
Abstractive Automatic Text Summarization

Isaac Koak
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

koakx001@morris.umn.edu

ABSTRACT
Information overload — the difficulty one can have under-
standing and making a decision on an issue due to the avail-
ability of too much information[7] — has become a hot topic
of research over the past couple of decades because of the in-
creased availability of information the internet. Automatic
summarization, the process of condensing input information
to produce a concise summary that retains the most im-
portant points of the original input, is one possible way of
dealing with the issue of information overload. Automatic
summarization can be applied to textual documents, video,
or images. Methods for automatic summarization can be
put into two categories, extractive or abstractive. In this
paper we focus on the abstractive approach in its applica-
tion to document summarization. We investigate the latest
approaches in this category and where the field in headed in
the future.

Keywords
Automatic Summarization, Abstractive Summarization, In-
formation Overload

1. INTRODUCTION
Automatic summarization has been around since the late

1950s and has mostly focused on single document summa-
rization with emphasis on extracting the most important
information at the sentence level using information such as
word frequency, position of a word in a text, or keyphrases
that capture the main topic of the text. The development
of the internet, and its side effect of information overload,
has powered a surge of research in the field of automatic
summarization.

Summaries can either be generic or query-driven [4]. Generic
summaries return important information from the input doc-
ument with little regards to the outside world, whereas query-
driven summaries generate the output based on keywords
and topics of the query. Summaries can also be categorized
based on the type of content they produce: indicative or

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, November 2016 Morris, MN.

informative [4]. Indicative summaries tell us what the doc-
ument is about, while informative summaries can be read in
place of the source document. There have been numerous
techniques developed over the years for automatic summa-
rization, but they can all be generalized into two categories:
extractive and abstractive [5].

Extractive summarization uses a subset of words, phrases,
or sentences from the original document to form a summary.
It usually leaves the words in the initial order and word-
ing and uses a cut and paste manner to string together a
final summary. This can work fine for single document sum-
marization, but it presents issues when applied to multi-
document summarization, especially in the coherence and
comprehension of the resulting output; producing a single
output summary for multiple input documents introduces
the issue of having to consider similarity, differences, and
contradictions among the input documents.

Abstractive summarization tries to understand the seman-
tic meaning of what it’s summarizing in order to produce
the summary. The process is akin to what humans do when
they summarize a text. The important parts of the initial
document are preserved with the summary possibly being
paraphrased.

A majority of summarization methods implemented in the
real world today are based on the extractive model, mainly
due to the simple fact that it is easier to implement than the
alternative, therefore it has attracted most of the research
done in the field. The seemingly exponential growth of the
internet has brought about different types of documents that
may be better suited to being summarized using the abstrac-
tive approach. This, coupled with the ever dropping price of
computational power, has inspired more research that lever-
ages the abstractive approach in the past two decades. For
the rest of this paper, we focus on techniques for abstractive
summarization. After introducing some background infor-
mation, we examine two different examples of how it’s been
implemented in the last five years: a graph-based imple-
mentation that uses Abstract Meaning Representation and
a hybrid approach that utilizes several different methods.

2. BACKGROUND
In order to fully make sense of material in the subsequent

sections, it’s important that some basic background informa-
tion is provided. We will begin by taking a look at n-grams,
which are continuous sequences of n items from a sequence
of text. Then, we describe cosine similarity, which is a way
of measuring similarity between documents. Finally, we ex-
plain ROUGE, a summary evaluation metric, that will help



us better understand the results of the methods presented
in section 3.

