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Overview

Why does this matter?

Emotion recognition has a broad amount of applications
Recognizing depression
Assisting those who cannot recognize emotion naturally
User feedback

Implementing a system is taxing on those implementing it
It is still very far from perfection
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Overview

emotiW Challenge

Annual challenge taking place during the International Conference on
Multimodal Interaction.

Give videos to entrants who implement a system to predict which of 7
emotions depicted in the video.
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Overview

Emotions

Happiness
Anger
Sadness
Surprise
Fear
Disgust
Neutral
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Facial Information Extraction
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Facial Information Extraction Local Binary Patterns

Local Binary Patterns

Compares the gray scale value of pixels to surrounding points
Recognizes contours and other features in an image
The LBP operator takes in a center pixel, radius, and amount of
sampling points
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Facial Information Extraction Local Binary Patterns

Local Binary Patterns

Choose the radius and sample points
Set each point to 0 or 1 based on the difference of the points gray
scale value and the center gray scale value
Convert these values to a binary value
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Facial Information Extraction Local Binary Patterns

LBP cont.

The image is split into a grid
LBP is performed on each of the sections of the grid
The LBP codes are then stored into a histogram
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Facial Information Extraction Local Binary Patterns from Three Orthogonal Planes

Local Binary Patterns from Three Orthogonal Planes

The set of frames (video) is split into
a grid
Each section is split into three
orthogonal planes

XY
XT
YT

LBP operator is performed on all
three planes of each section of the
grid
The histograms from each plane are
then concatenated together

Walcome (U of Minn, Morris) Emotion Recognition December 5, 2015 10 / 23



Emotion Recognition
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Emotion Recognition Machine Learning

Machine Learning Introduction

Algorithms that can learn from data and make predictions on new
data
A model is created for a certain type of data
Training data is given to the model
The model predicts the category of new data
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Emotion Recognition Support Vector Machines

Support Vector Machines

One Versus One
Which emotion is the vector?

One Versus Many
Is the vector one emotion or is it
not?

The data is compared on a 2D plane
for both of these
The ideal decision boundary has an
optimal margin between the two
categories
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Emotion Recognition Support Vector Machines

Non-linearly separable data

https://youtu.be/3liCbRZPrZA?t=9
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Emotion Recognition Support Vector Machines

Lifting data

Data can be lifted into a 3D plane using a kernel function
Allows data to be looked at in a way where a hyperplane can
separate the different categories
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Studies

Studies

Ringeval et. al.
LBP-TOP and SVM
Tracking lip activity
One versus one and one versus many

Krishna et. al.
Gabor Filtering
Optic flow

Sun et. al.
LBP TOP and LPQ TOP
SVM
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Studies

Table: Results of Studies

Paper Accuracy Comments
Ringeval et. al. 36.13% EmotiW 2014
Krishna et. al. 20.51% Independent

Sun et. al. LBP-TOP 36.12% EmotiW 2014
Sun et. al. LPQ-TOP 19.68% EmotiW 2014
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Conclusion
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Conclusion

Conclusion

Creating a universal database of data
More use of lip activity
Using more advanced machine learning
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Conclusion
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Conclusion

Questions?

walco005@morris.umn.edu
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