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Introduction

Automatic Summarization and
Motivation



Automatic Summarization

Goal: produce a concise summary using a computer program that
retains the most important points of the original document

Two categories:

• Extractive - concatenate words, phrases, or sentences in the
original document to form summary

• Abstractive - attempts a deeper analysis of the text and
summarize using own words
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Human-written Revision Operations: Hongyan Jing, 2002

Operation Extractive Abstractive
Sentence Reduction ✓ ✓
Sentence Combination ✓ ✓
Syntactic Transformation ✓ ✓
Lexical Pharaphrasing ✓
Generalization or Specification ✓
Reordering ✓ ✓
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Motivation: Why Abstractive Text Summarization?

Information overload - difficulty a person can have understanding
an issue and making decisions that can be caused by the presence
of too much information. - Wikipedia

• Extractive methods stagnating
• Greater range of application
• Future looks exciting 5



Background

N-gram



N-gram

n-gram - a continuous sequence of n words

• Example - “the cat is black”
• unigrams - the, cat, is, black
• bigrams - the cat, cat is, is black
• trigrams - the cat is, cat is black
• 1-skip-bigram - the is, cat black

6



Term Frequency (TF)

• TF - how many times a term appears in a document.

Term Count
the 3
cat 1
is 3
black 1

Table 1: Document 1

TF(t,d) = number of times a term (t) appears in a document (d)
total number of terms in the document (d)

TF(“the”) = 3
8 = 0.38

TF(“cat”) = 1
8 = 0.13 7



Term Frequency (TF): Stop Words

stop word - common words that carry little value

• English: a, an, the, is, on, that
• Biology: cell
• Computer Science: algorithm
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Term Frequency-Inverse Document Frequency (TF-IDF)

TF(t,d) = number of times a term (t) appears in a document (d)
total number of terms in the document (d)

IDF(t,D) = log
(

total number of documents (D)
number of documents with term t

)

• IDF - measure how informative a term is in a document.
• TF-IDF - how important a term is to a document in a collection
of documents.

TFIDF = TF ∗ IDF
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TF-IDF: Example

Term Count
the 3
cat 1
is 3
black 1

Table 2: Document 1

Term Count
the 3
dog 1
is 3
black 1

Table 3: Document 2

TF(“the”) = 3
8 = 0.38

IDF(“the”,D) = log(22 ) = 0

TF(“dog”,d2) =
1
8 = 0.13

IDF(“dog”,D) = log(21 ) = 0.30

TFIDF(“dog”,d2,D) = 0.13 ∗ 0.30 = 0.04

TFIDF(“the”,d2,D) = 0.38 ∗ 0 = 0.00 10



Background

Document Vector Space and Cosine
Similarity



Cosine Similarity: Document Vector Space Model

1. a hen lives on a farm.
2. a cow lives on a farm.

Term Doc 1 Doc 2
a 2 2
lives 1 1
farm 1 1
hen 1 0
on 1 1
cow 0 1

Table 4: Term Count

• hen: [2, 1, 1, 1, 1, 0]
• cow: [2, 1, 1, 0, 1, 1]
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Cosine Similarity

cosine similarity - measure of similarity between two vectors

cos (θ) = A · B
∥A∥ ∥B∥

• Used to find similarity between documents
• cosineSimilarity(hen, cow) = 0.87

• cos(0◦) = 1 : Similar
• cos(90◦) = 0 : Not similar
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Application

WikiWrite



WikiWrite: Banerjee and Mitra, 2016

1. Current methods assume that the Wikipedia categories are
known

2. Copyright violations
3. Coherence issues
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WikiWrite: Framework Overview
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WikiWrite: Paragraph Vector Distributed Memory (PVDM)

• Vector space model that preserves semantics
• Purpose for WikiWrite:

1. Identification of similar articles on Wikipedia
2. Inference of vector representations of new paragraphs retrieved
from the web
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WikiWrite: Red-linked Entity
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WikiWrite: Similar Articles

• Use PV-DM to find similar Wikipedia articles to the Red-linked
entity

• Example - Sonia Bianchetti
• Referee, International Skating Union (ISU), Judge, etc.
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WikiWrite: Information Retrieval

• Query reformulation - Rewrite query to be more specific.
• Example: Machine Learning→ ”Machine Learning” algorithm
intelligence.

