
Improving security of the Advanced Encryption Standard

Mark M. Lehet
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
lehet005@morris.umn.edu

ABSTRACT
In this day an age, information security is more important
than ever due to the fact that everyone who has private in-
formation wants it to be secure. A useful method of making
sure your information is secure is by encrypting it. En-
cryption is a privacy-protecting technology that essentially
transforms your data so it cannot be read by an unintended
recipient. A commonly used encryption algorithm is the
Advanced Encryption Standard (AES), but this algorithm
has security flaws that are not up to satisfactory security.
This paper will provide a brief overview of the AES algo-
rithm. We will then talk about some modifications to the
AES done by researchers. The modifications aim to remove
a flaw with encrypting multimedia and timing attacks. With
each modification, they strengthen the security of the AES
by removing the security flaws.

Keywords
1. INTRODUCTION

Today a lot of people use the internet to send and receive
messages or store crucial information on their computer, and
some of that information is deemed to be sensitive to the per-
son or persons involved with the data. When important data
is involved, the use of encryption is implemented to hide the
information being sent or stored to keep the information safe
from attacks. By using encryption, it makes it very difficult
for the attacker to gain any information from an encrypted
message. There are many different methods in which you
can encrypt data, but the one we will be focusing on is the
Advanced Encryption Standard (AES), a commonly used
encryption algorithm. However, with the use of multimedia
becoming a common place, there is a problem that occurs
with the AES and multimedia, more specifically images, us-
ing what is known as ECB mode of operation. As you can
see in Figure 1, this image has been encrypted by AES and
there is an issue once the encrypted image has been com-
pleted, which is that the image still has noticeable edges

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

that give away what the image was supposed to be hiding.
The image pixels are still correlated between their adjacent
pixels allowing for this intelligibility to occur. This way of
encrypting is not practicable for real life use due to this flaw
the poses a potential threat of people gaining access to an
encrypted image and still being able to tell what the image
is.

Another flaw that the AES faces is that it is inadequate
at preventing what is know as timing attacks. The AES
performs its sub processes with inconsistent times, creating
an opening for attackers to potentially use the information of
the time differences to help decrypt an encrypted message.

In Section 2 we discuss the background information of
the AES algorithm, Section 3 we will discuss Mondal and
Maitra’s modificaiton to the AES, and Section 4 we will
discuss the Fine Tuned AES. These modifications that are
done to the AES each address a unique flaw in the security of
the AES, and propose their modification as a solution to the
issue. They both modify the AES by adding an additional
cipher to strengthen the security.

Figure 1: AES encryption with no modifications.

2. BACKGROUND

2.1 Advanced Encryption Standard (AES)
AES was formally known as Rijndael before it was es-

tablished as a standard by the U.S. National Institute of
Standards of Technology. It is an algorithm that is intended
to encrypt data, which manipulates the data so the the en-
crypted message does not give any information about what
was actually in the original message. The AES succeeds the



former encryption standard, the Data Encryption Standard
(DES), due to the fact that DES was becoming inefficient
in security. DES became insecure because computers and
computing power became faster and the encrypted data by
DES was easily able to be decrypted with brute force.

The AES is implemented as a symmetric key block cipher.
A symmetric key in an encrypting algorithm is a parameter
that is used to determine and manipulate the data during the
encryption process, and is also used to decrypt the encrypted
message. A symmetric block cipher is a fixed length string
of bits that the algorithm operates on[6].

AES uses a block size of 128 bits and a key size of 128,
192, or 256 bits, which are referred to as AES-128, AES-192,
and AES-256.[3] The block is put into a 4X4 array matrix
which is referred to as the “state”. The key sizes used in
this cipher correspond to a certain amount of repetitions, or
rounds, of transformations that will occur, that convert the
input, which is called plaintext, into the encrypted output,
the ciphertext. The rounds for each key size are as follows;
10 rounds for 128 bit keys, 12 rounds for 192 bit keys, and 14
rounds for 256 bit keys. Each round will perform multiple
processes to transform the plaintext.

If the data that is going to be encrypted is less than the
128 bits, AES will pad it to make it equal to 128 bits. If
the data is larger than 128 bits, it will pad the data to make
it multiple of 128 bits, then perform a mode of operation.
There are multiple modes of operations, and using the elec-
tronic codebook (ECB) mode of operation will result in the
encrypted image with an outline (Figure 1) of the original
image. This mode of operation is very fast compared to
others, but does bring this flaw. The reason this flaw occurs
is that it encrypts each block separately. If the blocks are
identical, the resulting encrypted blocks will be identical,
thus it does not hide any data patters. A more common
and more secure mode of operation used with AES is cipher
block chaining (CBC), where each plaintext is XORed with
the previous encrypted block. It also implements an initial-
ization vector, a fixed-size input, that is XORed with the
initial plaintext before encryption and before each following
block that is going to be encrypted. This method ensures
each block is distinct, but does require more computing.
Overall, a mode of operation generally tries to divide the
data into multiple blocks of 128 bit states, and attempts to
combine them once they are encrypted or as they are getting
encrypted.

