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Purpose

Purpose

Problem: Increasing number of articles and papers that
need categories

Solution: Discover how to categorize these documents by
their topics
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Background Key Terms

Key Terms

Document: A collection of text conveying at least one idea
Corpus: A collection of documents

Stemming: Reducing a word to its base form (Ex. Exercising
-> Exercise)

Vocabulary: Each stemmed word in the corpus
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Background Key Terms

Key Terms (Cont.)

Distribution: Assigns a probability to each item in a set
Model: A tool used to discover topics of documents

within a corpus
Bag-of-Words Model: In this model, a document is represented as a set

of words ignoring all grammar and order
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Background Key Terms

Key Terms (Cont.)

Solution: Discover how to categorize documents by their
topics

Topic discovery: The process of identifying a set of topics describ-
ing the documents in a corpus

Labeling a document: Assigning one or more topics from the discov-
ered set to a document
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Background Key Terms

Key Terms (Cont.)

Topic evolution: The description of changes within a set of fea-
tures showing how those features describe topics
differently or similarly over a period of time
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Background Iterative Approaches

Iterative Approaches

1 Gather a corpus
2 Set number of topics
3 Generate model
4 Check for accuracy
5 Repeat until satisfactory results
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LDA

Latent Dirichlet Allocation (LDA)

LDA assumes documents are created at random
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LDA

LDA Assumptions

Each document is created with a set
distribution of topics

We assume each document is created one
word at a time

Each word is based off the topic chosen

The topic is chosen with a probability
based on the documents topic distribution
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LDA

Topic Assumption Description

Words are chosen based on the topic chosen
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LDA

LDA Assumptions

Each word in the vocabulary has a chance
of coming from any topic

Topics are named based on the words
with the highest probability of being
chosen
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LDA

Plate Description

Blank plates are the variables we are trying to create

The solid plate is the observable data
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LDA

Variables in LDA

α and β starting parameters

Topic Word Distributions: φ1:K

W is observed word

Words in Document: N

Topic Distributions: θd

Chosen topic: z

Documents in Corpus: M
Total Topics: K

Vink (U of Minn, Morris) Topic Discovery and Evolution December ’15 17 / 48



LDA

Discovering the Topics

Check the probability of obtaining the observed corpus

Modify parameters to increase probability

Repeat until the probability of producing the observed corpus is
maximized
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Dictionaries Using Dictionaries

Dictionaries

A dictionary is a matrix that encodes associations between two features.

Topic Discover and Evolution use them to encode textual features and
their relationship with topics.
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Dictionaries Using Dictionaries

Training Dictionaries● In  statistics,  latent  variables   (from  Latin :  present  participle   of  lateo   (“lie  hidden”),[1]  as  
opposed  to  observable  variables),  are  variables  that  are  not  directly  observed  but  are  rather  
inferred  (through  a  mathematical  model )  from  other  variables  that  are  observed  (directly  
measured)  -  https://en.wikipedia.org/wiki/Latent_variable    

● Ajit  P.  Singh  and  Geoffrey  J.  Gordon.  Relational  learning  via  collective  matrix  factorization.  
KDD  ’08,  2008.  

  

  
  
  
  

A represents a document by word proportions

B represents a dictionary

C represents a document by topic proportions
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Dictionaries Using Dictionaries

Dictionary Complexity● In  statistics,  latent  variables   (from  Latin :  present  participle   of  lateo   (“lie  hidden”),[1]  as  
opposed  to  observable  variables),  are  variables  that  are  not  directly  observed  but  are  rather  
inferred  (through  a  mathematical  model )  from  other  variables  that  are  observed  (directly  
measured)  -  https://en.wikipedia.org/wiki/Latent_variable    

● Ajit  P.  Singh  and  Geoffrey  J.  Gordon.  Relational  learning  via  collective  matrix  factorization.  
KDD  ’08,  2008.  

