
Modern Approaches to the Rich Vehicle Routing Problem

Henry F. R. Fellows
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
fello056@morris.umn.edu

ABSTRACT
The Rich Vehicle Routing Problem is a class of problems
that revolve around finding the most optimal route for a
certain set of deliveries. Obtaining approximate solutions to
these computationally hard problems is both economically
valuable and academically interesting. This paper describes
several recent approaches to popular variants of the Rich Ve-
hicle Routing Problem such as Hybrid Genetic Search with
Advanced Diversity Control, Probability Collectives, Dis-
tributed Reverse Vickrey Auctions, and Interactive Genetic
Routing.

Keywords
Vehicle Routing Problem, Black-box optimization, Genetic
Algorithms, Probability Collectives, Distributed Systems

1. INTRODUCTION
Routing is a deeply pervasive feature of the modern world.

From the point-to-point navigation of everyday driving to
the shipping of bulk freight, the task of creating those routes
has been increasingly automated. The long term trend to-
wards self-driving vehicles means that computers will soon
control the entire process of transportation; aside from se-
lecting a time of departure and destination, humans need
no longer be involved. Software to create routes for school
buses, mail deliveries and garbage trucks has been in use
for decades; everything from Amazon to Delta uses these
systems on a daily basis.

The exact impact of improvements in routing is difficult
to measure, but in 2011, the external costs of traffic jams in
the European Union were 1-2% of GDP [3]. In the United
States, 57 tons of goods were moved for each person in 2012
[8]. A small change in routing efficiency has the potential
to reduce some of the staggeringly large economic and envi-
ronmental costs of transportation.

The general case of routing is the traveling salesman prob-
lem. The traveling salesman problem asks for the short-
est route which passes through each point once. Assuming

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2016 Morris, MN.

Figure 1: Example of the VRP

that each pair of points is connected by a link, the number
of potential routes is 1

2
n!, which grows extremely quickly,

and is significant even for small values. For n = 10, the
number of routes is 1, 814, 400, and for n = 15, it reaches
653, 837, 184, 000. The traveling salesman problem is in a
class of problems known as NP-complete. Although it has
not yet been proven, it is considered likely that there is no
algorithm for NP-complete problems that allows them to be
solved quickly. Fortunately, solutions of NP-complete prob-
lems are easy to verify, and this property encourages approx-
imate solutions; routes that satisfy all customers, but may
not be the most optimal means of doing so.

Routing in the real world is much more complex than the
traveling salesman problem implies. There may be an ex-
pectation that the vehicle arrives near a specified time. New
stops may be added during the trip, or the exact demand of
each customer might not be known ahead of time.

Dealing with these types of problems is the domain of the
Rich Vehicle Routing Problem, which extends the Vehicle
Routing Problem described in the next section. After that,
two major classes of approximate solutions to the Vehicle
Routing Problem are discussed along with recent algorithms
in these categories: genetic algorithms and agent-based al-
gorithms. Finally, conclusions are drawn about the results
of these algorithm.

2. RICH VEHICLE ROUTING PROBLEM
Originally titled the Truck Dispatching Problem, the orig-

inal formulation of the Vehicle Routing Problem (VRP) was
created by G. B. Danzig and J. H. Ramser in 1959 [4]. The
premise of the problem is that each vehicle (or truck), has
a limited capacity and the fleet must make deliveries to as
many customers as possible, starting from a specific loca-



Figure 2: Example of poor global utility in DVRP

tion known as a depot as shown in Figure 1. The vehicles
may have to make multiple trips in order to satisfy all of the
customers. The primary metric is the number of trips taken
to satisfy all customer demand. A measure that is also con-
sidered worth minimizing is the maximum tour length - the
longest single route taken by one truck. Danzig and Ramser
note that if the total capacity of a vehicle is greater than the
total demand of the customers, the problem is mathemat-
ically identical to the traveling salesman problem, because
then a single truck can serve all customers in a single route.
There has been a great deal of research done on the orig-
inal VRP, and recent research focuses on versions of the
VRP with different constraints or many constraints simul-
taneously [3]. These variations of the Vehicle Routing Prob-
lem are collectively referred to as the Rich Vehicle Routing
Problem (RVRP) . In the following sections of, we define
prominent variants of the RVRP.