2.1 N-Gram
An n-gram is a consecutive sequence of n items from a

sequence of some tokens w1...wn. A word is the token in
our case as we’re talking about text summarization. N-
grams have many uses, including being used as the main sen-
tence breakdown method in ROUGE (subsection 2.3.2). The
name given to an n-gram is based on the value of ‘n’. The
first three use latin numerical prefixes ‘unigram’, ‘bigram’,
and ‘trigram’ respectively, whereas the rest just prepend the
number in front, i.e., ‘four-gram’ or 4-gram for an n-gram of
size 4. There’s also the concept of skip-gram which allows
for gaps in the token. The sentence ‘the cat is black’ can be
split into bigrams as such: ‘the cat’, ‘cat is’, and ‘is black’. It
can also be split into 1-skip-bigrams ‘the is’ and ‘cat black’.
Sometimes, skip-gram can be more useful than straightfor-
ward n-gram. 1-skip-bigram is able to capture the two most
important words in this sentence, ‘cat black’, while simple
bigram failed to do so.

2.2 Cosine Similarity
In making summaries, especially document summaries,

there comes a point where you have to compare similari-
ties and differences between the content of documents. One
way to do this is by looking at vector representations of the
documents and computing the cosine similarity to determine
how similar they are. There are several ways of creating vec-
tor space models for documents. The simplest of which is
tf-idf (term frequency-inverse document frequency).

2.2.1 TF-IDF
Term frequency (TF) is a measure of how many times a

word occurs in a document. Term frequency has the bias of
scaling up terms with a high count and scaling down terms
with a low count. This is an issue as it gives importance
to words with high frequency that don’t really carry any
important information, e.g., the word ‘the’ or ‘a’.

TF (t) =
number of times a term t appears in a document

total number of terms in the document

Inverse Document Frequency (IDF) measures how impor-
tant a term is in a document. This solves the issue presented
by TF by normalizing the weight. Looking at a single docu-
ment in a collection of documents, IDF is modeled after the
observation that the fewer times a word occurs in other doc-
uments, the more important that word is in this document

IDF (t,D) = log

(
total number of documents (D)

number of documents with term t

)
Finally, TF-IDF of a term is calculated as a product of

these two metrics:

TFIDF = TF ∗ IDF

2.2.2 Computing Similarity
Cosine similarity is the angle difference between two vec-

tors calculated from their inner product. The cosine simi-
larity of any two documents can be used to determine how
similar they are based on the resulting angle computed from
their vector representations. The closer to 1 the value is,

the more similar the documents, since cos(0◦) = 1. The
computation is done using the following formula:

cos (θ) =
A ·B
‖A‖ ‖B‖

2.3 Summary Evaluation Metric: ROUGE
There are many systems for evaluating automatically gen-

erated summaries, but research examined in this paper uses
the ROUGE metric, hence only the ROUGE metric will
be explained. ROUGE, or Recall-Oriented Understudy for
Gisting Evaluation, is a software package for automated
evaluation of summaries. It’s a recall-based system that
measures the overlap, using n-gram, word-sequence, and
word-pair information, between the summary being tested
and human-generated summaries. It has several different
settings that can be used for different types of summaries:
ROUGE-N, ROUGE-S, ROUGE-L, and ROUGE-W [2].

ROUGE-N is an n-gram recall measure between a can-
didate summary and human summaries. ROUGE-S uses a
skip-bigram co-occurrence statistic that measures any pair
of words in their sentence order; this allows for an arbitrary
gap between words. ROUGE-L uses the Longest Common
Subsequence (LCS) between the candidate and the reference
summary. The issue with ROUGE-L is it doesn’t differenti-
ate between LCS’s that have a gap and those that don’t; it
gives them the same score. ROUGE-W solves this issue by
giving greater weight to consecutive in-sequence LCS’s [2].
Consider the following example:

Summary: police killed the gunman

Ref1: police kill the gunman

Ref2: the gunman kill police

We are given the generated summary and two reference sum-
maries. Using ROUGE-N as the measuring method where N
= 2, bothRef1 andRef2 would result in the same ROUGE-2
score since “the gunman” would be a match on both refer-
ence summaries. If ROUGE-L is used instead, Ref1 would
give the summary a better score since the LCS between the
summary and Ref1 is three (“police the gunman”) whereas
it is only two for Ref2 (“the gunman”) [2].