For the encryption process, AES performs two preliminary
steps that are known as KeyExpansion and the InitialRound.
The KeyExpansion uses the Rijndael key schedule, which
in short terms, expands the key into a number of separate
subkeys, that have the same size as the state, to be used
in later rounds. It generates a certain amount of sub-keys
depending on the key length being used. For a 128 bit key it
generates 11 sub-keys, 192 generates 13, and 256 generates
15. Each key will be used throughout the encryption process,
one will be used during the initial round and the rest in the
rounds portion.

The InitialRound performs a step known as AddRound-
Key. In this step, a subkey that was derived from the Key-
Expansion step is combined with the state, combining each
byte of the state with the corresponding byte of the subkey
using bitwise XOR.

1. Once these two steps have been performed, we can
start with our rounds. The first step in the rounds

is the SubBytes operation. This operation takes each
byte in the state matrix and replaces it with another
according to a look-up table known as the S-Box. The
S-Box is derived from the multiplicative inverse over
Galois field 28, GF (28), which is known to have non
linearity properties. The S-Box is constructed by com-
bining the GF (28) with an invertible affine transforma-
tion, which helps prevent attacks that are done using
basic algebraic properties. Looking at Figure 2, we can
see that a byte from the original state is replace with
an entry in the fixed S-Box table, denoting S-Box with
S.[7]

Figure 2: AES SubBytes step. S = S-box.

2. The second step is the ShiftRows step, which operates
on the rows of the state. Each row byte is shifted by a
given offset, and for AES 128 and 192 bit block sizes,
the offsets are as follows; first row is left unchanged,
the second row is cyclically left shifted by one, the third
row is cyclically left shifted by two, and the fourth is
cyclically left shifted by three. You can see the trans-
formation for these block sizes in Figure 3. For 256 bit
block size, the first is left unchanged like before, but
the second, third, and fourth are cyclically left shifted
1, 3, and 4 bytes respectively.

Figure 3: AES ShiftRows step.

3. The third step is the MixColumns step, where four
bytes from the columns of the state are combined using
an invertible linear transformation. The output will
contain four bytes, where each output byte is affected
from the input bytes. The columns are transformed
using a fixed matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Each column of the state is treated as a polynomial
over GF (28), and multiplied by a fixed polynomial c(x)



modulo x4 + 1 given by

c(x) = {03}x3 + {01}x2 + {01}x + {02}

. Looking at Figure 4, each of the columns are multi-
plied by the fixed polynomial c(x). The coefficients are
displayed in their hexadecimal equivalent of the binary
representation.

Figure 4: AES MixColumns Step.

4. The last step of a round is the AddRoundKey, looking
at Figure 5, we see that each byte of the state is com-
bined with a byte for the subkey for that round using
bitwise XOR, denoted as â LŢ.

Figure 5: AES AddRoundKey Step.

There is one final step once the rounds are over, this step
is known as the Final Round, in which it performs the Sub-
Bytes, ShiftRows, and AddRoundKey steps, but excludes
the MixColumns step.

Now that we have an encrypted message, we need to be
able to decrypt that message. The idea behind the decryp-
tion is pretty similar to the encryption process, except each
step is done in reverse. The order in which each round is
performed is reversed and the steps are done in the inverse.
The steps that change are:

1. Inverse AddRoundKey uses the keys generated from
the KeyExpansion, but reverses the order they are
used.

2. Inverse ShiftRows cyclically rotates each byte to the
right instead of left. The offsets are the same that are
used in the encryption process.

3. Inverse SubBytes replaces each byte of the matrix with
an inverse S-Box.

4. Inverse MixColumns each column is combined as be-
fore in the encryption process, but the columns are
transformed using a different fixed matrix

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14


and uses the fixed inverse polynomial c(x) modulo x4+
1 given by

c(x)−1 = {11}x3 + {13}x2 + {09}x + {14}

3. MONDAL AND MAITRA’S AES MODI-
FICATION

The first modification we are going to discuss was devel-
oped by Subijit Mondal and Subhashis Maitra. This mod-
ification is used as a purposeful way to remove the intel-
ligible pixel formation of multimedia that the un-modified
AES creates after encryption. The reason for the image is-
sue is caused by the mode of operation used, ECB. They
decide to use this mode of operation due to the fact that
it is quicker than any other commonly used mode of oper-
ation. The modification to the AES described by Mondal
and Maitra is proposed to be a more efficient and secure by
randomizing the key values and by shifting the pixel values.
The shifting of the pixel values is crucial to fixing the issue
caused with the ECB mode of operation.

