
Abstracting Natural Language Queries into SQL

Thomas Hagen
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

hagen715@morris.umn.edu

ABSTRACT
Databases are the structural backbone of storing digital know-
ledge in the modern era. For such a prevalent and important
source of information, there is a surprisingly small pool of in-
dividuals who posses the skills to access them. In this paper,
we cover the core process of making these databases accessi-
ble through natural language that anyone would be familiar
with. From there, we will then explore two additional mod-
ern approaches to abstracting natural language queries into
SQL, in the form of implementing keyword-based queries
and implementing auto-suggestion queries.

Keywords
Natural Language Interface to Databases (NLIDBs),
Natural Language Processing, SQL, Databases

1. INTRODUCTION
Since the original conception of databases and the cre-

ation of SQL in the 1960s-70s, there has been interest in the
field of natural language processing on how to make these
data stores more approachable. Over the years many at-
tempts have been made. Some have been used as industry
applications such as PRECISE, an interface for air travel
information, and many more were never more than research
projects. Despite this, both databases and SQL are still the
structural backbone of storing and retrieving digital know-
ledge in the modern era. Given the popularity and useful-
ness of databases, it seems as though simple interaction with
one would be a more prevalent skill, yet individuals with
the know-how are limited in number and often have tech-
nical training on how to do so. Nowadays people interact
with databases through applications such as Siri, Alexa, or
Google, generalized everyday interfaces where no technical
skills are required. Research on natural language interfaces
to databases (NLIDBs) has also seen more application in
specialized fields, such as medicine and biology [5].

In this paper, we cover the core process of making these
databases accessible to a broader range of users through nat-

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

ural language. Starting with an open query approach, we
will cover the principle pieces of translation by exploring a
natural language interface called, “Natural Language Inter-
face to Relation databases” (NaLIR) [3]. With NaLIR, we’ll
walk through deconstructing the initial English query, repre-
senting the query in a programmatic fashion, translating this
representation into a structure to be mapped to SQL, and fi-
nally converting the intermediary representation into an exe-
cutable SQL call. From there we move on to a brief overview
of a keyword-based implementation as an additive feature to
a system such as NaLIR. Keywords will lead us into our final
interface through Discover and its auto-suggestion approach
to natural language interfaces. Discover uses a mixture of a
keyword-based approach and unrestricted approach to allow
users to pose dynamic questions, while ensuring the question
can be answered. After our overview of these approaches,
we’ll wrap up with some concluding remarks.

2. BACKGROUND

2.1 An Introduction to SQL
Structured Query Language (SQL) is a special-purpose

programming language designed for managing data held in a
relation database management system (RDBMS) [8]. A rela-
tional database can be thought of as a collection of spreadsheet-
like tables containing rows, each row with a unique key, and
columns. For example, you might have a table of books
where each row is a book and each column is a book’s at-
tribute such as title, author, number of pages, etc. Each
book can also hold unique keys to other books, like a refer-
ence. In our book table, lets say we hold the author’s name,
but we also hold the unique key that points us to a row in a
separate table of authors. You can think about the unique
key like a reference in a paper such as, “See the table of
authors, line 7 for information about this book’s author.”
This key points to the row that represents our author, and
from there we can see all of the books they have published,
including the one we were originally at. By sharing keys, we
end up with a web of relationships between rows and tables
where the more tables we add, the more complex relation-
ships we form. In order to retrieve any useful information
out of all of it we must use some formalized series of com-
mands that can make use of the inherent structure of the
database.

SQL gives users a way to add, modify, initialize, and query
databases. For the purposes of this paper we will be focusing
on the limited scope of querying. Queries (question asking)
are denoted by the keyword ”SELECT” followed by compo-

SELECT Authors.AuthName, Books.BookName,

Books.BuyDate, Authors.NumOfBooks

FROM Books

INNER JOIN Authors

ON Books.AuthName=Authors.AuthName;

Figure 1: Example Inner Join

nent specifications that specify what tables to select from
and how to restrict the selection. A sample query might be
as follows [8].

