, and

Figure 1: Graph representing the time to detect
hosts on active and passive fingerprinting tools [8]

set up on a /25 subnet, a subdivision of a network, with
no other active hosts present. This provided a controlled
environment for the experiment.

This time only Nmap was used to scan the network. Mul-
tiple setting of Namp were used to determine the time to
scan a particular subnet and the amount of traffic that was
generated during the process. As mentioned earlier, dy-
namic honeypots attempt to monitor a network in real-time
and because of this, scanning the hosts in a specified interval
is required. For Mohammadzadeh et al.’s experiment, they
needed to choose an interval that would minimize the effects
of the scanning of the network to avoid congestion [4].

All of the results from this experiment are shown in Table
1. The two most important scans to look at are the intense
scan and quick scan. Intense scan scans the most common
TCP ports and tries to determine the OS and services and
versions that a host is running. Quick scan only scans the
top 100 most common TCP ports to try and determine the
OS a host is running. A TCP port is used to accept infor-
mation from other hosts. A scan like quick scan plus, which
adds in version detection to quick scan, is able to produce
the same accuracy as a scan such as intense scan while gen-
erating less traffic on a network [4]. The quickest scan used
a smb-os-discovery script that took 7.2 seconds.

The third experiment tested the operating system detec-
tion accuracy of Nmap. In order for dynamic honeypots to
work effectively and deceive intruders, the fingerprinting tool
used along side the honeypot needs to be able to accurately
detect the operating system of machines in the network. The
same network was used from the second experiment.

With firewall off, Nmap was able to detect most of the
operating systems reliably. Nmap, however, works most ef-
fectively if the target machine has one open port and one
closed port. Detection accuracy also depends on the type of
scan that Nmap uses. In Mohammadzadeh et al.’s experi-
ment, the default operating system scan of Nmap was able
to detect nearly all of the operating systems in the network.
When a version detection scan of Nmap was used, the results
were the same, but a bit slower. A final scan using a script



Host Default Version Detection smb-OS-Discovery
Windows Server 2003 R2 Standard Win XP SP2 Win. Server 2003 SP1 or SP2 Win Server 2003 R2 SP2

Windows Vista Enterprise SP1 Win 7 Win Server 2008 SP1 m Win Vista Enterprise SP1
Windows Vista Business Win 7 Win Server 2003 SP1 or SP2 Win Vista Business

Windows Server 2003 SP1 Standard Win XP SP2 Win server 2003 SP1 or SP2 Win Server 2003 SP1
Windows 2008 Server R2 Standard SP1 Win 7 Win Server 2008 SP1 Win 7 Home Premium SP1

Windows 7 Home Premium SP1 Win 7 Win Server 2008 SP1 Win 7 Home Premium SP1
Windows Web Server SP1 Win 7 Win Server 2008 SP1 Win Web Server 2008 SP1

Windows XP Professional SP2 Win XP SP2 or SP3 Win Server 2003 Win XP
Mac OS X 10.6.8 Mac OS X 10.6.X iOS 4.X None

Linux Mint 12 64bit (Kernel 3.0) Linux 2.6.38 Linux 3.2 Unix (Samba 3.5.11)

Table 2: Detection accuracy of Nmap [4]

called smb-os-discovery was used and this scan was able to
accurately determine all of the operating sytems, versions,
and service packs of the machines in the network. However,
when the tests were performed with hosts having their fire-
wall enabled, Nmap could not determine any of the hosts’
operating systems regardless of the type of scan that was
used by Nmap.

Table 2 compares the operating system detection tech-
niques in Nmap. The default operating system detection
and version detection were able to produce similar results
for each scan. The SMB operating system detection script
detected all the operating systems accurately, except for the
MAC and Linux computers. The passive fingerprinting tool
was unable to recognize any of the operating systems accu-
rately [4].

5. DYNAMIC HONEYPOTS IN A CPS
In this section I will provide an overview of how Vollmer

and Manic [5] performed their experiment with dynamic
honeypots in a cyber-physical system. The goal of their ex-
periments was to emulate hosts in a cyber-physical system
and then test how well they emulated their hosts by scan-
ning for them in their test networking using fingerprinting
tools.

5.1 Setup
In Vollmer and Manic’s research [5], Ettercap was used

as their fingerprinting tool. Fingerprinting is the process
of scanning and mapping hosts in a network to determine
their operating systems. Ettercap is an open source passive
fingerprinting tool that detects a network’s configuration by
the examination of packet headers [1].