  

  
  
  
  

Fish should be related in some way to Sea

Tree should not only by related to Forest

The vector C needs to be assigned topics by hand
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Dictionaries Using Dictionaries

Training Dictionaries
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Dictionaries Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF)

A loss function returns the total error

NMF is a process that generates the dictionary with the least amount of
error
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Dictionaries Non-Negative Matrix Factorization

The l2-norm

The l2-norm measures the distance of a vector

We create an error vector for each row

By taking the l2-norm of the error vector for each row in a matrix, we
derive the amount of error for the matrix
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Dictionaries Non-Negative Matrix Factorization

The l2-norm


x1
x2
...

xn


√√√√ n∑

i=1

|xi|2

The formula on the right shows how to obtain the l2-norm for the vector on
the left.
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Dictionaries Non-Negative Matrix Factorization

Non-Negative Matrix Factorization

min
B≥0

N∑
i=1

l(yi,Bθi)

Set N equal to the number of rows in the dictionary B
Set yi to the document i by word proportions

Set θi to the document i by topic proportions

The function l(yi,Bθi) returns the l2-norm of row i in B
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The Badge Model

The Badge Model

Utilizes user descriptions to assign topics to documents

Automates the topic assignment of documents before training a
dictionary
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The Badge Model

The Badge Model Foundation Equation

yi ≈ Bθi

● In  statistics,  latent  variables   (from  Latin :  present  participle   of  lateo   (“lie  hidden”),[1]  as  
opposed  to  observable  variables),  are  variables  that  are  not  directly  observed  but  are  rather  
inferred  (through  a  mathematical  model )  from  other  variables  that  are  observed  (directly  
measured)  -  https://en.wikipedia.org/wiki/Latent_variable    

● Ajit  P.  Singh  and  Geoffrey  J.  Gordon.  Relational  learning  via  collective  matrix  factorization.  
KDD  ’08,  2008.  

  

  
  
  
  The formula can be described by our earlier example

Badges are words users describe themselves with

The topics are created from user badges

Vink (U of Minn, Morris) Topic Discovery and Evolution December ’15 30 / 48



The Badge Model

Setting Topics

User 1: Liberal, Minnesotan

User 2: Liberal, Athlete

User 3: Conservative, Athlete


1/3 Liberal
1/3 Athlete
1/6 Conservative
1/6 Minnesotan
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The Badge Model

The Loss Objective

min
B≥0

N∑
i=1

l(yi,Bθi) + λB

V∑
j=1

K∑
k=1

|Bjk|

The gray part of the loss objective is the l2-norm as discussed earlier

The new addition is a penalty for non-sparse matrices

To increase the sparsity of the resulting dictionary, increase λ
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The Badge Model

Discovering Topics

min
θ≥0

N∑
i=1

l(yi,Bθi)+λθ

V∑
j=1

K∑
k=1

|θjk|

The formula above discovers the minimum θ

B is known from the previous step

Document i does not have assigned topics
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LTECS

LTECS

Topic Evolution Model

Uses topic discovery methods (such as the badge model) to form a
foundation

Defines topics based on users and content

Introduces an expansion on NMF called collective factorization
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LTECS

LTECS

How do dictionaries evolve over time?

Do they change based on content or users?

How do we map the changes?
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LTECS

The Content Formula LTECS

The User Formula
Symbol Description

t an arbitrary time
d a document in the corpus for training
f a textual feature in a document, typically a non-stop word
k the number of topics describing all the documents in the training

corpus
Nt

d the number of documents in the corpus associated with time t
Nf the number of textual features in the corpus associated with time

t
Wt An Nt

d x k matrix
Ht An k x Nf matrix
Xt An Nt

d x Nf matrix

7H[W�)HDWXUHV

'RFXPHQWV ; W

7RSLFV

'RFXPHQWV :
W

7H[W�)HDWXUHV

7RSLFV +
W$SSUR[�
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LTECS

The Content Formula
LTECS

The User Formula
Symbol Description

t an arbitrary time
d a document in the corpus for training
k the number of topics describing all the documents in the training