SELECT *

FROM Books

WHERE price > 100.00

ORDER BY title;

The star after select says that we want every column from
our Books table. By using the WHERE keyword, we can
say that out of all of those books, only give us books whose
price is over 100. WHERE is used to restrict the information
returned to just a subset that meets a condition. Finally, we
ask to return the selected items alphabetically ordered by
title using ORDER BY, where title is a column in the table
Books.

When two tables each have a column with the same name,
it is possible to ask for data from both tables limited by
some restriction on the shared column. This operation is
called a JOIN in SQL. Lets say there are two tables, one of
authors and one of random books on a shelf. Both tables
contain the column “AuthName” that is a unique identifier
for the authors. If we wanted to retrieve every book’s name,
author’s name, and date when the books were bought, we
could use a JOIN as in Figure 1.

Notice above that we used the keyword INNER JOIN.
This is because there are four different types of joins and
each specifies a different condition. Inner join, also known
as simple join, returns all rows from multiple tables where
the join condition (the line after the ON keyword) is met [8].
Inner join looks at two columns, Books.AuthName and Au-
thors.AuthName, and takes the rows that have AuthName’s
that are in both lists. So now we’ve got a list of authors and
books, and most importantly, each row now has a unique Au-
thName. Now from this list, inner join returns the columns
asked for, in our case that is all of the books names and
buy dates (Books.Bookname, Books.BuyDates), and it also
returns all of the authors names and their number of books
(Authors.Authname, Auth.NumOfBooks). Figure 2 shows
two tables and the resultant table of an inner join on them.

The other three main types of joins are Left Join, which re-
turns all the rows from the first table (the table after FROM)
as well as the matching rows. Right Join does the same as
left join except it returns all of the rows from the second
table instead of the first. Full Join returns all rows whether
they match or not. By using these four types of joins, SQL
can mimic certain types of questions that may be easy to
phrase in English but hard to think about programatically.

2.2 Types of Natural Language Analysis
All natural languages are based around inherent rules that

dictate sentence structure, word meaning, and subject/object
relationships. Transforming a natural language query (NLQ)
into something machine-understandable means distilling out

Books Table:
BookName AuthName BuyDate Value
1984 George Orwell 10.10.2009 $10
Green Eggs a.. Dr. Seuss 4.15.2001 $35
How To Kick Gill Jeffers 6.17.1994 $5

Authors Table:
AuthName Age NumOfBooks
George Orwell 107 31
Phill Greggs 41 7
Dr. Seuss 141 74

Inner Join:
AuthName Bookname BuyDate NumOfBooks
George Orwell 1984 10.10.2.. 31
Dr. Seuss Green Eg.. 4.15.2.. 74

Figure 2: Inner Join on Tables

ambiguity as well as retaining initial intent. In order for a
machine to understand any presented NLQ, we must decon-
struct it into its fundamental pieces in such a way that it
can be systematically processed. The commonly accepted
representation is as a tree structure where each leaf holds
a word, and the internal nodes hold representational parts
of a sentence that relate words and word groupings to one
another. This data structure as it is applied to a sentence
is known as a linguistic parse tree. To build this tree, we
have to collect both information about the individual words
(morphological and lexical analysis) and information about
the sentence structure (syntactic analysis).

2.2.1 Morphological Analysis
Morphological analysis is used to represent the meaning

and grammatical features of individual words [5]. Each indi-
vidual word’s meaning is modified by its prefix and suffix so
morphological analysis splits words into their prefixes, roots,
and suffixes. With the root, words can be identified easily
and mapped against existing bodies of knowledge for their
relations to other words as happens in lexical analysis.

2.2.2 Lexical Analysis
Lexical analysis involves understanding the properties of a

word free of its context. In this step of the process, the nat-
ural language query is broken down into individual words.
Each word is then associated with related information and
“tags” such as its part of speech (noun, verb, adjective), syn-
onyms, antonyms, homonyms, and other relevant informa-
tion. In order to appropriately “tag” each word with its un-
derlying properties, a source of pre-existing knowledge must
be used. This source is referred to as a lexicon. There are
many different lexicons depending on subject matter, lan-
guage, and context. Take for example WordNet [4], a large
lexical database. WordNet is considered a “Universal Lexi-
con” because it is not limited to a specific subset of words.
A “Domain Lexicon” in contrast, is a specialized set of word
relationships about an in-depth field, such as a“Pathological
Viruses” domain lexicon containing accurate medical termi-
nology relating to pathogens.