2.1 Decentralized Vehicle Routing Problem
A common problem in rich vehicle routing literature is de-

centralized control, where each vehicle or depot is modeled
as having an independent agent who makes decisions out of
self-interest [3]. This is in contrast to the behavior of the
traditional VRP, which has a single controlling entity that
is aware of the entire state of the problem. The schedul-
ing system that Delta Airlines uses to dispatch flights is an
example of a centralized system; however, when the system
crashed in august 2016, it forced the cancellation of hun-
dreds of flights. A decentralized system is not as vulnerable
to the failure of individual entities, which makes it useful
in high-availability systems. In some cases, decentralized
routing also makes sense when the vehicles are owned by
independent owners that do not wish to maintain their own
systems for routing.

A recurring problem in the DRVP and decentralized sys-
tems in general is that pure self-interest can cause decisions
that degrade the solutions of others. Imagine a vehicle which
finds a route that fulfills a large number of deliveries ex-
tremely quickly; other vehicles might find that their routes
force them to cross through this area where they cannot
make any deliveries along the way. Figure 2 is an example
of this, where the blue (solid line) route is highly efficient for
the first vehicle, it is less efficient for all other vehicles. The
ideal is to pursue optimal routes - both on the local (individ-
ual) scale, and on a global scale. Finding good methods of
making decisions that allow for both autonomy and global

utility is an ongoing research question.

2.2 VRP with Time Windows
Another variant of the VRP is the vehicle routing problem

with time window (VRPTW), where the customer expects
that the deliveries take place within a certain time interval
[3]. Unlike the estimates provided by shipping services, these
constraints are set by the customers. A simple example is
the constraint that deliveries are only accepted during busi-
ness hours. This adds the dimension of time to the problem
– the time it takes the truck to traverse nodes and to com-
plete the delivery must be considered. The VRPTW is one
of the more popular extensions of the VRP because deliver-
ies without implicit or explicit time constraints are rare. In
practice, the time window constraint is rarely found with-
out other constraints; industrial settings tend to consider
the VRPTW to be the base problem for real-world settings.

2.3 Black Box Optimization
In general, the approaches used to solve the VRP are

approximate methods; they intend to find ’good’, not per-
fect solutions. The algorithms tend to use simple rules to
guess solutions, and the process of narrowing down or refin-
ing these guesses is known as optimization. Most modern
methods of solving the VRP belong to the blackbox style
of optimization; blackbox optimization is used when a prob-
lem does not have a formal algebraic model, or the model is
too computationally expensive [1]. There is no method to
solve the VRP without using the computationally expensive
exact solution. The natural choice is to use blackbox meth-
ods which trade accuracy for speed. The common feature of
these methods is the use of stochastic (random) elements,
especially in selecting starting states. This makes blackbox
methods into a double edged sword; they are often effec-
tive at solving otherwise intractable problems, but the solu-
tions frequently fail to produce any insight into the problem.
Stochastic decision making makes it hard to determine why
the algorithm provides a specific solution.

3. GENETIC ALGORITHMS
A genetic algorithm (GA) is a type of problem-solving

that is inspired by natural selection. It is often used to find
solutions for processes that are not well understood, but
can be modeled well. In the case of the VRP, the problem is
both known and modeled well, but the approximate solution
given by a well-made genetic is often nearly as good, and
much easier to compute than the exact solution.