corpus
Nt

d the number of documents in the corpus associated with time t
Nu the number of users who shared a document at time t
Wt An Nt

d x k matrix
Gt An k x Nu matrix
Ut An Nt

d x Nu matrix

7H[W�)HDWXUHV

'RFXPHQWV ; W

7RSLFV

'RFXPHQWV :
W

7H[W�)HDWXUHV

7RSLFV +
W$SSUR[�
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8VHUV

'RFXPHQWV 8 W

7RSLFV

'RFXPHQWV :
W

8VHUV

7RSLFV *
W$SSUR[�
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LTECS

Discovering the Dictionary

Solve for Wt

7H[W�)HDWXUHV

'RFXPHQWV ; W

7RSLFV

'RFXPHQWV :
W

7H[W�)HDWXUHV

7RSLFV +
W$SSUR[�

8VHUV

'RFXPHQWV 8 W

7RSLFV

'RFXPHQWV :
W

8VHUV

7RSLFV *
W$SSUR[�
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LTECS

Topic Evolution Matrix

Xt ≈WtMt
THt−1

Ut ≈WtMt
CGt−1

The matrices Mt
T and Mt

C are topic evolution matrices. Multiplying them by
Ht−1 or Gt−1 is approximately equal to Ht or Gt respectively
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LTECS

The Loss Objective

L = µLT + (1− µ)LC + R

explaining the current topics Ht as a linear combination of
the previous topics. Mt

T is the topic evolution matrix. An
Mt

T matrix close to identity (or a permuation of it) tells us
that the topics have not changed much from the previous
to current time step. We delve into analyzing this matrix,
and hence the stabiltiy of topics (and communities) in future
sections.

We also add a component of monitoring communities over
time. Similar to Equation 3, we model the current set of doc-
uments with respect to the previous communities as follows:

Xt ≈WtMt
CGt−1, (4)

where Mt
C is the community evolution matrix.

The crux of our loss function is formed by putting to-
gether Equations 1 through 4. Our variables are Wt, Ht,
Gt, Mt

T and Mt
C . The optimization is performed one time

step after another. Hence, Ht−1 and Gt−1 are known to us
by time t. We decompose our loss function into the following
components,

L = µLT + (1− µ)LC + R, (5)

where LT and LC are the topic and community parts of
the objective function and R encompasses the regularization
terms. We impose l1 regularization on Wt, Ht, Gt and both
the evolution matrices Mt

T and Mt
C to promote sparsity. In

order to drive the loss function more towards either topic
modality or the community modality of the objective, we
use a parameter µ ∈

[
0, 1

]
. µ = 0 places full weight on the

community part and µ = 1 places full weight on the topic
part.

The topic part and the community part of the objective,
and the regularization terms can be written as:

LT = ||Xt −WtHt||2F + ||Xt −WtMt
T Ht−1||2F , (6)

LC = ||Ut −WtGt||2F + ||Ut −WtMt
CGt−1||2F , (7)

R = α(||Wt||1 + ||Ht||1 + ||Gt||1 + ||Mt
T ||1

+ ||Mt
C ||1) + λ(||Mt

T − I||2F + ||Mt
C − I||2F ). (8)

We add a term λ||Mt − I||2F which, depending on the value
of λ ∈ {0,∞} controls how much importance is placed on
the past and the present. A large value of λ places much
weight on the past and vice versa. The role of parameters λ
and µ are analyzed in detail in Section 5.

3.2 The Optimization
We minimize the loss function L as shown below:

{Wt
∗,Ht

∗,Gt
∗,Mt

T,∗,Mt
C,∗} = argmin L

Wt,Ht,Gt,Mt
T

,Mt
C

.

(9)
Note the variables with respect to which we optimize L.
Of these variables, the one that is most useful for evaluation
purposes is the matrix Ht. This is a matrix of word distribu-
tions for each topic. We compare the top-10 words from each
topic in Ht to the top-10 obtained from the groundtruth.
More details about groundtruth and evaluation are provided
in Section 5.

