Topic Discovery and Evolution Through Social Media

Zachary Douglas Vink

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

5 December 2015

Outline

- Technical Background
- 3 Latent Dirichlet Allocation
- Dictionaries
- The Badge Model
- 6 Learning Topic Evolution from Content and Social media activity (LTECS)

Conclusions

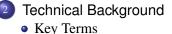
Outline

- 2) Technical Background
- 3 Latent Dirichlet Allocation
- 4 Dictionaries
- 5 The Badge Model
- Learning Topic Evolution from Content and Social media activity (LTECS)

Purpose

- **Problem:** Increasing number of articles and papers that need categories
- **Solution:** Discover how to categorize these documents by their topics

Outline



- Iterative Approaches
- Latent Dirichlet Allocation
- 4 Dictionaries
- 5) The Badge Model

Key Terms

Key Terms

Document: A collection of text conveying at least one idea **Corpus:** A collection of documents Stemming: Reducing a word to its base form (Ex. Exercising -> Exercise) Vocabulary: Each stemmed word in the corpus

Key Terms (Cont.)

	Assigns a probability to each item in a set A tool used to discover topics of documents
Bag-of-Words Model:	within a corpus In this model, a document is represented as a set of words ignoring all grammar and order

Key Terms (Cont.)

Solution:	Discover how to categorize documents by their
	topics
Topic discovery:	The process of identifying a set of topics describ-
	ing the documents in a corpus
Labeling a document:	Assigning one or more topics from the discov-
	ered set to a document

Key Terms (Cont.)

Topic evolution: The description of changes within a set of features showing how those features describe topics differently or similarly over a *period of time*

Iterative Approaches

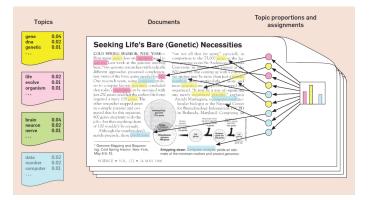
- Gather a corpus
- Set number of topics
- Generate model
- Check for accuracy
- Repeat until satisfactory results

Outline

- 2) Technical Background
- Latent Dirichlet Allocation
- 4 Dictionaries
- 5) The Badge Model
- Learning Topic Evolution from Content and Social media activity (LTECS)

LDA

Latent Dirichlet Allocation (LDA)



• LDA assumes documents are created at random

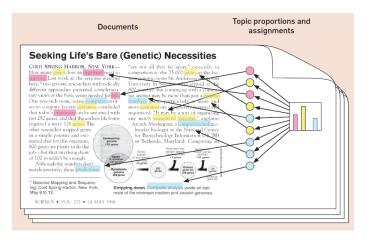
LDA Assumptions

- Each document is created with a set distribution of topics
- We assume each document is created one word at a time
- Each word is based off the topic chosen
- The topic is chosen with a probability based on the documents topic distribution

|--|

LDA

Topic Assumption Description



• Words are chosen based on the topic chosen

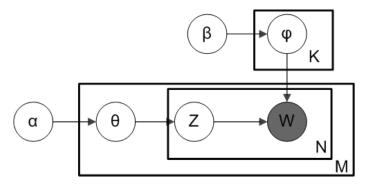
LDA Assumptions

- Each word in the *vocabulary* has a chance of coming from any topic
- Topics are named based on the words with the highest probability of being chosen



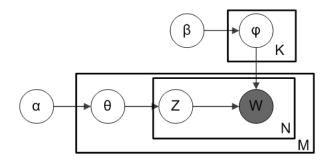
LDA

Plate Description



- Blank plates are the variables we are trying to create
- The solid plate is the observable data

Variables in LDA

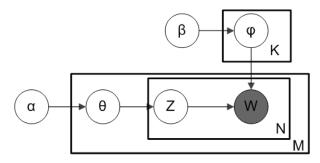


LDA

- α and β starting parameters
- Topic Word Distributions: $\phi_{1:K}$
- W is observed word
- Words in Document: N

- Topic Distributions: θ_d
- Chosen topic: z
- Documents in Corpus: M
- Total Topics: K

Discovering the Topics



LDA

- Check the probability of obtaining the observed corpus
- Modify parameters to increase probability
- Repeat until the probability of producing the observed corpus is maximized

Outline

Purpose

- 2 Technical Background
- 3 Latent Dirichlet Allocation

Dictionaries

- Using Dictionaries
- Non-Negative Matrix Factorization

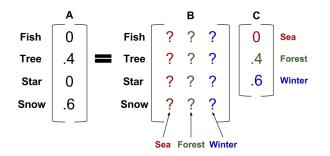
The Badge Model

Dictionaries

- A dictionary is a matrix that encodes associations between two features.
- Topic Discover and Evolution use them to encode textual features and their relationship with topics.