3. METHODS

3.1 Graph-based Approach
A treebank is a parsed text corpus that annotates syntac-

tic or semantic sentence structure [9]. In this research, Fei
Lui et al. present a novel abstractive summarization system
that is based on the recent (2014) development of a tree-
bank for Abstract Meaning Representation (AMR). It looks
at the viability of an abstractive summarization framework
based on transformations of semantic representation such as
AMR.

Figure 1 gives an example of this AMR technique being
used to summarize two sentences into a single sentence. The
summarization process is accomplished in three steps [3]:

1. Parse the input sentences to individual AMR graphs.

2. Combine and transform those graphs into a single sum-
mary AMR graph.



Figure 1: AMR sentence summarization process [3]

3. Generate final summary text from the single graph.

This work focuses on step 2, while leaving full text genera-
tion (step 3) for future work. Step 1 assumes the input to
be a text document and uses JAMR, an AMR parser and
generator, to transform the sentences into AMR graphs. A
simple method that reads a bag-of-words (a list of unigrams)
off the summary graph is used to get ROUGE-1 evaluations
of the generated summaries.

3.1.1 Individual AMR graphs
The whole sentence is turned into an AMR graph. Nodes

of the graph are labeled with concepts and the edges labeled
with relations. Nodes can be English words (“dog” in Fig-
ure 1), PropBank event predicates (“chase-01” in Figure 1),
or special keywords(“person” in Figure 1). PropBank is a
corpus that is annotated with verbal propositions and their
arguments. The PropBank event predicate “chase-01” rep-
resents a roleset that corresponds to the first sense of the
word “chase”; AMR uses approximately 100 of these rela-
tions. Other relations in the graph are obtained from the
AMR bank, a 20,341-sentence corpus manually constructed
by human annotators [3].

3.1.2 Combine AMR graphs and forming a summary
In order to combine multiple AMR graphs, two steps are

taken: source graph construction and subgraph prediction.
In the source graph construction step, identical concepts
from the individual AMR graphs are merged into one as
illustrated in Figure 2. Then, a subset of the source graph
is used to predict the summary graph, which is what is re-
ferred to as subgraph prediction.

Source graph construction: This is the step in which
multiple sentences’ AMRs are merged into one graph called
the source graph. The first step of the merge is to create a
dummy “ROOT” that connects to the root nodes of the each
sentence’s AMR graph. Sometimes this step can lead to the
resulting graph having coreferenced nodes, i.e, in figure 2
the word “dog” is referenced twice. The two references to
the dog are merged to represent the same dog. If needed, an

optional graph expansion step is performed where additional
edges are added between each pair of concepts to create a
fully dense graph. As illustrated in figure 2, the expansion
step adds the edge “dog” → “garden”, which was never
present in either original AMR graph, but is an important
part of the resulting summary graph.

Subgraph prediction: Summary graph generation is
formulated as a structured prediction problem where a sub-
graph of the source graph is selected with a goal of preserv-
ing meaning, brevity, and fluent language. An integer linear
programming (ILP) model is used for the subgraph selection
coupled with a learning process using a collection of source
graphs and paired with summary graphs. For a predicted
subgraph, the ILP seeks to maximize the score computed
from the following formula:

N∑
i=1

υi θT f(i)︸ ︷︷ ︸
node score

+
∑

(i,j)∈E

e(i,j) ψ
T g(i, j)︸ ︷︷ ︸

edge score

Starting from the “ROOT”, the source graph is indexed
by i and j. Let N be the number of nodes in the graph.
Let vi and ei,j represent binary variables where vi is 1 iff
source node i is included in the summary and ei,j is 1 iff
the directed edge from node i to j is included. Function f
captures the feature representation of node v, while g does
the equivalent for edge e. θ and ψ are parameters that es-
timate the weights of the features and are initially guessed,
but adjusted throughout the training process: if a predicted
subgraph and has a high score, but ends up not looking like
the gold standard structure its parameters are adjusted to
penalize the features that led to that prediction by lower-
ing their weights. Likewise, features that lead to a structure
that is close to the gold standard are rewarded by increasing
their weights.