The optmization problem in Equation 9 is not convex in
all the parameters simultaneously. We use multiplicative
updates as in [12]. For the loss function in Equation 9, we

derive the gradients with respect to each variable as:

▽Wt L = Wt(HtHtT
+ GtGtT

Mt
T

T
Ht−1T

Ht−1Mt
T + Mt

C
T
Gt−1T

Gt−1Mt
C)

− (XtHtT
+ XtHt−1T

Mt
T

T
+ UtGtT

+ UtGt−1T
Mt

C
T − αeeT ),

(10)

▽HtL = WtT
WtHt − (WtT

Xt − αeeT ), (11)

▽GtL = WtT
WtGt − (WtT

Ut − αeeT ), (12)

▽Mt
T

L =(HtHtT
)Mt

T
T
(WtT

Wt) + λMt
T

T

− (HtXtT
Wt + λI− αeeT ),

(13)

▽Mt
C

L =(GtGtT
)Mt

T
T
(WtT

Wt) + λMt
C

T

− (GtUtT
Wt + λI− αeeT ), (14)

where e = [1, 1, . . . , 1]. From the Karush Kuhn Tucker first
order conditions, we have the primal feasibility as:

Wt ≥ 0,Ht ≥ 0,Gt ≥ 0,Mt
T ≥ 0 and Mt

C ≥ 0, (15)

the stationarity condition as L(Wt,Ht,Gt,Mt
T ,Mt

C) = 0,
at the minimizers, Wt∗

,Ht∗
,Gt∗

,Mt
T

∗
Mt

C
∗
, and the com-

plementary slackness:

▽GtL⊙Gt = 0, ▽Ht L⊙Ht = 0,

▽Mt
C

L⊙Mt
C = 0, ▽Mt

T
L⊙Mt

T = 0,

▽WtL⊙Wt = 0.

(16)

The update equations are derived by substituting the gradi-
ents (Equations 10 - 14) in the first order conditions (Equa-
tion 16) as below:

Wt ←Wt ⊙ N

D
, where

N = (XtHtT
+ XtHt−1T

Mt
T

T
+ UtGtT

+ UtGt−1T
Mt

C
T

− 2αeeT ),

D = Wt(HtHtT
+ GtGtT

+ Mt
T

T
Ht−1T

Ht−1Mt
T

+ Mt
C

T
Gt−1T

Gt−1Mt
C),

(17)

Ht ← Ht ⊙ (WtT
Xt − αeeT )

WtT
WtHt

, (18)

Gt ← Gt ⊙ (WtT
Ut − αeeT )

WtT
WtGt

, (19)

Mt
T ← Mt

T ⊙
(Ht−1XtT

Wt + λI− α)

(Ht−1Ht−1T
)Mt

T
T
(WtT

Wt) + λMt
T

T
,

(20)

Mt
C ← Mt

C ⊙
(Gt−1UtT

Wt + λI− α)

(Gt−1Gt−1T
)Mt

C
T
(WtT

Wt) + λMt
C

T
.

(21)

Theorem 1 The loss function L in Equation (5) is non
increasing under the update rules in Equations (17), (18),
(19), (20), and (21). The loss function L is invariant under
these updates if and only if Ht, Gt, Mt

T and Mt
C are at a

stationary point of the function. The proof for update rules
on Ht and Gt comes directly from [13]. For the update rules

520

Vink (U of Minn, Morris) Topic Discovery and Evolution December ’15 41 / 48



LTECS

The Loss Objective

L = µLT + (1− µ)LC + R

explaining the current topics Ht as a linear combination of
the previous topics. Mt

T is the topic evolution matrix. An
Mt

T matrix close to identity (or a permuation of it) tells us
that the topics have not changed much from the previous
to current time step. We delve into analyzing this matrix,
and hence the stabiltiy of topics (and communities) in future
sections.