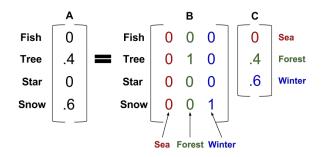
Using Dictionaries

Training Dictionaries



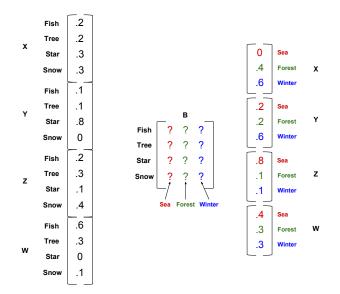
- A represents a document by word proportions
- **B** represents a dictionary
- C represents a document by topic proportions

Dictionary Complexity



- Fish should be related in some way to Sea
- Tree should not *only* by related to *Forest*
- The vector C needs to be assigned topics by hand

Training Dictionaries



Non-Negative Matrix Factorization (NMF)

- A loss function returns the total error
- NMF is a *process* that generates the dictionary with the least amount of error

The *l*₂-norm

- The *l*₂-norm measures the distance of a vector
- We create an error vector for each row
- By taking the *l*₂-norm of the error vector for each row in a matrix, we derive the amount of error for the matrix

The *l*₂-norm

The formula on the right shows how to obtain the l_2 -norm for the vector on the left.

Non-Negative Matrix Factorization

$$\min_{B\geq 0}\sum_{i=1}^{N}l(\mathbf{y}_{i},\mathbf{B}\theta_{i})$$

- Set N equal to the number of rows in the dictionary B
- Set **y**_{*i*} to the document *i* by word proportions
- Set θ_i to the document *i* by topic proportions
- The function $l(\mathbf{y}_i, \mathbf{B}\theta_i)$ returns the l_2 -norm of row i in **B**

Outline

- 2) Technical Background
- 3 Latent Dirichlet Allocation
- 4 Dictionaries

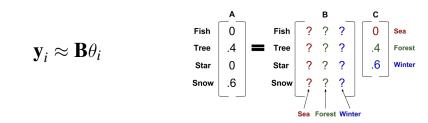
5 The Badge Model

 Learning Topic Evolution from Content and Social media activity (LTECS)

The Badge Model

- Utilizes user descriptions to assign topics to documents
- Automates the topic assignment of documents before training a dictionary

The Badge Model Foundation Equation



- The formula can be described by our earlier example
- Badges are words users describe themselves with
- The topics are created from user *badges*

Setting Topics

- User 1: Liberal, Minnesotan
- User 2: Liberal, Athlete
- User 3: Conservative, Athlete

1/3Liberal1/3Athlete1/6Conservative1/6Minnesotan

The Loss Objective

$$\min_{B\geq 0} \sum_{i=1}^{N} l(\mathbf{y}_i, \mathbf{B}\boldsymbol{\theta}_i) + \lambda_B \sum_{j=1}^{V} \sum_{k=1}^{K} |\mathbf{B}_{jk}|$$

- The gray part of the loss objective is the l_2 -norm as discussed earlier
- The new addition is a penalty for non-sparse matrices
- To increase the sparsity of the resulting dictionary, increase λ

Discovering Topics

$$\min_{\boldsymbol{\theta} \ge \mathbf{0}} \sum_{i=1}^{N} l(\mathbf{y}_i, \mathbf{B}\boldsymbol{\theta}_i) + \lambda_{\boldsymbol{\theta}} \sum_{j=1}^{V} \sum_{k=1}^{K} |\boldsymbol{\theta}_{jk}|$$

- The formula above discovers the minimum θ
- **B** is known from the previous step
- Document *i* does not have assigned topics

Outline

- 2) Technical Background
- 3 Latent Dirichlet Allocation
- 4 Dictionaries
- 5 The Badge Model

Learning Topic Evolution from Content and Social media activity (LTECS)

LTECS

LTECS

- Topic Evolution Model
- Uses topic discovery methods (such as the *badge model*) to form a foundation
- Defines topics based on users and content
- Introduces an expansion on NMF called collective factorization

LTECS

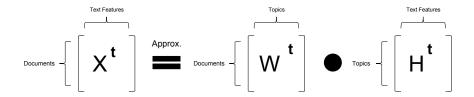
LTECS

- How do dictionaries *evolve* over time?
- Do they change based on content or users?
- How do we map the changes?