2.2.3 Syntactic Analysis
Syntactic analysis uses the structure of the sentence and

the order of the words to determine the intent or specific

Return papersdobj
alldet

pages

acl:relcl

that
nsubj

arecop

6

nummod

length

nmod

incase

Figure 3: Dependency Tree for NLQ

meanings of the individual words in context to the query as
a whole. In order to determine the intended syntactic struc-
ture of the sentence, a syntactic parser is used. Feature-
based Context-Free-Grammars (FBCFGs) generate sets of
features based on the properties of each word. With a wider
range of understanding, past just a word’s part of speech,
FBCFGs use this information to derive internal word rela-
tionships. Neural networks look at large quantities of sen-
tences to try and form inherent relationship rules. In this
process, they are trained on a large number of sentences
that already have the parse specified in order to learn asso-
ciated patterns with a given query. Once a neural network
is trained, it can then be applied to sentences for which the
syntactic parse is unknown. For the purposes of this paper
we will not be looking at them in depth, but more informa-
tion can be found in the citations [2,3].

3. NALIR: AN UNRESTRICTED
APPROACH TO NLQS

There are a multitude of different approaches to convert
a NLQ to SQL with many of them being distinctly differ-
ent from each other, but all of them are composed of three
key components: a linguistic component, an intermediary
representational form, and a database component to handle
database representation and information retrieval [5]. In or-
der to explore these three pieces, we will first focus on an
approach by researchers at the University of Michigan called
NaLIR [3]. This user interface takes in an unrestricted nat-
ural language query, translates it into SQL, and returns the
query results, allowing users to interactively respond and
adjust the query as necessary. By allowing an unrestricted
vocabulary, NaLIR is not fixed to a particular set of materi-
als as it implements a universal lexicon. This means it may
be applied a database without prior knowledge of the sub-
ject of the material being queried. In the remainder of this
section, we will outline the key steps of NaLIR’s process.

3.1 Sentence Decomposition
Once the user has initially entered their query into the

interface, the first step of translating natural language is
sentence decomposition. The core of NaLIR’s method of sen-
tence decomposition lies in how we represent sub-relationships
between individual word pairs. As an example, in the sen-
tence “I kicked the ball.”, the words “I” and “kicked” share
a nominal-subject relationship between the subject “I” and
the verb “kick”. This process of decomposition is carried out
in NaLIR by the Stanford Syntactic Parser. The Stanford
Parser represents these natural language relationships using
a fixed collection of 44 hierarchical relationships that one

Node Type Corresponding SQL
Select Node SQL Keyword: SELECT

Operator Node an operator, eg. =, >=, !=
Function Node an aggregation function eg. AVG

Name Node a table name or column name
Value Node a value under a column

Quantifier Node ALL, ANY, EACH
Logic Node AND, OR, NOT

Table 1: NaLIR Node Classification

word may have to another. For example, parsing the sen-
tence, “Return all papers that are 6 pages in length” gives
you the resulting relationship pairs [2]:

root(ROOT, Return)

determiner(papers, all)

direct_object(Return, papers)

nominal_subject(pages, that)

copula(pages, are)

numeric_modifier(pages, 6)

acl:relcl(papers, pages)

case(length, in)

nominal_modifier(pages, length)

Each line is composed of three key pieces of information
formatted as “A(B, C)” in which A is how C relates to B.
Looking back at our last line, we can now read it as ‘length’
nominal modifier of ‘pages’. This collection of relationships
make up the fundamental structure of a dependency tree,
the next form of intermediate representation. As the name
implies, a dependency tree is a representational tree diagram
formatted to show how the words in a sentence depend on
one another. The nodes of the tree represent words, while
the edges are derived from the relationships generated by the
parser, where the child node is related to the parent node by
the named edge. Our simple example query is diagrammed
out into a dependency tree in Figure 3 above.