The fundamental notion of a genetic algorithm is a ge-
netic representation, which is a means of representing an
individual. Individuals in VRP tend to be routes or sets of
routes. By analogy, the representation is the genome of the
individual. A common representation is a fixed-length array
of bits, but other representations are possible. These ge-
netic representations are manipulated by genetic operators
that simulate various processes. A mutation operator pro-
vides the analogue to biological mutation by altering values
in the genetic representation; for a fixed length array of bit,
a common example is a function that flips bits randomly
generator. The crossover operator represents reproduction
- it combines traits from two (or more) individuals to pro-
duce a new individual. Genetic algorithms aim to improve
their solutions, and they measure how ‘good’ a solution is
by using a fitness function. Fitness functions are problem



Algorithm 1: Genetic Algorithm Pseudocode

Initialize population;
while iteration limit not reached do

Select best individuals via fitness function;
Generate new individuals using genetic operators;
Build new population from old & new individuals;

end
return best solution;

Figure 3: Example of selecting a good region

specific; in VRP, they measure if the individual solves the
problem, and how good that solution is.

The general form of a GA begins with initializing the pop-
ulation. A selection of individuals with a random genetic
representation is created. As illustrated in algorithm 1, the
algorithm enters its main loop; the loop is usually termi-
nated when an iteration limit is reached, but other condi-
tions are sometimes used that are specific to the problem. In
the loop, the individuals are scored using the fitness function
and the best are set aside for the next stage. The crossover
operator is then applied to this group, and mutation oper-
ator on the resulting individuals. Then, it evaluates each
individual and replaces the worst members of the popula-
tion with the best new individuals. This process is repeated
until the termination condition is reached; this is frequently
an iteration limit. The individual with the highest fitness in
the population is then returned.

3.1 Interactive Genetic Routing
Humans tend to be very good at solving visual problems,

and this extends to the routing if the problem is displayed
appropriately. We have a talent for deciding whether a given
route is good or bad by simply looking at a diagram. Re-
cently, a number of platforms were created to allow develop-
ers to make use of human intelligence in solving computa-
tionally complex problems. Amazon’s Mechanical Turk, an
example of these platforms, allows the exploitation of human
intuition by offering an API that makes it possible to inte-
grate into software. Continuing the theme of using humans
to do things humans are good at, S. Ismail, F. Legras, and
G. Coppin [2] created a genetic algorithm that uses humans
to determine how good a particular solution is.

The interactive genetic algorithm, algorithm 2, uses hu-
mans to find good sequences of destinations. It begins by
initializing the population with a set of random individuals.

Algorithm 2: Interactive Genetic Algorithm

Initialize population;
while iteration limit not reached do

Select best individuals via fitness function;
Generate new individuals using crossover;
Humans to tag portions of new individual;
Mutate individuals based on tagging;
Build new population from old & new individuals;

end
return best feasible solution;

The individuals are sets of routes in this case. While the it-
eration cap has not been reached, the algorithm first creates
a new group of individuals using a standard crossover oper-
ator. Then, humans are used to tag good or bad sections of
the routes in each individual as shown in Figure 3. A good
section should be a segment of the route that is likely to be
part of the most optimal route; a bad section is a poor seg-
ment of a route. The tags influence the mutation operator;
a ‘good’ section is unlikely to be modified, while a bad sec-
tion is likely to be modified. This encourages preservation
of good sections, while bad sections are removed. Conven-
tional genetic algorithms are unable to gather or act on any
information about the details of the individual aside from
the overall fitness. The human involvement allows semi-
intelligent decisions to be made about what parts of the
individual should be changed. After the mutation operator,
it evaluates each individual and replaces the worst members
of the population with the best new individuals. The al-
gorithm repeats until the iteration limit is reached and the
individual with the best routes is returned.

Ismail, Legras, and Coppin don’t provide any experimen-
tal results in the paper, but note that humans are relatively
slow. In practice, humans would be best used in very large
scale routing problems where the added time isn’t as much
of a concern, and the tagging procedure may not be called
every iteration.