For the dynamic honeypots, Vollmer and Manic chose to
use Honeyd. Honeyd is a framework for virtual honeypots
that simulates computer systems and their network behavior
[7]. Honeyd provides flexible configuration capability and
that is one of its advantages [5]. Honeyd is able to take the
information gathered from Ettercap and automatically and
correctly configure the necessary amount of honeypots. A
honeypot needs its operating system chosen and mapped,
MAC created, and a service port emulated. This is done
based on information from Ettercap.

5.1.1 Operating System Selection
It is possible that Ettercap may not be able to detect

the operating system of a host in a network. An operating
system still needs to be chosen and it is best to still provide
an exact match to best emulate the network. [5]

Pseudo code for Vollmer and Manic’s algorithm is shown
in Figure 2. The source of information to be used to deter-
mine a honeypot’s operating system is Read Data. Read Data
consists of extracting information from n host records h from
the Ettercap entries and forming a set of host records O con-

Figure 2: Vollmer and Manic’s Algorithm [5]

taining n hosts. These records are intended to be used to
compare to a list of j IP addresses. [5]

If we have Ph, a set of port values for a host h, and a set
of network ports, Si, for a target i, the method Find closest
will examine the intersections of Si and Ph for all h in the
set O. The count of matching ports is stored for each inter-
section and the number of ports for each target is calculated.
Based on these two values, a match percentage is calculated
and a system with the highest matching percentage is cho-
sen.

If an operating system cannot be determined by examin-
ing ports, then the MAC address is used. Find closest will
compare the vendor identification section of the candidate
MAC address of i with the MAC addresses for each host h
in the set O [5]. Once all the matches are found, the largest
matching value is chosen as the OS, if a value exists [5].

If an OS still has not been determined, then a random
number r is generated in the range 0 to N where N is the
cardinality of O. If the host record hN contains an OS field,
then this is utilized [5]. If no operating system field exists
for that host record, the random value is used and a field
is possibly selected for inclusion proportional to the relative
frequency of its presence in O. If no host records contain an
OS, then a completely random OS value is required.

5.1.2 Operating System Name Mapping
To map an OS name, the Honeyd configuration value uses

the database of Nmap. Ettercap, on the other hand, uses
its own defined names that do not directly match up with
Nmap [5]. In order to correctly configure the OS name map-
ping, Vollmer and Manic created a simple function Map OS
that associates Ettercap names with names from the Nmap
database.

The first time the algorithm goes through the names of
OSs from both the Ettercap and Nmap databases, it com-



pares the strings of the OS names and looks for case-insensitive
matches. The number of words that match are summed and
stored and after iterating through each OS combination, the
combination with the largest sum is presented as the can-
didate [5]. Each OS name combination is then written to a
file to be referenced during creation of the honeypots.

5.1.3 MAC Creation
Honeyd can specify MAC addressed in two different ways,

either by vendor name or the six-octet string. Vollmer and
Manic chose to use the six-octet representation for their algo-
rithm in their Create MAC function [5]. Ettercap captures
all the MAC addresses for all the host records in O. The
MAC protocol specifies that the first three octets should be
unique to a vendor and should not overlap with any other
vendor. Vollmer and Manic then used these first three octets
to create a MAC address that would appear to come from a
specific vendor [5].

The last three octets are randomly generated and ap-
pended to the end of the first three octets. The new MAC
address is then compared to all the other MAC addresses
that are in the host set O. If any of the addresses are the
same, then another set of random values is generated for
that address.

5.1.4 Network Service Emulation
All of the host records in O contain network ports, defined

previously as Ph. In the host records, a port number and a
port service is available. The port service name is a human
readable string that is defined in an Ettercap configuration
file called etter [5]. Based on the service names in this file,
Vollmer and Manic created a new configuration file called
serv.conf. This new file maps the port service names to a
service emulation script path.

The function Create Features examines any service ports
that are found in the Ettercap output and load the serv.conf
file. Service names that match entries in the file will result
in the correct service script value placement in the Honeyd
configuration [5]. This will enable the honeypots to emu-
late service specific behaviors. In addition to these ports, a
variable number of ports that are associated with common
services are randomly activated.

The file maps the vendor MAC to a list of common ser-
vices that can be found on a device of the emulation target
[5]. The services in the file are described by port number,
protocol, service description, and action script. If used, the
action script specifies which script Honeyd should use when
it sees traffic on this port. This provides the ability to cus-
tomize a response to the specific device type and still be able
to retain generic service emulation functionality.

Each service description has an include “value”, which is a
floating-point value between 0 and 1. This value is compared
to a randomly generated value in the same range. If the
random value is less than the include value, the port is added
to the honeypot’s configuration. This varies port inclusion
to represent the variability in device configurations [5].