Given a source graph, the ILP model is constrained to
ensure that it picks a connected subcomponent of the source
graph. An edge is selected if both of its end points are
selected. The subgraph is forced to have a tree structure,
where there is at most one incoming edge for each node. A
flow constraint is issued to ensure the subgraph is connected.
Finally, an optional size constraint can be applied that is
based on the number of edges.

3.2 A Real World Application
The English Wikipedia has been growing at a rate of over

1,000 new articles every day since 2005 [8]. Even with these
many articles generated each day, there are still some sec-
tions of Wikipedia that lack good coverage. Furthermore,
adding new articles and editing old ones is very time consum-
ing. There exist methods to automate this process, but the
methods do have drawbacks. First, current methods assume
that the Wikipedia categories are known. Second, copyright
violations can be a problem if the method results in adding
long continuous sections of content retrieved from the web
into the generated article without paraphrasing. Third, lack
of coherence is an issue that plagues these systems. In an
effort to address these three drawbacks, Banerjee and Mitra
propose WikiWrite, a system for generating Wikipedia arti-
cles automatically that doesn’t require any information on
Wikipedia categories, is abstractive in the way it summarizes
(meaning fewer copyright issues), and checks for coherence.

Wikipedia requires articles have a notable and verifiable
subject matter in order be retained. Red-linked entities are



Figure 2: A source graph formed from two indi-
vidual sentence AMR graphs. A “ROOT” node is
added to ensure connectivity. (1) and (2) are among
edges added through the optional expansion step,
corresponding to sentence- and document-level ex-
pansion, respectively. Concept nodes included in
the summary graph are shaded [3]

.

Figure 3: Proposed WikiWrite framework [1]

links to pages on Wikipedia that have not yet been created,
but are deemed worthy enough to warrant an article. Red-
linked entities are the test subjects for which new articles are
generated in this research. As can be seen in Figure 3, the
entire Wikipedia corpus is used to obtain vector representa-
tions of entities and documents using the paragraph vector
distribution memory (PV-DM) model. Similar articles are
identified, via cosine similarity, to generate section titles for
the missing articles. Classifiers are used to fill in retrieved
content from the web into the various sections of the missing
articles. Paraphrased summaries for each section are then
generated and checked for coherence.

PV-DM: The PV-DM model is based on the idea that
several contexts taken from a paragraph can be used to pre-
dict the next word. Figure 3, under “Vector Representa-
tions”, shows the model used where the algorithm is given
three word contexts and a paragraph to predict the fourth
word. Every word is mapped to a unique vector that is a
column in a matrix W, and every paragraph is mapped to a
unique vector that is a column in a matrix D. This model can
be used on variable-length texts, i.e, sentences, paragraphs,
or documents. In WikiWrite the PV-DM model is used for:
1) Identification of similar articles and 2) Inference of vector

Figure 4: Local coherence estimation between sen-
tences [1]

representations of paragraphs retrieved from the web.

3.2.1 Content Generation
Content generation begins with retrieval of information

from the web. The text of the entity is not enough by itself
to perform a sufficient query. The two most frequent nouns
from the introductory sentences of the top 20 similar articles
are appended to the entity to create a reformulated query.
For example, “Machine Learning” would get augmented to
“Machine Learning” algorithm intelligence. The newly con-
structed query is performed on Google and the informative
content from the top 20 search results are retained. Text
classifiers, trained from the content of Wikipedia articles
similar to the red-link entity, are used to assign the web
content into relevant sections of the article being generated.