3.2 Hybrid Genetic Search with Advanced Di-
versity Control

Adding time window constraints to customer demand and
depot availability poses a significant challenge. Time, dis-
tance, and speed are now important to the problem, and all
of these factors must be accounted for. The opposing de-
mands of temporal and spatial constraints is a particularly
frustrating problem in the VRPTW.

The Hybrid Genetic Search with Advanced Diversity Con-
trol (HGSADC) addresses some of these challenges in the
VRPTW, especially in route-duration constraints. The pri-
mary feature of the HGSADC is a different approach to di-
versity management in its population. HGSADC adds diver-
sity to its objectives as a term to be optimized, which allows
it to avoid dead-end solutions by recalling earlier solutions
that do not encounter the same problem. The algorithm is
considered the current state of the art in the multi-depot
vehicle routing problem with time windows [11].

3.2.1 Algorithm and mechanics
HGSADC is a complex algorithm, and cannot be fully

described in this paper. What follows is a summary of Al-
gorithm 3 and the most notable features.



Algorithm 3: Hybrid Genetic Search with Advanced
Diversity Control

Initialize populations at 4µ size;
while number of interactions without improvement
< ltNI , and time < Tmax do

Select parent solutions P1 and P2;
Create child C from P1 and P2 (crossover);
Educate C (local search procedure);
if C infeasible then

Insert C into infeasible subpopulation;
Repair with probability Prep;

end
if C feasible then

Insert C into feasible subpopulation;
end
if maximum subpopulation size, µ, reached then

Select survivors;
end
if best solution not improved for Itdiv iterations
then

Diversify population;
end
Adjust penalty parameters for infeasibility;
if number of iterations modulo Itdec = 0 then

Decompose the master problem;
Use HGSADC on each subproblem;
Reconstitute three solutions, and insert them in
the population;

end

end
return best feasible solution;

HGSDAC evolves infeasible and feasible solutions as two
separate subpopulations. In most genetic algorithms, infea-
sible (‘incorrect’) solutions are removed from the population,
but in the HGSADC, they are kept in a separate subpop-
ulation. The rationale is that this allows the algorithm to
create a reserve of genetic diversity that can be used to get
the population out of dead ends. Two random individuals
are pulled from the combined population and the best of
them is chosen to be a parent. The crossover operator is an
applied to two parents, and the resulting child is educated.

The education process is a limited local search that seeks
to improve the child; if the child is still infeasible after this
procedure, the repair procedure may be called. Prep is the
probability that the repair operator is called; repair is a
very intensive local search. Finally, the child is placed into
an appropriate subpopulation. If a subpopulation exceeds
a maximum size, a survivor selection stage is triggered. A
number of individuals is removed until the population re-
turns to the nominal population size µ. An individual that
is most similar in terms of fitness score and route to another
individual is called a clone. Survivor selection iteratively
removes a clone until the population size is returned to µ.
The purpose of this style of population management is to
maintain diversity. A diversification round may be started
if there has been Itdiv iterations without improvement. The
best third of each population is retained, and adds 4µ ran-
domly created individuals to introduce new genetic material
to the populations.

Finally, every Itdec iterations, the problem is decomposed

into simplified subproblems and the HGSADC is run on
those subproblems (without further decomposition). The
initial population of subproblem solutions are created from
the relevant genetic material of existing individuals in the
populations of the original problem. The three best individ-
uals of each subproblem are retained and merged to form
three elite individuals who are added to the population of
the original problem.

When the algorithm has finally hit the maximum time,
the best solution from the feasible population is returned.