5.1.5 Starting and Updating the Honeypots
As mentioned previously, the honeypots that Vollmer and

Manic used were dynamic, which allows them to automat-
ically shut down, deploy, or redeploy. The honeypots de-
termine when any of these actions are necessary based on
information from Ettercap. Candidate emulation hosts are
provided at start up as a list of IP addresses and it is as-
sumed that if one of the hosts disappears during a network
scan, then the user still needs to have an emulated version of
it [5]. The overhead to maintain any missing hosts’ records
is minimal. If the actual system appeared in the initial scan

create vh1
set vh1 personality ”Linux 2.4.xx”
set vh1 default tcp action reset
set vh1 default udp action reset
set vh1 default icmp action reset
set vh1 tcp port 23 ”/script/router/telnet.pl”
set vh1 ethernet ”00:00:BC:A1:00:23”
bind 192.168.1.125 vh1

Figure 3: Honeyd host configuration [5]

of the network, then an initial virtual host configuration will
have been created for this host.

The initial configuration file is created by Create Config.
The configuration of the honeypots will change while the
network is running. The time between configuration updates
is configurable, but Vollmer and Manic chose 60 seconds. Af-
ter the 60 seconds, etterlog is called on the ettercap daemon
log file and the resulting output is saved and compared to
an existing output file [5]. An example of a Honeyd host
configuration is shown in Figure 3. The differences between
the two files, if there are any, are noted and stored in a list.
Based on this list, actions to change network services, up-
dating operating system configuration, and changing MAC
addresses is done [5].

5.2 Test System
The CPS Vollmer and Manic used was a small campus

grid and a sensor network in the Center for Advance En-
ergy Studies in Idaho Falls, Idaho to test their algorithm.
The software for Vollmer and Manic’s algorithm was imple-
mented on a test platform that ran a 32-bit Ubuntu 12.04
operating system with a dual-core Intel Atom 330 proces-
sor, 2 GB of DDR2 RAM, a 250-GB hard drive and three
Ethernet network ports [5]. One of the Ethernet ports was
dedicated for use only by the honeypots. Honeyd is capable
of running multiple virtual hosts on one physical network
interface [5]. The second port was used to perform passive
network scanning and the final port was connected to a sec-
ond separate network used for the management of devices.
The goal of their experiments were to emulate any identified
hosts on a network as closely as possible [5].

5.3 Evaluation and Results
Vollmer and Manic performed nine tests with their algo-

rithm. Eight of the nine tests were scans on the network to
evaluate the effectiveness of various scans and the final test
was evaluating the effectiveness of the anomaly detection of
the honeypots.

Vollmer and Manic created three virtual honeypots and
verified them by sending Internet control message protocol
echo messages to them [5]. Then after 60 seconds, an up-
dated input text message was sent to 12 IP addresses of the
hosts in the test network. Their software automatically cre-
ated configurations for all of the devices and assigned each
one its own unique IP and MAC address. Out of the 13
devices Vollmer and Manic chose for emulation, 10 we em-
ulated successfully, two were emulated with some degree of
randomness, and one device could not be determined [5].

In Vollmer and Manic’s first test, they used Nmap to per-
form a ping sweep on all 256 addresses in the range that con-
tained the 12 successfully emulated devices. A ping sweep
is used to establish a range of IP addresses that map to
live hosts. Three requests were sent to the emulated de-
vices. The requests were an ICMP echo request, a TCP
“Three-way Handshake”, and an ICMP timestamp request.



An ICMP echo request sends a message to a target and waits
for a reply. In a TCP “Three-way Handshake” a host sends
a request to a target, the target responds back in acknowl-
edgment, and the original host acknowledges back again.
Then, in a ICMP timestamp request a timestamp is set to
the time a host last touched a timestamp. This timestamp
is then sent to a target and the target stamps the time on
the timestamp before sending it back to the original host.
If any system responded to one of the requests, then it is
considered to be available on the network. All 12 of the
emulated devices were found.

In the second test, Nmap was again used to detect the
operating system of the emulated devices. OS detection in
Nmap is based on a database of signatures [5]. Each record
in the database contains a field for vendor, OS family, OS
generation, and device type. Output from the detection
done by Nmap includes a list of the possible OSs and de-
vice classes with an accuracy score between 0 and 1 for the
scanned target.

The OS detection produced multiple results for each de-
vice. For the 12 devices, 223 device types and 40 operating
system matches were returned. For both of these, the ac-
curacy ranged from 0.85 to 0.97 [5]. Since multiple results
were returned for each device, any entry that matched the
original device or its mapped operating system were consid-
ered a success. 7 out of the 10 successfully emulated devices
were identified and the two random emulated devices were
not identified.

For the third test, another operating system scan was done
with Nmap. This time the scan that was done guessed oper-
ating systems more aggressively. The results from this scan
were slightly improved to 80% correctly identified compared
to 70%.