3.2 Classifying Dependency Tree Nodes
Once a dependency tree has been generated, the next step

of the process is to attempt to map nodes from the depen-
dency tree to reasonable query pieces. NaLIR’s approach di-
vides query pieces into 7 different classifications [3] as listed
in Table 1. NaLIR attempts to put each node of the depen-
dency tree into one of these classifications; if a node does
not fit into a classification, it is typed as non-applicable and
is deemed non-essential to forming the final query. As an
example, let’s take our query, “Return all papers that are 6
pages in length” and match it against a database that has
authors, conferences, papers, and other information about
technical papers. Our query could be deconstructed into
the following mapping strategy in Figure 4 on the following
page.

The mapping strategy shows the words from the original
query that have been found to relate to either an element of
the database being queried, or some piece of SQL language.
In the lines above, ‘return’ was classified as a Select Node
corresponding to the keyword SELECT, ‘papers’ was classi-
fied as a Name Node corresponding a table named papers,
‘all’ was classified as a Quantifier Node with the quantifier
ALL, and so on. Both ‘that’ and ‘in’ were classified as not
relevant to the query and marked with N/A. The process to

return (SELECT NODE: SELECT)

papers (NAME NODE: papers)

all (QUANTIFIER NODE: ALL)

pages (NAME NODE: pages)

that (N/A)

are (OPERATOR NODE: =)

6 (VALUE NODE: papers.length)

length (NAME NODE: length)

in (N/A)

Figure 4: Dependency Tree Node Classifications

generate these classifications is comprised of multiple levels
of analysis applied to the nodes of the dependency tree. Pre-
viously applied lexical analysis utilizing WordNet provides
semantically similar words and synonyms for any given node.
With this broadened range of meaning, similarity functions
[7,8] can be applied to compare nodes to database elements.
Using the same information, we can also apply a similar
spelling check to compare words of the query to database
values and nodes. This is useful for finding shared nam-
ing conventions and potentially identifying Name and Value
nodes. Given this restricted set of items to compare to, it is
reasonable to assume a pseudo-limited vocabulary without
actually implementing constraints on queries. Operations
such as querying a database about a subject not pertinent to
its contents will yield little information, as the words of your
query are unlikely to relate to values of the database. Both
spelling and meaning similarity are mathematically calcu-
lated, and then the max of the two is taken and compared
against a predefined threshold to evaluate whether a node
maps to a value or SQL component.

3.3 Query Tree Generation
Query trees are intermediates between natural language

sentences and SQL statements. A query tree is comprised of
SQL component pieces as defined earlier. Once each node of
the original linguistic parse tree has classified, we now have
a query tree that may or may not be translatable into a valid
SQL query. In order to validate the query tree, a set of rules
define the possible structures of valid query trees. If the
current query tree could not be generated from these rules
then the tree must be reformulated. This is done through re-
peated subtree movement operations to generate new trees.

A subtree move is moving one subtree up or down the tree,
so that the root of the subtree becomes the original root’s
parent, and the original root becomes a child of the subtree.
First, the algorithm performs one subtree move and gener-
ates all resulting trees from that move. Then with the set of
new trees, it evaluates the validity of the tree compared to
the parent tree. The first validation is against our set of rules
to calculate the tree, also known as a grammar. Trees with
higher numbers of nodes that cannot be generated by the
set of rules are deemed less desirable. The second validation
of a given tree can be numerically quantified as follows. Let
T be a parse tree, in which each node nt maps to a database
element vi. Let valid(nti, ntj) be the set of all the pairs
where nti is an ancestor of ntj and no value-mapped node
exists between nti and ntj . Given the relevance w(p(vi, vj))

between vi and vj , the score of T is defined as follows [3]:

score(T) =
∏

valid(nti,ntj)

w(p(vi, vj))