3.2.2 HGSADC Results
The HGSADC is extremely good at solving VRPTW. Al-

gorithms are tested by measuring how close to optimal is
the best solution the algorithm produced on a number of
test data sets. Out of 465 instances of the VRPTW, the
HGSADC improved or found the previous best solution 397
times. It strictly improved the best known solution 233
times. For certain types of instances, the HGSADC is the
best known algorithm in literature. On the remaining in-
stances, the HGSADC generates solutions of comparable
quality to an earlier algorithm by Nagata et al. [7], and is
less computationally efficient. However, it does not require
as many hand tailored components for each instance, and
performs better on problems with tighter time windows and
shorter routes. The average standard deviation of the re-
sults is 0.2−0.4%, which shows that the algorithm is highly
stable or consistent.

4. AGENT-BASED MODELS
Agents are simply small decision making elements that

typically have some internal state and the ability to make
decisions based on this internal state and potentially some of
the global state. They typically represent and individual in
a population. In optimization, a typical goal is for an agent
to attempt to achieve some sort of optimal state. Agents
(should) take actions to improve their state, and we describe
this as the agent acting in its own interest. The function that
returns the quantification of this local optimization is termed
the local utility function, in contrast to the global, or system
utility function. The global utility function describes how
optimal the system is, which can be quite different from the
local utility. A situation that is locally optimal for an agent,
yet globally non-optimal is show in Figure 2. Here we dis-
cuss two major approaches in modeling individuals for the
decentralized VRP. The first is a distributed reverse Vickrey
auction, the more traditional approach which tends to avoid
sharing information. Probability collectives, the second ap-
proach is a recent development from statistical physics and
game theory that shares information.

4.1 Distributed reverse Vickrey auctions
Saleh et al. [9] examined a version of the decentralized

VRP where each depot and customer are treated as agents,
as opposed to the more common version that treats vehi-
cles as agents. The authors were interested in designing a
system that encouraged near-optimal solutions while still be-
ing completely self-interested. They pursued this by build-
ing mechanisms that encouraged depots to offer an accurate
estimate of minimum costs while still allowing the cost func-
tions of each depot to remain private.

The core feature of the algorithm is a reverse Vickrey auc-
tion, which is a sealed bid reverse auction where competitors



offer a estimate of the cost of providing a service. The con-
sumer selects the bidder that has the lowest cost, but pays
them the amount of the second lowest bid. This encourages
bidders to bid an honest estimate of cost; in the case that
they win, they will always make a profit over their bid.

The algorithm is played as a number of rounds. In each
round, each depot k submits a bid to each unassigned cus-
tomer j where demand is less than or equal to remaining
capacity. Bids consist of the estimated costs of servicing
the customer. The customer chooses the lowest bid satis-
fying their demands and notifies k∗. The depot k∗ may
receive responses from multiple customers. From the given
responses, the depot chooses a single customer j∗ with the
lowest insertion cost (the customer whose addition to the ve-
hicle’s route will cause the least change in the routing cost).
Once the customer is assigned to a depot, the customer j∗

submits payment to depot k∗. The payment is equal to the
second lowest offer of the round, or the lowest if only one
bid is submitted. The completion of these steps is a single
auction round, and many rounds may take place until every
customer is assigned. Once the auction rounds are com-
plete, the depot can apply other optimization strategies to
its routes, or in the case of small routes, an exact solution.

The distributed reverse Vickrey auction is an effective
technique of solving the decentralized VRP in a competi-
tive environment where information is not shared. The au-
thors note that the performance of the algorithm is highly
dependent on the choice of lower level routing algorithms,
but overall, the DRVA is not as existing algorithms.

4.2 Probability Collectives
Probability Collectives (PC) take a different approach to

selecting a good solution. Instead of attempting to evolve
an exemplary individual in a population like genetic algo-
rithms, probability collectives selects optimal strategy for
each agent [6]. A PC agent is a self-interested, learning in-
dividual that selects a strategy with the highest probability
of optimizing the local and global objectives. In contrast to
the Distributed Reverse Vickrey Auction, the agents will-
ingly and freely share information about their strategies,
and the cost function is global.