This modification is focused on the encryption and de-
cryption of multimedia data such as images, videos, etc..
The modification is performed with two different algorithms,
the sender side algorithm (encryption) and the receiver side
algorithm (decryption). You can see the intelligible figure
created by the AES in Figure 1, where a is the input image
for encryption and b is the result after, and that the pixels
still have some sort of correlation to each other. The main
purpose of the modification is to break that correlation, that
AES cannot do on its own, so the encrypted image no longer
has any pixel correlation. [2]

3.1 Sender Side Algorithm
For the example used during this process, we will use a

key length size that is 128 bits.

1. The sender side algorithm takes in an image file as
an input, and as a first step procedure, it right shifts
the pixels for the rows and columns a certain offset
to break any correlation between the adjacent pixels,
which creates a first level cipher. The first level cipher
is still just the image, but with the pixels mixed up to
the point where a pixel is not correlated to any of its
original surrounding pixels.

2. We now will need to generate key values, which is done
depending on random mouse positions on the user’s
screen. Using these mouse positions provides random-
ness for the keys. During the key generation, we will
need to generate 16 byte values from each mouse po-
sition. The process takes 8 mouse positions, using the
x and y coordinate pixel positions as values, and these



are used to create our key. Once the key value is gener-
ated, a Key Expansion routine takes place to generate
the key schedule. The Key Expansion will then use
the key created using the mouse positions to generate
11 128 bits sub-key arrays, and the first sub-key will
be the initial key. The subsequent 10 sub-key arrays
are used in the 10 rounds.

3. The next step is the AddRoundKey, where the sub-key
is combined with the state. The sub-key is added by
combing each byte of the state with the corresponding
byte of the sub-key using bitwise XOR.

4. The process now moves to the SubByte step, where
each of the 16 bytes in the state are substituted from
the fixed table, S-Box.

5. The next step of the process is the Shiftrows process.
This will take the state and left shift each row a cer-
tain position amount. The first is left unchanged, the
second is shifted once, the third is shifted twice, and
the fourth is shifted three times, which is the same as
the original AES standard.

6. Now the MixColumns step will take the four bytes
from each column and combine them using an invert-
ible linear transform. The process from where the Ad-
dRoundKey begins repeats this whole process 9 more
times to total 10 rounds.

7. Because we generate the key randomly with mouse po-
sitions, this will mean will we need to send this key
with the cipher image. The process for doing this is
by converting the key and cipher values from decimal
numbers to binary numbers, then the key values are
placed according to the prime numbers of the cipher
values and the pixel value of that position of cipher
image is shifted one position to the right.

Now we have our encrypted image which will be ready to be
sent for decryption intended recipient.

3.2 Receiver Side Algorithm

1. Once a cipher image is received for decryption, the keys
will be extracted along with the first level cipher. We
start with the key expansion, creating the key sched-
ule. It then creates us the 11 sub-key arrays needed,
similar to before with the encryption process. In the
next upcoming steps, the processes are similar to the
AES’s decryption process, and in that process each
step is reversely performed.

2. The next step is the AddRoundKey Inverse, where the
sub-key is added to the state, but in reverse. So instead
of what would be the ‘initial’ sub-key, we would use
what was used in the last round from encryption and
use the ‘initial’ sub-key for the last round.

3. Next will by the SubByte Inverse step, where we will
inverse the substitution from the S-Box.

4. Next is the Shiftrows Inverse step, where instead of
shifting rows to the left, we will shift them to the right.

5. Now, like before, we will perform the MixColumns In-
verse step.

6. After doing this for 9 more rounds, you will need to
apply the first level cipher, but left shifting the pixels
for the rows and columns. This will leave us with the
original image.

3.3 Results Summary
This approach and experiments tested by the creators

have shown to be reliable and proven to be more efficient
with the application on images. A histogram analysis of the
images before and after were conducted to see how the pix-
els in an image are distributed by plotting the number of
pixels at each color intensity level. This is done to prove
that there is no similarity between the original image and
the encrypted image.