We also add a component of monitoring communities over
time. Similar to Equation 3, we model the current set of doc-
uments with respect to the previous communities as follows:

Xt ≈WtMt
CGt−1, (4)

where Mt
C is the community evolution matrix.

The crux of our loss function is formed by putting to-
gether Equations 1 through 4. Our variables are Wt, Ht,
Gt, Mt

T and Mt
C . The optimization is performed one time

step after another. Hence, Ht−1 and Gt−1 are known to us
by time t. We decompose our loss function into the following
components,

L = µLT + (1− µ)LC + R, (5)

where LT and LC are the topic and community parts of
the objective function and R encompasses the regularization
terms. We impose l1 regularization on Wt, Ht, Gt and both
the evolution matrices Mt

T and Mt
C to promote sparsity. In

order to drive the loss function more towards either topic
modality or the community modality of the objective, we
use a parameter µ ∈

[
0, 1

]
. µ = 0 places full weight on the

community part and µ = 1 places full weight on the topic
part.

The topic part and the community part of the objective,
and the regularization terms can be written as:

LT = ||Xt −WtHt||2F + ||Xt −WtMt
T Ht−1||2F , (6)

LC = ||Ut −WtGt||2F + ||Ut −WtMt
CGt−1||2F , (7)

R = α(||Wt||1 + ||Ht||1 + ||Gt||1 + ||Mt
T ||1

+ ||Mt
C ||1) + λ(||Mt

T − I||2F + ||Mt
C − I||2F ). (8)

We add a term λ||Mt − I||2F which, depending on the value
of λ ∈ {0,∞} controls how much importance is placed on
the past and the present. A large value of λ places much
weight on the past and vice versa. The role of parameters λ
and µ are analyzed in detail in Section 5.

3.2 The Optimization
We minimize the loss function L as shown below:

{Wt
∗,Ht

∗,Gt
∗,Mt

T,∗,Mt
C,∗} = argmin L

Wt,Ht,Gt,Mt
T

,Mt
C

.

(9)
Note the variables with respect to which we optimize L.
Of these variables, the one that is most useful for evaluation
purposes is the matrix Ht. This is a matrix of word distribu-
tions for each topic. We compare the top-10 words from each
topic in Ht to the top-10 obtained from the groundtruth.
More details about groundtruth and evaluation are provided
in Section 5.

The optmization problem in Equation 9 is not convex in
all the parameters simultaneously. We use multiplicative
updates as in [12]. For the loss function in Equation 9, we

derive the gradients with respect to each variable as:

▽Wt L = Wt(HtHtT
+ GtGtT

Mt
T

T
Ht−1T

Ht−1Mt
T + Mt

C
T
Gt−1T

Gt−1Mt
C)

− (XtHtT
+ XtHt−1T

Mt
T

T
+ UtGtT

+ UtGt−1T
Mt

C
T − αeeT ),

(10)

▽HtL = WtT
WtHt − (WtT

Xt − αeeT ), (11)

▽GtL = WtT
WtGt − (WtT

Ut − αeeT ), (12)

▽Mt
T

L =(HtHtT
)Mt

T
T
(WtT

Wt) + λMt
T

T

− (HtXtT
Wt + λI− αeeT ),

(13)

▽Mt
C

L =(GtGtT
)Mt

T
T
(WtT

Wt) + λMt
C

T

− (GtUtT
Wt + λI− αeeT ), (14)

where e = [1, 1, . . . , 1]. From the Karush Kuhn Tucker first
order conditions, we have the primal feasibility as:

Wt ≥ 0,Ht ≥ 0,Gt ≥ 0,Mt
T ≥ 0 and Mt

C ≥ 0, (15)

the stationarity condition as L(Wt,Ht,Gt,Mt
T ,Mt

C) = 0,
at the minimizers, Wt∗

,Ht∗
,Gt∗

,Mt
T

∗
Mt

C
∗
, and the com-

plementary slackness:

▽GtL⊙Gt = 0, ▽Ht L⊙Ht = 0,

▽Mt
C

L⊙Mt
C = 0, ▽Mt

T
L⊙Mt

T = 0,

▽WtL⊙Wt = 0.