The general form of PC in the context of VRP is as fol-
lows, along with the flowchart below. It is important to note
this process is repeated for every agent in the system. Imag-
ine you have N agents, which can be depots or trucks, each
having a set X of strategies, of (potentially variable) length
m. The strategies are most often routes in RVRP applica-
tions [10]. X is sampled from the interval ψi with upper
and lower bounds ψu and ψl, which is a non-strict subset
of all possible strategies. A strategy for agent i is denoted

as X
[r]
i , where r is an identifier for that strategy. The set is

represented as Xi = {X [1]
i , X

[2]
i , ..., X

[m]
i }.

For each agent, assign a uniform probability, 1/mi to all
actions; the resulting probability of that strategy being se-

lected is signified by q(X
[r]
i ). The agents then selects a

random action r and a sampling of random actions from
other agents. The resulting set, the ‘combined strategy set’,

Y
[r]
i = {X [?]

1 , ..., X
[r]
i , ..., X

[?]
N }, represents a guess as to a

potential future. Accordingly, for each of the strategy sets

Y
[r]
i , compute the expected local utility using the following

measure:

Start

Sample new strategy set 
and initialize probabilities

Compute expected utility

Compute expected global 
utility

Compute every agent’s 
contribution

Update probability 
distributions

Convergence? Or 
completed iterations?

N

Accept values with highest 
probabilities

Y

End

Figure 4: Probability Collectives Algorithm.

Exp. Utility of Agent ir = qri
∏
(i)

q(X
[?]

(i)) ·G(Y
[r]
i ) (1)

Here qri represents the probability of action r for vehicle i,
(i) is the set of all agents excluding i, and G is the function
that computes global utility for a given set of strategies. G
is problem specific, but in the RVRP it could be a measure
of unused capacity, unvisited destinations, maximum tour
length or various combinations of measurements.

After computing the local utility, the next step is to up-
date the probability of each action for all agents as follows:

q(X
[r]
i )← q(X

[r]
i )− αstep · q(X [r]

i ) ·Or
k (2)

where k is the iteration, αstep is a constant that controls
the amount of change each step.

Or
k =

Contrib. of Agent i

Tk
+ Si(q) + ln(q(X

[r]
i )) (3)

Here, temperature Tk is a scalar that represethe nts the
relative importance of the of the contribution of agent i over
time. It is computed as T(k+1) = Tk − αT · Tk, and T0 is
the initial temperature. The initial value is unimportant
- it must simply be “sufficently high” [5]. αT controls the
rate of temperature change, and the values are often chosen
experimentally. The contribution of Agent i is then:

Contrib. Agent i = Utility Agent ir −Global Utility (4)



The Si(q) term is the entropy of the combined strategy
set. In information theory, Entropy is the average value of
the information in a message. Probability collectives treats
the combined strategy set as a message in order to find the
set with the highest Entropy. As it increases, the probabil-
ity distribution more clearly distinguishes the contribution
of each strategy toward optimizing the expected global util-
ity. When it reaches a maximum, it represents the set that
has the most information about the probabilities of each
strategy. Entropy is computed by:

Si(q) = −
mi∑
r=1

q(X
[r]
i ) · ln(q(X

[r]
i ) (5)

which is the sum of every strategy q(X
[r]
i ) times the nat-

ural logarithm of itself. At this point, the algorithm checks
to see if it will continue updating the global utility or it will
terminate. If the probabilities of the combined strategy set
have not changed by a constant amount, σ, or if the number
of iterations (k) have reached a maximum, the strategy with
the highest probabilities will be returned. Otherwise, the
algorithm will continue by narrowing and re-centering the
sampling interval ψi. The exact process for adjusting the
sampling interval can be found in Kulkarni et al.[5].After
ψ is narrowed then a new strategy set is sampled, and the
process of refining those probabilities is started anew. Once
every agent has returned a final strategy, each agent can
then pursue those strategies.