LTECS

The Content Formula

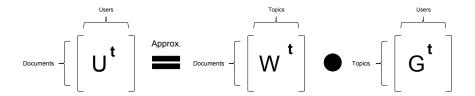
Symbol	Description
t	an arbitrary time
d	a document in the corpus for training
f	a textual feature in a document, typically a non-stop word
k	the number of topics describing all the documents in the training
	corpus
N_d^t	the number of documents in the corpus associated with time t
N_f	the number of textual features in the corpus associated with time
	t
Wt	An N_d^t x k matrix
Ht	An $k \ge N_f$ matrix
Xt	An $N_d^t \ge N_f$ matrix



LTECS

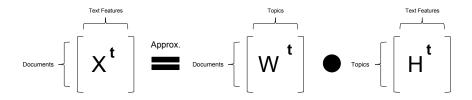
The Content Formula

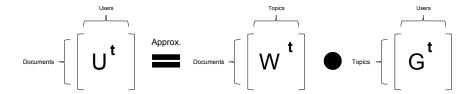
Symbol	Description
t	an arbitrary time
d	a document in the corpus for training
k	the number of topics describing all the documents in the training
	corpus
N_d^t	the number of documents in the corpus associated with time t
N _u	the number of users who shared a document at time t
Wt	An $N_d^t \ge k$ matrix
Gt	An $k \ge N_u$ matrix
Ut	An $N_d^t \ge N_u$ matrix



Discovering the Dictionary

Solve for W^t





Topic Evolution Matrix

$\mathbf{X}^{t} \approx \mathbf{W}^{t} \mathbf{M}_{T}^{t} \mathbf{H}^{t-1}$ $\mathbf{U}^{t} \approx \mathbf{W}^{t} \mathbf{M}_{C}^{t} \mathbf{G}^{t-1}$

The matrices \mathbf{M}_T^t and \mathbf{M}_C^t are *topic evolution matrices*. Multiplying them by \mathbf{H}^{t-1} or \mathbf{G}^{t-1} is approximately equal to \mathbf{H}^t or \mathbf{G}^t respectively

$L = \mu L_T + (1 - \mu)L_C + R$

$$L_{T} = ||\mathbf{X}^{t} - \mathbf{W}^{t}\mathbf{H}^{t}||_{F}^{2} + ||\mathbf{X}^{t} - \mathbf{W}^{t}\mathbf{M}_{T}^{t}\mathbf{H}^{t-1}||_{F}^{2},$$

$$L_{C} = ||\mathbf{U}^{t} - \mathbf{W}^{t}\mathbf{G}^{t}||_{F}^{2} + ||\mathbf{U}^{t} - \mathbf{W}^{t}\mathbf{M}_{C}^{t}\mathbf{G}^{t-1}||_{F}^{2},$$

$$\mathbf{R} = \alpha(||\mathbf{W}^{t}||_{1} + ||\mathbf{H}^{t}||_{1} + ||\mathbf{G}^{t}||_{1} + ||\mathbf{M}_{T}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{F}).$$

$$L = \mu L_T + (1 - \mu)L_C + R$$

$L_T = ||\mathbf{X}^t - \mathbf{W}^t \mathbf{H}^t||_F^2 + ||\mathbf{X}^t - \mathbf{W}^t \mathbf{M}_T^t \mathbf{H}^{t-1}||_F^2$

Vink (U of Minn, Morris)

$$L = \mu L_T + (1 - \mu)L_C + R$$

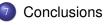
 $L_C = ||\mathbf{U}^t - \mathbf{W}^t \mathbf{G}^t||_F^2 + ||\mathbf{U}^t - \mathbf{W}^t \mathbf{M}_C^t \mathbf{G}^{t-1}||_F^2$

$\boldsymbol{L} = \mu \boldsymbol{L}_T + (1 - \mu)\boldsymbol{L}_C + \boldsymbol{R}$

$R = \alpha(||\mathbf{W}^{t}||_{1} + ||\mathbf{H}^{t}||_{1} + ||\mathbf{G}^{t}||_{1} + ||\mathbf{M}_{T}^{t}||_{1} + ||\mathbf{M}_{C}^{t}||_{1}) + \lambda(||\mathbf{M}_{T}^{t} - I||_{F}^{2} + ||\mathbf{M}_{C}^{t} - I||_{F}^{2}).$

Outline

- 2) Technical Background
- 3 Latent Dirichlet Allocation
- 4 Dictionaries
- 5 The Badge Model
- Learning Topic Evolution from Content and Social media activity (LTECS)



Vink (U of Minn, Morris)

Summary

• LDA

- useful with little document processing beforehand
- can fail to capture intent in an article
- The badge model
 - captures the intent of articles
 - can return opposite of expected results
- LTECS
 - returned data must be closely analyzed
 - requires a large amount of processing power
 - less error in results

Questions and Thanks

Questions?

References

See the UMM Vink '15 paper for all references on figures and data