• Grab top 20 Google search results.
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WikiWrite: Classifiers

• Classifiers - Place query results in the right section of our new
article.
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WikiWrite: Summarization - Generate New Sentences

• A word-graph approach.
• nodes: bigrams
• edges: adjacency relationship between bigrams

• Cosine similarity ≥ 0.8 throw away
• Sentences with same parent sentence weighed heavily
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WikiWrite: Sentence Importance and Linguistic Quality

• Sentence importance - cosine similarity between new sentence
and reformulated query

• Linguistic quality - trigram language model find best sequence
of words
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WikiWrite: Summarization - Coherence

• Adjacent sentence coherence to ensure global paragraph
coherence

• coherence score
• transition frequency⇒ transition probability

• Multiply transition probabilities of individual features(nouns
and verbs)

• Use cosine similarity to reduce Redundancy
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WikiWrite: Summarization - Paraphrasing

• Paraphrase Database (PPDB)
• Make modifications to sentences and assign readability score
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WikiWrite: Summarization - Paraphrasing Example

• “The NSSP initiative will lead to significant economic benefits for
both countries”
1. significant economic => considerable economic
2. economic benefits => financial advantages

• Readability score for 1:
• “lead to considerable economic benefit for”

• “The NSSP initiative will result in major financial advantages for
the two countries ”
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Results

Summary Evaluation Metrics



Summary Evaluation Metrics

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) -
Measure n-gram overlap between generated summary and
reference summaries.

ROUGE = n-gram match between system and references
n-grams in references

• F-Measure - Accuracy score
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ROUGE: Chin-Yew Lin, 2004

• ROUGE-N: N-gram based co-occurrence statistics

• ROUGE-L: LCS-based statistics
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ROUGE: Chin-Yew Lin, 2004

• ROUGE-N: N-gram based co-occurrence statistics
• ROUGE-L: LCS-based statistics
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ROUGE: Chin-Yew Lin, 2004

• ROUGE-N: N-gram based co-occurrence statistics
• ROUGE-L: LCS-based statistics
• ROUGE-S: Skip-bigram-based co-occurrence statistics
• ROUGE-W: Weighed version of ROUGE-L that favors consecutive
LCSes
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ROUGE: Example ROUGE-N

• Summary: police killed the gunman
• Ref1: police kill the gunman
• Ref2: the gunman kill police

1. ROUGE-2: Ref1 = Ref2
• “the gunman”
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ROUGE: Example ROUGE-L

• Summary: police killed the gunman
• Ref1: police kill the gunman
• Ref2: the gunman kill police

1. ROUGE-2: Ref1 = Ref2
• “the gunman”

2. ROUGE-L: Ref1 > Ref2
• Ref1: “police the gunman”
• Ref2: “the gunman”
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Results

WikiWrite Results



WikiWrite: Experiments

• 1000 randomly selected popular articles
• Baseline systems:

1. WikiKreator: assumes Wikipedia categories are known
2. Perceptron-ILP: extractive

• Experiments:
1. Section classification
2. Content selection
3. Generate new articles
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WikiWrite: Section Classification

• Predict the section title given the section content

Table 5: Section Classification Results

Technique F1 Score Average Time
WikiWrite 0.622 ∼2 mins
WikiKreator 0.481 ∼10 mins
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WikiWrite: Content Selection

• Reconstruct Wikipedia articles using knowledge from the web
• WikiWrite (Ref) - doesn’t use reformulated query

Table 6: Content Selection Results

Technique ROUGE-1 ROUGE-2
WikiWrite 0.441 0.223
WikiWrite (Ref) 0.520 0.257
WikiKreator 0.371 0.183
Perceptron-ILP 0.342 0.169
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WikiWrite: Generated Articles

• Generate new articles.

Table 7: 50 Generated Wikipedia articles

Statistics
Number of articles in mainspace 47
Entire edit retained 12
Modification of content 35
Average number of edits 11
Percentage of references retained 72%
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Conclusion

• Abstractive summarization can be effective in generating
Wikipedia articles

• Look into research ethics before committing: link
• Abstractive summarization attracting more researchers.
• Deep learning using neural networks is the future!
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https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2016-09-06/Recent_research


Thanks!

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

cba

Questions?
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github.com/matze/mtheme
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
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