(16)

The update equations are derived by substituting the gradi-
ents (Equations 10 - 14) in the first order conditions (Equa-
tion 16) as below:

Wt ←Wt ⊙ N

D
, where

N = (XtHtT
+ XtHt−1T

Mt
T

T
+ UtGtT

+ UtGt−1T
Mt

C
T

− 2αeeT ),

D = Wt(HtHtT
+ GtGtT

+ Mt
T

T
Ht−1T

Ht−1Mt
T

+ Mt
C

T
Gt−1T

Gt−1Mt
C),

(17)

Ht ← Ht ⊙ (WtT
Xt − αeeT )

WtT
WtHt

, (18)

Gt ← Gt ⊙ (WtT
Ut − αeeT )

WtT
WtGt

, (19)

Mt
T ← Mt

T ⊙
(Ht−1XtT

Wt + λI− α)

(Ht−1Ht−1T
)Mt

T
T
(WtT

Wt) + λMt
T

T
,

(20)

Mt
C ← Mt

C ⊙
(Gt−1UtT

Wt + λI− α)

(Gt−1Gt−1T
)Mt

C
T
(WtT

Wt) + λMt
C

T
.

(21)

Theorem 1 The loss function L in Equation (5) is non
increasing under the update rules in Equations (17), (18),
(19), (20), and (21). The loss function L is invariant under
these updates if and only if Ht, Gt, Mt

T and Mt
C are at a

stationary point of the function. The proof for update rules
on Ht and Gt comes directly from [13]. For the update rules
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LTECS

The Loss Objective

L = µLT+(1− µ)LC + R

explaining the current topics Ht as a linear combination of
the previous topics. Mt

T is the topic evolution matrix. An
Mt

T matrix close to identity (or a permuation of it) tells us
that the topics have not changed much from the previous
to current time step. We delve into analyzing this matrix,
and hence the stabiltiy of topics (and communities) in future
sections.

We also add a component of monitoring communities over
time. Similar to Equation 3, we model the current set of doc-
uments with respect to the previous communities as follows:

Xt ≈WtMt
CGt−1, (4)

where Mt
C is the community evolution matrix.

The crux of our loss function is formed by putting to-
gether Equations 1 through 4. Our variables are Wt, Ht,
Gt, Mt

T and Mt
C . The optimization is performed one time

step after another. Hence, Ht−1 and Gt−1 are known to us
by time t. We decompose our loss function into the following
components,

L = µLT + (1− µ)LC + R, (5)

where LT and LC are the topic and community parts of
the objective function and R encompasses the regularization
terms. We impose l1 regularization on Wt, Ht, Gt and both
the evolution matrices Mt

T and Mt
C to promote sparsity. In

order to drive the loss function more towards either topic
modality or the community modality of the objective, we
use a parameter µ ∈

[
0, 1

]
. µ = 0 places full weight on the

community part and µ = 1 places full weight on the topic
part.

The topic part and the community part of the objective,
and the regularization terms can be written as:

LT = ||Xt −WtHt||2F + ||Xt −WtMt
T Ht−1||2F , (6)

LC = ||Ut −WtGt||2F + ||Ut −WtMt
CGt−1||2F , (7)

R = α(||Wt||1 + ||Ht||1 + ||Gt||1 + ||Mt
T ||1

+ ||Mt
C ||1) + λ(||Mt

T − I||2F + ||Mt
C − I||2F ). (8)

We add a term λ||Mt − I||2F which, depending on the value
of λ ∈ {0,∞} controls how much importance is placed on
the past and the present. A large value of λ places much
weight on the past and vice versa. The role of parameters λ
and µ are analyzed in detail in Section 5.