3.2.2 Content Summarization
In this step content is summarized with maximum coher-

ence, informativeness, and linguistic quality. Furthermore,
a paraphrasing step is applied in the end to determine the
most optimal set of lexical and phrasal transformations to
rewrite the summary.

Sentence Generation: A word-graph approach is used
in order to generate new sentences from the information re-
trieved from the web. Bigrams are created from the sen-
tences to represent nodes in the word-graph. Edges between
the nodes are constructed if the first word in the bigrams
are adjacent in any of the sentences. New sentences are gen-
erated by traversing paths along the resulting graph. New
sentences that are very similar (cosine similarity ≥ 0.8) to
the original sentences are discarded in order to make the
results more abstractive and avoid copyright issues.

Further steps are taken in order to decide which sentences
to retain and which to discard. The importance of each
sentence is determined using the cosine similarity between
itself and the reformulated query. Linguistic quality is de-
termined using a trigram language model that finds the best
sequences of words. Sentences that are generated from sim-
ilar initial sentences are weighed heavily, as they are more
likely to be coherent together.

Coherence: In order to maximize the global coherence
of paragraphs, it is assumed that global coherence is a com-
bined effect of local coherences. Hence, if coherence between
each pair of adjacent sentences is achieved, their resulting
paragraph will also be coherent. Local coherence is com-
puted by multiplying the individual transition probabilities
of features (nouns and verbs) in adjacent sentences. Given
three sentences as shown in figure 4, for a transition from
sentence 1 to 2, we’d consider all the combinations from 1 to
2: a→ e, f, g; b→ e, f, g, etc. For the entire set of the simi-



lar articles, the total frequency of transitions from a→ e and
a→ all other features is computed. The transition probabil-
ity of a→ e is simply the the transition frequency of a→ e
over the transition frequency of a→ all other features. The
coherence score between two sentences is the product of the
individual transition probabilities of the feature combina-
tions.

Constraints are introduced to optimize the summary. Co-
sine similarity is used order to mitigate redundancies in the
summary. If two sentences have a cosine similarity ≥ 0.5,
one of them is dropped. The concept of arcs is used to de-
note order between sentences. When a summary is being
generated dummy sentences marked with arcs are used to
indicate the first and last sentence in the summary. The
final sentence order of the summary is based on the indi-
vidual sentence’s similarity to the reformulated query: the
sentence with the highest similarity is used as the introduc-
tory sentence in the article.

Paraphrasing: Each sentence is rewritten by modifying
the words and phrases. First, a candidate set of possible
modifications is identified using the Paraphrase Database
(PPDB). A set of possible modifications for a sentence are
examined and the best one is picked based on a readability
score. The readability score is computed using a trigram
language model of the textual content within a 2-word win-
dow either direction of the modification. Consider the two
possible modifications to the sentence: The NSSP initiative
will lead to significant economic benefits for both countries.

1. significant economic => considerable economic

2. economic benefits => financial advantages

The readability score for 1, can be computed using the se-
quence – “lead to considerable economic benefit for”. We
compute the cosine similarity using semantic representation
from the PVDM of the original sentence and the new para-
phrased sentence. This ensures we don’t deviate too much
from the original meaning. Overlapping modifications are
also constrained. For example, the word economic is modi-
fied twice in the above example. Only one of the modifica-
tions is kept for the final paraphrase: The NSSP initiative
will result in major financial advantages for the two coun-
tries.

4. RESULTS
While the two research projects that we have described do

not have results that are directly comparable, we will present
and describe results from each. Both projects do use F1

score, also known as F measure, which is a statistical metric
used to measure a test’s accuracy that is computed from the
test’s recall and precision [6]. It is not used as widely used
as ROUGE in the field of automatic text summarization,
hence we won’t go into detail explaining it.