In Figure 6, we can see that the histogram of the origi-
nal image (a) appears to have high spike intensities around
several areas of the graph, implying that there are common
color qualities, where as the histogram of the encrypted im-
age (d) shows a more uniform intensity. This result shows
that original image is significantly different from the en-
crypted image. These results also show that the encrypted
image itself shows no clues for a statistical attack on the
image.

Figure 6: Histogram analysis of the Original Image
and Encrypted Image.

This encryption process also bring along higher security
due to its randomness in the key generating process. It ran-
domly assigns key values depending on the mouse position
on the screen, which allows randomness each time an im-
age is encrypted and gives it a more reliable, secure, and
practical use.

4. FINE TUNED AES
In this modification of the AES, the researchers Behnam et

al. address the vulnerabilities that AES has against timing
attacks, a subcategory of side channel attacks, and strengthen
the security of the AES. The modification includes, in each
round of the AES, a playfair cipher, that they have modified.
It also changes the Final Round to include a MixColumn



step which helps prevent timing attacks. The researchers de-
scribe the modification to ensure the enhancement in safety
and security of the AES.[5]

4.1 Playfair Cipher
A modification to the AES that they use is a modified

playfair cipher, as mentioned before. A playfair cipher is a
5X5 matrix of letters constructed based on a keyword given
by a user.[8] This matrix is created by adding the key to
the matrix, omitting any duplicate letters. The rest of the
matrix is then filled with the rest of the letters of the al-
phabet (the application of this usually have the letter “Q”
omitted or “I” and “J” share the same space, to fit the entire
alphabet).

Figure 7: Example of playfair cipher.

For example, if we look at Figure 7, the key that was used
to create this playfair cipher was “EXAMPLE”. The word
is placed in the matrix first, omitting the last “E” because it
was already used in the key. The following letters are the rest
of the alphabet, in order, omitting letters that have already
been used in the key. To encrypt a message with this, you
would take the message and break it up into groups of two
letters, for example, “encryption” would be broken up as
“EN CR YP TI ON”. Now the message is broken up, each
letter pair has rules that apply to encrypt the message on
the matrix:

1. If both letters are the same, add an“X”(or a letter that
is not used commonly part of repeated letter pairs)
after the first letter, this will change the broken up
message. For example, if the message is “hello”, it
would broken up as HE LX LO.

2. If the letters are found on the same row of the matrix,
you will cyclically replace the letters to their immedi-
ate right in the cipher matrix.

3. If the letters are found on the same column of the ma-
trix, you will cyclically replace the letters immediately
below in the cipher matrix.

4. If the letters are found on a different row or column,
you would replace the letters with a letter from the
same row but at the other letter pairs column in the
cipher matrix.

With these rules, we can create our encrypted message. Us-
ing the word “encryption”, as before, for our message to
encrypt. Looking at the broken up letter pairs, we see that
they do not contain two of the same letters in one of the
letter pairs, so we do not need to apply rule 1. Now we con-
tinue to encrypting the letter pairs, and the first letter pair
we encrypt is “EN”, and looking at Figure 7, we find that
“E” and “N” fall on a different row and column. This means
we will use rule 4, and the result of this will be “PG”. The

next letter pair would be “CR”, and looking at Figure 7, we
find that “C” and “R” fall on the same column, which means
we will use rule 3, and the result of this will be “IW”. Con-
tinuing using the rules 2, 3, and 4 and the playfair cipher
matrix, the full encrypted message results in “PG IW ZM
RN TG”.

The modified playfair cipher used in the AES modification
is slightly different as it is a 16X16 matrix instead of the 5X5.
It uses a 16X16 matrix for the playfair cipher so that it can
fit 256 (0-255) ASCII character codes. Each letter uses the
ASCII character code in the cipher. The modified playfair
cipher ensures that the key used is not duplicated in the
encrypted matrix. It ensures this by making sure that the
key used is not repeated with other ASCII characters that
would coincide with the given characters.

4.2 Timing Attacks
A timing attack is a subcategory under a larger category

of attacks know as side channel attacks, which are done to
compromise a cryptography algorithm. A side channel at-
tack is an attack that gains information from the physical
implementation of a cryptography algorithm. In terms of a
timing attack, the information that is being gained from the
physical implementation is the time it takes for each logical
operation that is being executed on a computer. The time
differences between operations give access to an attacker to
work backwards to what an input was[1]. In AES, the vari-
ables in times it takes to encrypt, specifically look-ups in
the known S-Box table, and can be used to narrow down
the possible values for a key[4].