3.2 The Optimization
We minimize the loss function L as shown below:

{Wt
∗,Ht

∗,Gt
∗,Mt

T,∗,Mt
C,∗} = argmin L

Wt,Ht,Gt,Mt
T

,Mt
C

.

(9)
Note the variables with respect to which we optimize L.
Of these variables, the one that is most useful for evaluation
purposes is the matrix Ht. This is a matrix of word distribu-
tions for each topic. We compare the top-10 words from each
topic in Ht to the top-10 obtained from the groundtruth.
More details about groundtruth and evaluation are provided
in Section 5.

The optmization problem in Equation 9 is not convex in
all the parameters simultaneously. We use multiplicative
updates as in [12]. For the loss function in Equation 9, we

derive the gradients with respect to each variable as:

▽Wt L = Wt(HtHtT
+ GtGtT

Mt
T

T
Ht−1T

Ht−1Mt
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where e = [1, 1, . . . , 1]. From the Karush Kuhn Tucker first
order conditions, we have the primal feasibility as:

Wt ≥ 0,Ht ≥ 0,Gt ≥ 0,Mt
T ≥ 0 and Mt

C ≥ 0, (15)

the stationarity condition as L(Wt,Ht,Gt,Mt
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C) = 0,
at the minimizers, Wt∗
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, and the com-

plementary slackness:

▽GtL⊙Gt = 0, ▽Ht L⊙Ht = 0,

▽Mt
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C = 0, ▽Mt

T
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T = 0,

▽WtL⊙Wt = 0.

(16)

The update equations are derived by substituting the gradi-
ents (Equations 10 - 14) in the first order conditions (Equa-
tion 16) as below:

Wt ←Wt ⊙ N

D
, where

N = (XtHtT
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+ UtGtT
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− 2αeeT ),
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WtT
WtHt

, (18)
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Ut − αeeT )
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, (19)
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T ← Mt
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(20)

Mt
C ← Mt
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(Gt−1UtT

Wt + λI− α)

(Gt−1Gt−1T
)Mt

C
T
(WtT

Wt) + λMt
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(21)

Theorem 1 The loss function L in Equation (5) is non
increasing under the update rules in Equations (17), (18),
(19), (20), and (21). The loss function L is invariant under
these updates if and only if Ht, Gt, Mt

T and Mt
C are at a

stationary point of the function. The proof for update rules
on Ht and Gt comes directly from [13]. For the update rules
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LTECS

The Loss Objective

L = µLT + (1− µ)LC + R

explaining the current topics Ht as a linear combination of
the previous topics. Mt

T is the topic evolution matrix. An
Mt

T matrix close to identity (or a permuation of it) tells us
that the topics have not changed much from the previous
to current time step. We delve into analyzing this matrix,
and hence the stabiltiy of topics (and communities) in future
sections.

We also add a component of monitoring communities over
time. Similar to Equation 3, we model the current set of doc-
uments with respect to the previous communities as follows:

Xt ≈WtMt
CGt−1, (4)

where Mt
C is the community evolution matrix.

The crux of our loss function is formed by putting to-
gether Equations 1 through 4. Our variables are Wt, Ht,
Gt, Mt

T and Mt
C . The optimization is performed one time

step after another. Hence, Ht−1 and Gt−1 are known to us
by time t. We decompose our loss function into the following
components,

L = µLT + (1− µ)LC + R, (5)

where LT and LC are the topic and community parts of
the objective function and R encompasses the regularization
terms. We impose l1 regularization on Wt, Ht, Gt and both
the evolution matrices Mt

T and Mt
C to promote sparsity. In

order to drive the loss function more towards either topic
modality or the community modality of the objective, we
use a parameter µ ∈

[
0, 1

]
. µ = 0 places full weight on the

community part and µ = 1 places full weight on the topic
part.