In English, to calculate the ‘validity score’ of a given query
tree, we look at every pair of nodes in the tree with a direct
child/parent relationship where both nodes map to some ele-
ment of our database. Once we have every one of these pairs
identified, we find their relationship weight to each other
from a database graph and then multiply all of their weights.
For these weighted values, NaLIR defines a pre-constructed
directed database graph of the queried database. There are
two types of nodes, defined as relation nodes and attribute
nodes where relation nodes represent tables and attribute
nodes represent columns. There are also two classifications
of edges within the graph, projection edges and join edges.
Projection edges are between a table name and its columns,
whereas join edges, following the concept of Join from SQL,
are between shared columns across tables. These edges are
weighted between 0 and 1 where 0 is low correlation and 1 is
high correlation [3]. If the generated query has a lot of pairs
that are closely related to one another from the database’s
perspective, then our score will be high.

NaLIR’s third way of judging query tree validity is by
looking at how many generations away from the original tree
this one is, thereby how closely this version of the query tree
compares to the originally given syntactic parse tree. In the
NaLIR implementation of these scoring systems, the num-
ber of valid nodes is the most significant factor of the final
score, followed by node relationships, and then generational
difference [3]. The trees with the highest scores are then
presented to the user as a list of potential English queries to
pick from.

3.4 SQL Generation and Execution
Once a user-selected final query tree has been chosen, the

conversion to SQL can take place. The majority of the
work is done at this point and from here forward, nodes
are mapped to the corresponding elements and SQL func-
tions. Function nodes (AVG, SUM) or quantifier nodes
(ALL, EACH) denote subqueries called blocks. Any reason-
ably complex query will contain one or more blocks within
it. A block is formally defined as a subtree rooted at the
select node, a name node that is marked “all” or “any”, or a
function node.

The block rooted at the select node is the main block,
which will be translated to the main query. Other blocks
will be translated to subqueries. When the root node of a
block b1 is the parent of the root node of another block b2, we
say that b1 is the direct outer block of b2, and b2 is a direct
inner block of b1. The main block is the direct outer block
of all the blocks that do not have other outer blocks. After
identifying blocks, we can outline the general building pro-
cess of the final SQL query. Starting with the select node,
we add nodes that map to columns in the database after
the SELECT keyword. Nodes that map to values and any
related operation nodes are added under the WHERE key-
word. Finally, child/parent nodes that represent columns
are translated into JOIN conditions and added. A query
similar to, ”Return any published books by the author with
the greatest number of published conference papers” would
produce resultant SQL code containing a block such as Fig-
ure 5 .

SELECT PublishedBooks.BookName

FROM ConferencePapers, PublishedBooks,

(SELECT MAX(paperNumber) --BLOCK

FROM ConferencePapers.Authors) --BLOCK

AS authGreatestPapers <-- BLOCK NAME

WHERE authGreatestPapers.Name = Papers.Author

AND Papers.Author = PublishedBooks.Author

Figure 5: Example of a Block

4. KEYWORD BASED QUERIES
Another approach that has been taken to the problem of

processing natural language is to add keyword recognition to
previously implemented models as a method to answer more
direct and simple questions. Using a keyword based imple-
mentation does not replace a full natural language interface,
but instead provides another way to understand queries. In
general, keyword implementations are built on the idea of
matching given keywords against a representational body of
words from the database. As an example, databases will of-
ten contain metadata, or information about the data within
them, that can be retrieved and processed into a usable set
of information. If the default mapping of a query cannot be
created using the rules of the underlying system, the key-
word based agent will attempt to apply a set of rules as to
generate a limited SQL response in place of returning noth-
ing. In one given approach developed by Shah, Axita, et
al. [6], the set of conditions and actions for keyword queries
are limited to just three responses defined as follows. If the
keyword exists as a table tag, add it after FROM. If the key-
word exists in the name or description attribute tags, add it
after SELECT. If the keyword does not match a given tag in
the knowledge base, attempt to use the keyword as a value
placed after WHERE condition. Consider a farm owned
database where an example query that could be converted
to a keyword based query is the simple phrase, “agriculture
data”. Using a general mapping approach, there is no word
to be mapped to SELECT, FROM, or any functional nodes.
But, applying the rules above, this query can be translated
into:

SELECT *

FROM Crop_Data

We have two keywords, “agriculture” and “data” that the
rules may apply to. Assuming the words “agriculture” and
“data” did not directly match any table, column, or value
names, we can apply similarity techniques as defined earlier
to check lexical and spelling similarities between table, col-
umn, and value metadata against our keywords. Through
this process, we might find high similarities between the ta-
ble name“Crop Data”and the keywords due to“agriculture”
and “crop” synonym relationships, as well as exact spelling
of “Data” between the keyword “Data” and the second half
of the table name “Crop Data”. Once a table name is iden-
tified, it is added after the FROM in our call. Since all
keywords have been evaluated but there is no specified ma-
terial to return, * is defaulted after SELECT to return all
columns. Keyword queries are often inaccurate due to their
limited rule set and often times are only used as a backup.

Figure 6: Auto-suggestions being generated

5. AUTO-SUGGEST QUERIES
Designed to bridge the gap between keyword based search

and fully unrestricted database query languages, auto-suggestion
systems such as Thomson Reuters Discover offers word-by-
word corrections and suggestions while the user is forming
their query [7]. In contrast to the NaLIR from earlier, Dis-
cover is a domain dependent system, meaning that it re-
quires and utilities prior knowledge of the contents of the
stored data in order to apply relational cases specific to the
field.

5.1 Question Understanding
Discover’s lexical parsing is done through a feature-based

context-free-grammar (CFG). A context-free-grammar at its
core is a system of rules that define how a sentence must be
constructed. A rule may look like, “VP -> V NP”, indicating
that a verb phrase (VP) must consist of a verb (V) and noun
phrase (NP). With these rules, a CFG can start by looking at
an entire sentence and see if the parts of the sentence could
be mapped out with these rules. Since Discover relies on
foreknowledge of what type of information it is querying, it
can use a domain-specific lexicon. Lets assume that Discover
is querying a database containing technical information on
drug patents. Words that could be commonly used in queries
such as the word“headquartered”when referencing company
locations can be given a special set of relationship rules to
follow. The query, ”drugs headquartered in the US” makes
sense structurally, but thanks to prior knowledge, the CFG
has a rule that the verb “headquartered” cannot have “drug”
as a subject. Instead, it must have a company name or
the word “company”. If there was no prior knowledge of the
database, such as in NaLIR, implementing these rules would
be impossible since “headquartered” is never guaranteed to
only be talking about companies.

With these implicit relationship rules, auto-suggestions
can be generated based on what the rules say could poten-
tially be the next part of the sentence, as seen in Figure 6.
Starting with a query “d”, Discover searches its lexicon for
words/phrases that start with “d”. From this list, a user
must either select a presented suggestion or continue their
query segment by appending more letters. By selecting the
word “drugs”, Discover, again using its lexicon, now refer-
ences the rules for the root word “drug” to determine the
set of valid phrases follow the word “drugs”. This chain of
auto-suggestions results in a list of known phrases that are
highly likely to be syntactically correct for a query.

In a case where the user is familiar with constructing step-
by-step queries, they may type out a full query and ignore
the auto-suggestion. If this is the case, Discover first tok-
enizes the words of the query through morphological anal-
ysis, and then starting with the first token, it attempts to
match the shortest run of tokens with a suggestion. Had

Natural Language Query: drugs developed by Merck

FOL: all x.(drug(x) ->

(develop_org_drug(id0,x) & type(id0,Company)

& label(id0,Merck)))

SQL: SELECT drug.*

FROM drug

WHERE drug.originator-company-name = ‘Merck’

Figure 7: NLQ, FOL, and SQL

the user typed out, ”drugs developed by Merck”, the first
word “drugs”, tokenized to “drug”, would match the sugges-
tion “drugs”. After “drugs” was processed, the next token
is “developed”, which does not match a suggestion, so Dis-
cover adds the next token “by”. The two tokens “developed
by” together match the suggestion “developed by” and are
added after “drugs”. After fully processing all tokens, the
final set of suggested segments would be, “drugs, developed
by, Merck” [7].