4.1 AMR Framework Feasibility
The AMR framework was tested on automatically gener-

ated source graphs using JAMR and gold-standard source
graphs. The size of the predicted subgraph was based on
the number of edges on the gold-standard subgraph to allow
for comparable graphs. F1 scores for both nodes and edges
were reported in the subgraph prediction task. JAMR was
used to generate a bag-of-words for the summary graphs in
order to do ROUGE evaluations. Given a summary graph,

Table 1: AMR Subgraph Prediction Results
F1 Score (%)
Nodes Edges

Normal (JAMR) 51.1 20.0
Normal (Gold-Standard) 58.7 39.0
Oracle (JAMR) 68.9 31.1
Oracle (Gold-Standard) 80.7 52.2

Table 2: AMR Summarization Results (ROUGE-1)
Normal Oracle

JAMR 44.4 57.8
Gold-Standard 44.3 65.8

JAMR can turn the graph into text by returning the most
frequently aligned word for each concept node. Since there’s
no previous work that uses AMR in the same way as this
research, the system’s results were compared to “Oracle”, a
modified version of the AMR system that gives an upper ceil-
ing of the system’s performance. For subgraph prediction,
the ILP decoder minimizes the cost of the output graph in
the way it assigns scores to correct nodes and edges. On the
summarization task, Oracle produces a summary by taking
the gold-standard AMR parse of the reference summary and
using JAMR to produce a bag of words summary [3].

Table 1 and 2, shows the results of the subgraph prediction
and summarization results respectively. For the subgraph
prediction task, JAMR and Gold-Standard denote the origin
of the source for the testing data. As expected, the Oracle
system did better on both tasks. Node prediction had higher
accuracy scores when compared to edge prediction. The low
edge prediction values can be accounted for by the fact that
the source graph doesn’t always predict all the edges that
are in the final gold-standard summary.

4.2 WikiWrite
Three measures were used to evaluate WikiWrite’s effi-

ciency: 1) Its ability to reconstruct wikipedia articles and
accurately assign content to sections. 2) Quality of the arti-
cles generated. 3) Retention rate of newly generated articles.
For the first two tasks, WikiWrite was compared to two al-
ready existing article generation systems on Wikipedia. The
first system, Perceptron-ILP, uses a perceptron based rank-
ing algorithm to select informative excerpts in the article.
The second, WikiKreator, a system that is designed to im-
prove Wikipedia stub articles.

Reconstructing articles using the existing baseline systems
is slow, as they require learning from all articles within a
category. To get around this, the reconstruction experiment
was restricted to 1000 randomly selected popular articles
(articles that are mentioned at least 20 times in other ar-
ticles). These 1000 articles were not used in training any
of the systems. In the reconstruction step, classification
(assigning content into appropriate sections) and content
selection (retaining important content from the web in the
final article) were evaluated.

4.2.1 Classification
The task here was to predict the section title given the

content in the section. As seen in table 3, WikiWrite outper-
formed WikiKreator in both its accuracy as indicated by the



F1 scores and time taken to complete the task. WikiWrite
was able to assign content to sections about five times faster
than WikiKreator mostly due to the classification model in
WikiKreator taking significantly longer to run. Perceptron-
ILP did not participate in this experiment since the system
doesn’t involve a classification task.

Table 3: Section Classification Results
Technique F1 Score Average Time
WikiWrite 0.622 ∼2 mins
WikiKreator 0.481 ∼10 mins

4.2.2 Content Selection
The goal here was to reconstruct Wikipedia articles using

knowledge from the web. Articles were constructed from
the same 1000 random articles described earlier. In or-
der to evaluate the effectiveness of the query reconstruc-
tion model in WikiWrite, a modified system of WikiWrite
(WikiWrite (Ref) ) was implemented that only uses the ref-
erences listed in the Wikipedia articles to reconstruct the
article. ROUGE was used to evaluate the results. Due to
differences in article length, the ROUGE comparisons were
restricted to the first 200 words in each section. As seen
from table 4, WikiWrite achieved better ROUGE scores than
both WikiKreator and Perceptron-ILP. WikiWrite (Ref) out
performed regular WikiWrite because it used more reliable
and verifiable resources from Wikipedia articles rather than
relying upon a Google Search.