The topic part and the community part of the objective,
and the regularization terms can be written as:

LT = ||Xt −WtHt||2F + ||Xt −WtMt
T Ht−1||2F , (6)

LC = ||Ut −WtGt||2F + ||Ut −WtMt
CGt−1||2F , (7)

R = α(||Wt||1 + ||Ht||1 + ||Gt||1 + ||Mt
T ||1

+ ||Mt
C ||1) + λ(||Mt

T − I||2F + ||Mt
C − I||2F ). (8)

We add a term λ||Mt − I||2F which, depending on the value
of λ ∈ {0,∞} controls how much importance is placed on
the past and the present. A large value of λ places much
weight on the past and vice versa. The role of parameters λ
and µ are analyzed in detail in Section 5.

3.2 The Optimization
We minimize the loss function L as shown below:

{Wt
∗,Ht

∗,Gt
∗,Mt

T,∗,Mt
C,∗} = argmin L

Wt,Ht,Gt,Mt
T

,Mt
C

.

(9)
Note the variables with respect to which we optimize L.
Of these variables, the one that is most useful for evaluation
purposes is the matrix Ht. This is a matrix of word distribu-
tions for each topic. We compare the top-10 words from each
topic in Ht to the top-10 obtained from the groundtruth.
More details about groundtruth and evaluation are provided
in Section 5.

The optmization problem in Equation 9 is not convex in
all the parameters simultaneously. We use multiplicative
updates as in [12]. For the loss function in Equation 9, we

derive the gradients with respect to each variable as:

▽Wt L = Wt(HtHtT
+ GtGtT

Mt
T

T
Ht−1T

Ht−1Mt
T + Mt

C
T
Gt−1T

Gt−1Mt
C)

− (XtHtT
+ XtHt−1T
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T
+ UtGtT

+ UtGt−1T
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T − αeeT ),

(10)

▽HtL = WtT
WtHt − (WtT

Xt − αeeT ), (11)

▽GtL = WtT
WtGt − (WtT

Ut − αeeT ), (12)
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Wt) + λMt
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− (HtXtT
Wt + λI− αeeT ),

(13)

▽Mt
C

L =(GtGtT
)Mt

T
T
(WtT

Wt) + λMt
C

T

− (GtUtT
Wt + λI− αeeT ), (14)

where e = [1, 1, . . . , 1]. From the Karush Kuhn Tucker first
order conditions, we have the primal feasibility as:

Wt ≥ 0,Ht ≥ 0,Gt ≥ 0,Mt
T ≥ 0 and Mt

C ≥ 0, (15)

the stationarity condition as L(Wt,Ht,Gt,Mt
T ,Mt

C) = 0,
at the minimizers, Wt∗

,Ht∗
,Gt∗

,Mt
T

∗
Mt

C
∗
, and the com-

plementary slackness:

▽GtL⊙Gt = 0, ▽Ht L⊙Ht = 0,

▽Mt
C

L⊙Mt
C = 0, ▽Mt

T
L⊙Mt

T = 0,

▽WtL⊙Wt = 0.

(16)

The update equations are derived by substituting the gradi-
ents (Equations 10 - 14) in the first order conditions (Equa-
tion 16) as below:

Wt ←Wt ⊙ N

D
, where

N = (XtHtT
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+ UtGtT
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Ht ← Ht ⊙ (WtT
Xt − αeeT )
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, (18)
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, (19)
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Mt
C ← Mt
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(Gt−1UtT

Wt + λI− α)

(Gt−1Gt−1T
)Mt
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T
(WtT

Wt) + λMt
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.

(21)

Theorem 1 The loss function L in Equation (5) is non
increasing under the update rules in Equations (17), (18),
(19), (20), and (21). The loss function L is invariant under
these updates if and only if Ht, Gt, Mt

T and Mt
C are at a

stationary point of the function. The proof for update rules
on Ht and Gt comes directly from [13]. For the update rules
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Conclusions

Summary

LDA
useful with little document processing beforehand
can fail to capture intent in an article

The badge model
captures the intent of articles
can return opposite of expected results

LTECS
returned data must be closely analyzed
requires a large amount of processing power
less error in results
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