To summarize, if a strategy r creates a larger contribu-
tion to the optimization of the objective than other strate-
gies, the probability associated with r increases by a larger
amount. This entire process is repeated until the probability
distribution converges or the maximum number of iterations
are completed.

4.2.1 Probability Collectives Results
There are no specific results comparing Probability Col-

lectives to other DRVP-solving algorithms. Probability Col-
lectives do have some noteworthy trends; they outperform
GA in avoiding dead end solutions and in long term opti-
mization [5]. Vasirani and Ossowski [10] do show that the
choice of global utility estimate has a profound effect on how
well the algorithm performs. Global utility estimates that
do not take the utility of the agent invoking the function are
preferred over functions that take all agents into considera-
tion.

5. CONCLUSION
The vehicle routing problem is an important problem in

real world logistics, and as in the field of optimization. The
most performant algorithm in RVRP is HGSADC, which is
dominant within the scope of VRPTW. Adding human in-
tuition or systems emulating it to optimization systems may
be important in improving routing systems. In decentralized
RVRP variants, the specific constraints of each problem limit
the comparability of each algorithm. The distributed reverse
Vickrey auction is conservative with the amount of informa-
tion available to each individual; probability collectives The
distributed reverse Vickrey algorithm is within several per-
cent of the best known solutions. Probability collectives is
not as good in a straightforward sense, but it handles noisy
and imperfect agent behaviors better than other distributed
systems. Decentralized means of solving the VRP are not as

well-developed as centralized methods, but they show good
promise for solving near-future routing problems.

Acknowledgements
I’d like to thank caffeine, water, and stress: the raw ele-
ments that formed this paper. Harris L. Mayer’s 1964 pa-
per, “Opacity Calculations, Past and Future” was a wonder-
ful source of literary inspiration. Finally, this paper owes
a great deal to Nic McPhee and Kirbie Dramdahl for their
thoughtful feedback and advice.

6. REFERENCES
[1] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J.

Bury. Simulation optimization: a review of algorithms
and applications. 4OR, 12(4):301–333, 2014.

[2] S. Ben Ismail, F. Legras, and G. Coppin. A new
interactive evolutionary algorithm for the vehicle
routing problem. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary
Computation, GECCO ’12, pages 661–668, New York,
NY, USA, 2012. ACM.

[3] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera,
and A. A. Juan. Rich vehicle routing problem: Survey.
ACM Comput. Surv., 47(2):32:1–32:28, Dec. 2014.

[4] G. B. Dantzig and J. H. Ramser. The truck
dispatching problem. Management Science,
6(1):80–91, 1959.

[5] A. J. Kulkarni, A. Abraham, and K. Tai. Probability
collectives. Springer International Publishing, 1st
edition, 2015.

[6] A. J. Kulkarni and K. Tai. Probability collectives for
decentralized, distributed optimization: A collective
intelligence approach. In 2008 IEEE International
Conference on Systems, Man and Cybernetics, pages
1271–1275, Oct 2008.

[7] Y. Nagata, O. Bräysy, and W. Dullaert. A
penalty-based edge assembly memetic algorithm for
the vehicle routing problem with time windows.
Computers & Operations Research, 37(4):724 – 737,
2010.

[8] U. S. D. of Transportation. Transportation statistics
annual report 2012. www.rita.dot.gov/bts/.

[9] M. Saleh, A. Soeanu, S. Ray, M. Debbabi, J. Berger,
and A. Boukhtouta. Mechanism design for
decentralized vehicle routing problem. In Proceedings
of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, pages 749–754, New York, NY,
USA, 2012. ACM.

[10] M. Vasirani and S. Ossowski. Decentralized
coordination strategies for the vehicle routing
problem. In Proceedings of the 2008 ACM Symposium
on Applied Computing, SAC ’08, pages 130–131, New
York, NY, USA, 2008. ACM.

[11] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins.
A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing
problems with time-windows. Computers and
Operations Research, 40(1):475 – 489, 2013.