5.2 FOL Parsing and Translation
Discover uses first order logic (FOL) [1] as an intermedi-

ary representation between natural language and SQL. FOL
performs a similar task as the node-mapping of NaLIR and
allows the query to be broken down into parts mapped to
correct SQL attributes. The translation of our query into
FOL can be broken down into three steps. First, the nat-
ural language query is implicitly translated to FOL repre-
sentation directly based on the set of rules that generated
the natural language queries structures. Since the original
query was constructed from a set of rules, the relationships
between suggested segments are already defined and easily
made into an FOL representation, similar to a dependency
tree in structure. In a dependency tree the nodes are singu-
lar words and the edges are grammatical relationships based
on implicit rules of English. In an FOL representation, the
nodes are pre-defined suggestion segments which may con-
tain more than one word, such as the segment “developed
by”. The edges, also known as predicate calculus, are a
mix of universal English rules as well as rules specific to
the database, such what suggestion segments can follow or
precede the segment “headquartered”.

Second, with the FOL representation, we can generate a
syntax tree using another generic parser such as ANTLR, the
one utilized by Discover. The FOL parser takes in the FOL
representation of the query and the grammar. A grammar
is the set of all rules used to generate the query and the
lexicon used. With these pieces of information, the parser
will attempt to determine a syntax tree.

Third, we do an in-order traversal of the syntax tree and
push all logical conditions and logical connectors onto a
stack. Once the tree is fully traversed, we pop the elements
of the stack to build the query constraints. Finally, ele-
ments are mapped to their corresponding attributes in the
database. The example NLQ, ”drugs developed by Merck”
would return the FOL and subsequent SQL Query as seen
in Figure 7 [7].

6. EVALUATION AND CONCLUSION
In user tests with NaLIR, 90% of user asked questions

were evaluated correctly. In cases where user feedback was
required, the main point of failure was the translation from
dependency to query tree. The natural ambiguity of ques-
tions lead to users not being able to accept a query tree
that could reflect their initial query. The other steps of
the process, dependency tree parsing and query-tree to SQL
translation posed no problems for users.

Discover averaged around 80% to 90% recall depending on
the test data it was applied to. With 60 grammar rules and
approximately one million lexical entries, Discover claims
comparable precision and recall to state-of-the-art question
answering systems. Both of these systems are just two of
many approaches taken in the task of converting natural
language queries into SQL, and both are comparable to mod-
ern standards in their fields of application. The key steps
of linguistic breakdown and analysis, intermediary represen-
tation, and SQL conversion as seen in the unrestricted ap-
proach “NaLIR”, keyword implementation approaches, and
the auto-suggest approach“Discover”show promising poten-
tial for future optimization.

7. ACKNOWLEDGMENTS
Thank you to Nic Mcphee for guidance and revision, KK

Lamberty for structural layout, and Skatje Myers and class-
mates for feedback.

8. REFERENCES
[1] J. Barwise. An introduction to first-order logic. Studies

in Logic and the Foundations of Mathematics, 90:5–46,
1977.

[2] M.-C. De Marneffe, B. MacCartney, C. D. Manning,
et al. Generating typed dependency parses from phrase
structure parses. In Proceedings of LREC, volume 6,
pages 449–454, 2006.

[3] F. Li and H. Jagadish. Constructing an interactive
natural language interface for relational databases.
Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

[4] G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

[5] M. N. Nihalani, S. Silakari, and M. Motwani. Natural
language interface for database: a brief review. 2011.

[6] A. Shah, J. Pareek, H. Patel, and N. Panchal.
Nlkbidb-natural language and keyword based interface
to database. In Advances in Computing,
Communications and Informatics (ICACCI), 2013
International Conference on, pages 1569–1576. IEEE,
2013.

[7] D. Song, F. Schilder, C. Smiley, C. Brew, T. Zielund,
H. Bretz, R. Martin, C. Dale, J. Duprey, T. Miller,
et al. Tr discover: A natural language question
answering system for interlinked datasets. In The 14th
International Semantic Web Conference, 2015.

[8] Wikipedia. Sql — wikipedia, the free encyclopedia,
2016. [Online; accessed 9-October-2016].