4.3 Modification
The Fine Tuned AES addresses the issue of timing at-

tacks that AES has. The issue falls where AES will release
cruicial timing information between the rounds section and
the final round section. The difference between the two is
that there is no MixColumns step in the final round, and
that difference allows some crucial timing information to be
released that can be used to help decrypt the message. The
modification to the AES implements a MixColumn step in
the Final Round, this is a minor change, and is not needed
in the original AES, but it ensures unified timing to between
processes so that the time it takes between processes can-
not be easily analyzed. This helps prevent timing attacks
against the execution of the AES, by creating it a more con-
sistent time algorithm. It also helps by with the addition of
a delay in the faster operations to hid the timing difference.

The modified playfair cipher is implemented every round
in the modified AES, starting with the Initial Round. The
Key used in the AddRoundKey step is also used for as a key
for the modified playfair cipher. The key is first used to gen-
erate the 16X16 playfair cipher matrix, then it is encrypted
using the state as the “message”. The state is treated as a
single dimension array, and the array is split up into groups
of two elements, which is similar to breaking you message, in
the regular playfair cipher, into letter pairs. The encryption
also follows the same rules as the normal playfair cipher;
the only modification to these rules is that it does not im-
plement the first rule, as it does not need it. The encrypted
message from the modified playfair cipher is returned as the
4X4 state, which is used for the next round of AES.

4.4 Results Summary



As mentioned earlier under the modification section, the
addition of a MixColumns step on the last round of AES en-
sures a consistent time for the algorithm. The timing attacks
that analyze the time leakages from queries cannot gain as
much information/secrets when analyzing these time leak-
ages. The addition of it rectifies gaps, or areas where timing
is different, to have a unified timing throughout the encryp-
tion process. The addition of this does bring an extra step
to the encryption/decryption process, which does penalize
the speed, although minor.

The addition of the modified playfair cipher is to increase
the security of the encryption and decryption process. The
algorithm is now more dependent on the keys it uses, so the
encryption and decryption security are strengthened. This
additional step, although fast if implemented correctly, does
decrease the performance speed of the encryption/decryption
process.

5. CONCLUSIONS
As we look at these solutions and modifications done to

the AES, we see that they both find a unique issue related
to the AES and remove the security flaw by implementing
a modification that on slightly changes how the AES works.
These modifications both find a unique issue, resolve the
issue, and strengthen the security.

The modification by Mondal and Maitra remove the AES
flaw of seeing an intelligible outline of an image that is en-
crypted when implemented with ECB mode of operation.
By having this modification, AES can safely use ECB mode
of operation, which is one of the fastest mode of operations
to use. It also strengthens the security by adding random-
ness to the algorithm through the input of mouse positions
as a way of generating a key.

The fine tuned AES by Behnam et al. seeks to remove the
potential of timing attacks done to the encryption process by
making the algorithm more consistent in its process timing.
It also strengthens the AES by including a modified playfair
cipher, which adds an extra step of encryption to the original
AES algorithm. A down side to the fine tuned is that both of
the modifications done to the AES decrease the performance
speed.

It is hard to directly compare these two modifications to
find out which one is better because they both fix a unique
flaw and strengthen the AES.

Acknowledgments
Thank you to Kristen Lamberty for they great advice and
feedback.

6. REFERENCES
[1] S. A. Crosby, D. S. Wallach, and R. H. Riedi.

Opportunities and limits of remote timing attacks.
ACM Trans. Inf. Syst. Secur., 12(3):17:1–17:29, Jan.
2009.

[2] S. Mondal and S. Maitra. Data security-modified aes
algorithm and its applications. SIGARCH Comput.
Archit. News, 42(2):1–8, Sept. 2014.

[3] N. I. of Standards and Technology. Announcing the
advanced encryption standard (aes). November 2001.
[Online; accessed 15-September-2016].

[4] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: The case of aes. In Proceedings of

the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, CT-RSA’06, pages
1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[5] B. Rahnama, A. Elci, and I. Eweoya. Fine tuning the
advanced encryption standard (aes). In Proceedings of
the Fifth International Conference on Security of
Information and Networks, SIN ’12, pages 205–209,
New York, NY, USA, 2012. ACM.

[6] V. K. Rejani R. Deepu. Study of symmetric key
cryptography algorithms. International Journal of
Computer Techniques (IJCT), pages 45–50, Mar - April
2015. [Online; accessed 15-September-2016].

[7] Wikipedia. Advanced encryption standard —
Wikipedia, The Free Encyclopedia, 2016. [Online;
accessed 15-September-2016].

[8] Wikipedia. Playfair cipher — Wikipedia, The Free
Encyclopedia, 2016. [Online; accessed
15-September-2016].