Table 4: Content Selection Results
Technique ROUGE-1 ROUGE-2
WikiWrite 0.441 0.223
WikiWrite (Ref) 0.520 0.257
WikiKreator 0.371 0.183
Perceptron-ILP 0.342 0.169

4.2.3 Generating new articles
The Wikipedia corpus used at the time of the research

contained 15,500 red-linked entities that were referenced at
least 20 times in other articles. Articles for 50 randomly
selected red-linked entities were generated using WikiWrite.
As shown in table 5, 47 of them were moved into the Wikipedia
mainspace with 12 being retained with zero edits. 35 arti-
cles received changes ranging from reference edits to multi-
ple content edits. Seventy-two percent of the references were
kept. The three articles that were not retained was due to
them containing self-promotional content. At the time of
the writing of this paper, all the articles have been removed
from Wikipedia due to restrictions on authorship of the ar-
ticles. Wikipedia is especially concerned with the ethics of
such research done without the consent of Wikipedia’s con-
tributors or readers.

5. CONCLUSIONS
Abstractive summarization is a summarization technique

that tries to emulate how humans summarize. It went through
a phase of neglect in terms of research attention, but it’s
steadily catching on as of late. We’ve examined an example
implementation using semantic representation graphs and a

Table 5: 50 Generated Wikipedia articles
Statistics
Number of articles in mainspace 47
Entire edit retained 12
Modification of content 35
Average number of edits 11
Percentage of references retained 72%

real world application of the process that’s used to automat-
ically generate Wikipedia articles.

In the past couple of years the biggest advancement in
this field has been achieved through deep learning. The
state-of-the-art method for the task of sentence compression,
summarizing a sentence to produce a shorter sentence, has
been changed and improved three times in the past year
alone using neural networks. In a future where information
overload will only keep getting worse, it’s very exciting to
see this much progress in the field.

Acknowledgments
Thanks to Kristin Lamberty, Matthew Linder, and fellow
senior seminar students from the class of fall 2016 for their
guidance and feedback.

6. REFERENCES
[1] S. Banerjee and P. Mitra. Wikiwrite: Generating

wikipedia articles automatically. In Proceedings of the
Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 2740–2746, 2016.

[2] C.-Y. Lin. Rouge: A package for automatic evaluation
of summaries. In S. S. Marie-Francine Moens, editor,
Text Summarization Branches Out: Proceedings of the
ACL-04 Workshop, pages 74–81, Barcelona, Spain, July
2004. Association for Computational Linguistics.

[3] F. Liu, J. Flanigan, S. Thomson, N. M. Sadeh, and
N. A. Smith. Toward abstractive summarization using
semantic representations. In NAACL HLT 2015, The
2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Denver, Colorado, USA, May
31 - June 5, 2015, pages 1077–1086, 2015.

[4] A. Nenkova and K. McKeown. Automatic
summarization. Foundations and Trends in Information
Retrieval, 5(2âĂŞ3):103–233, 2011.

[5] Wikipedia. Automatic summarization — Wikipedia,
The Free Encyclopedia, 2016. [Online; accessed
26-September-2016].

[6] Wikipedia. F1 score — Wikipedia, The Free
Encyclopedia, 2016. [Online; accessed
3-December-2016].

[7] Wikipedia. Information overload — Wikipedia, The
Free Encyclopedia, 2016. [Online; accessed
26-September-2016].

[8] Wikipedia. Modelling wikipedia extended growth —
Wikipedia, The Free Encyclopedia, 2016. [Online;
accessed 12-October-2016].

[9] Wikipedia. Treebank — Wikipedia, The Free
Encyclopedia, 2016. [Online; accessed 13-October-2016].