For the fourth test, Nmap was used send IP packets and
iterate through the 8-bit IP protocol field. 256 different
protocols were sent to the emulated hosts. The emulated
hosts only responded to three of the 256 protocols [5].

For tests five to seven, ICMP echo requests, also called
pings, were sent to the 12 emulated devices and 46 actual
devices on the test network. ICMP packets are wrapped in
an IP datagram and can contain IP option fields [5]. Only
one of the 46 actual devices did not respond with varying
levels of correctness and none of the 12 emulated devices
were able to respond [5]. This test is different from the ping
sweep test due to this test only sending an ICMP echo re-
quest, where the ping sweep sent three different requests.
In the ping sweep test, if an emulated device responded to
any of those three requests, then it was considered a suc-
cess. It is very likely that the request the emulated devices
responded to in the ping sweep test was not the ICMP echo
request due to the poor results of these three tests.

For the eighth test, a framework called OpenVAS was used
to perform more intensive network probes on the honeypots
than Nmap is able to do [5]. Vollmer and Manic performed
a large-scale discovery and vulnerability scan using Open-
VAS on the 12 honeypots. All 12 honeypots were discovered
during the scans the vulnerability report looked similar to
how a report for actual hardware would look. All of the 12
devices had the same warning about a multi-cast address
response flaw that could possibly lead to a denial of service
attack.

The ninth test was anomaly detection. A message with the
12 emulated IP addresses was sent to an anomaly behavior
component of the network. The anomaly behavior function
was to passively monitor host traffic and send alert messages
[5]. If the anomaly behavior component received an input
IP that it has not been trained to, then it would consider

all traffic to it to be abnormal. Honeypots should not have
any traffic, therefore, if any traffic occurs in a honeypot, it
should be alerted about. The anomaly behavior component
alerted for 100% of the emulated hosts during test 1 to 7.

6. CONCLUSION
As we have seen, fingerprinting tools such as Nmap are

not able to always identify every host in a network. Be-
cause of this Honeyd may not be able to emulate all hosts
in a network. This can be a problem when changes occur
in the network, but it is also possible to fix this problem by
manually configuring honeypots where necessary. It is also
possible that if an intruder were to scan the network and an-
alyze information from the network that they are attempting
to breach, then the honeypot could be discovered.

While there are these drawbacks with honeypots and hon-
eynets, it is easy to detect attacks directed at them. As pre-
viously mentioned, honeypots are intentionally vulnerable
and meant to deceive intruders. Since this is the case with
honeypots, any traffic in a honeynet is considered malicious
and will be detected.

Acknowledgments
Thanks to Elena Machkasova, Nic McPhee, and Melissa
Helgeson for providing me with feedback.

7. REFERENCES
[1] W. Ghanem and B. Belaton. Improving accuracy of

applications fingerprinting on local networks using
nmap-amap-ettercap as a hybrid framework. In Control
System, Computing and Engineering (ICCSCE), 2013
IEEE International Conference on, pages 403–407, Nov
2013.

[2] A. Mairh, D. Barik, K. Verma, and D. Jena. Honeypot
in network security: A survey. In Proceedings of the
2011 International Conference on Communication,
Computing & Security, ICCCS ’11, pages 600–605, New
York, NY, USA, 2011. ACM.

[3] R. Mitchell and I.-R. Chen. A survey of intrusion
detection techniques for cyber-physical systems. ACM
Comput. Surv., 46(4):55:1–55:29, Mar. 2014.

[4] H. Mohammadzadeh, M. Mansoori, and I. Welch.
Evaluation of fingerprinting techniques and a
windows-based dynamic honeypot. In Proceedings of
the Eleventh Australasian Information Security
Conference - Volume 138, AISC ’13, pages 59–66,
Darlinghurst, Australia, Australia, 2013. Australian
Computer Society, Inc.

[5] T. Vollmer and M. Manic. Cyber-physical system
security with deceptive virtual hosts for industrial
control networks. Industrial Informatics, IEEE
Transactions on, 10(2):1337–1347, May 2014.

[6] Wikipedia. Cluster analysis — Wikipedia, the free
encyclopedia, 2015. [Online; accessed
14-December-2015].

[7] X. Zhang and L. Zheng. Delude remote operating
system (OS) scan by honeyd. In Computer Science and
Engineering, 2009. WCSE ’09. Second International
Workshop on, volume 2, pages 503–506, Oct 2009.

[8] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan.
Time-based intrusion detection in cyber-physical
systems. In Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems,
ICCPS ’10, pages 109–118, New York, NY, USA, 2010.
ACM.


