
Computer Virus Enhancement

John P Lynch
Division of Computer Science

University of Minnesota, Morris
Morris, Minnesota, USA 56267

lynch446@morris.umn.edu

ABSTRACT
This paper gives insight into computer virus implementa-
tion and the applications of evolutionary computation and
advanced algorithms. Evolutionary algorithms are created
to genetically modify viruses and advanced forms of search.
These search algorithms are for finding specific items in a
system such as a folder in a file system or an exploited port
number on a switch to connect to another computer in a
network. The parts and phases of the computer virus will
be covered to give the reader a better understanding of how
and where the virus may be improved by some form of evo-
lutionary computation. We also discuss advances in anti-
malware made to combat the increased strength of evolving
malware.

1. INTRODUCTION
Malware can be found worldwide corrupting computer

systems. Anti-malware detects, halts, and destroys mal-
ware. One form of malware is a computer virus. A com-
puter virus can be something as simple as ad-ware, a type
of software used to install pop-ups that don’t leave your com-
puter. There are viruses that are more advanced and dan-
gerous to computers and entire systems. These viruses are
meant to massively disrupt businesses, schools, government
offices, and other major forms of infrastructure.[6] A grow-
ing trend in the development of the computer virus is the
implementation of evolutionary algorithms and computation
which allow the virus to evolve in different ways, becoming
stronger and more dangerous. The necessity to research the
power of viruses becomes more pressing due to the growth of
technological advancement and development in computers.

A virus typically recreates itself in a system over and over
again, much like a biological virus, to spread and infect the
system. As each new virus is made, the new virus may
change its name or activating code to continue to be un-
detected. A virus may evolve by changing its function to
accomplish different tasks much faster. These changes to a
virus make it more difficult for anti-malware to combat the
infection. Anti-malware will have to change and adjust to

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2016 Morris, MN.

keep up with and detect malware that it was previously able
to fight.[4]

The rest of the paper is structured as follows: Section
2 provides the background in evolutionary computation and
gives basic definitions of terminology related to viruses. This
section will explain how malware and anti-malware act on
computer systems. Section 3 provides instances of how virus-
es can evolve and what they are capable of doing. Section
4 demonstrates how a virus may search through a computer
system to find specific files and act on them. We include
an example of a virus training, which programs the virus
to search a computer with knowledge of the system it is
infecting. In Section 5 we show how a virus may spread
through systems and become harder to detect with evolu-
tionary traits. In Section 6 we describe how anti-malware
works on a common virus in a computer system. Results
are given from another team’s work on capturing evolving
and non-evolving viruses. We demonstrate anti-malware’s
capture rate of evolving viruses to see how a virus can be
fought when it evolves and what changes anti-malware must
go through to fight evolving viruses. We conclude with ideas
of how evolutionary computation may become a cornerstone
in research against malware.

2. BACKGROUND
In order to better understand the content, definitions will

be given to terms applied throughout the paper.

2.1 Viruses
A virus is just one form of malware, software created to

act maliciously on a computer or system of computers. A
computer virus is a malicious software program that repli-
cates itself to perform disruptive or destructive tasks on
a computer system in related space on the system. Com-
puter viruses have different phases and parts that are active
throughout their lifespan.

Computer viruses infect a system in four phases. The
dormant phase is when the virus may be in a system but
is taking no actions or functions yet. It is waiting for the
trigger phase of the virus, which is the initializing code, to
perform its functions. The trigger can be a timer or an ex-
ecution of detected events. These events can be something
as simple as a changing condition such as a time on the in-
ternal clock, or a user double clicking an application holding
the virus. The propagation phase of the virus is when the
virus is replicating itself and triggering the new virus as it
is created. The execution phase is when the virus’ intended
functions are performed. The virus may delete many local



files, aside from itself, or try to continue to propagate and
slow a system down by using disk space and power.

The parts of the computer virus include portions of code
and methods to complete the virus’ intended functions. The
infection mechanism of the virus is the function of reproduc-
ing itself into system areas. This is usually a simple search
algorithm that attempts to find all other folders on a disk
and copy itself into the folders before activating its new copy.
The payload of the virus is considered the malicious portion
of the virus. The payload may be a copying method to
steal information or a destructive bit of code to modify a
system. The trigger is the initializing code or feature that
delivers the payload portion or starts the execution phase of
the virus.[6]

2.2 Anti-malware
Anti-malware is software to detect, prevent, or ‘cure’ mal-

ware. This is a catch-all term for software on a computer
that is meant to stop malware from disabling or damaging
a computer. A firewall is a form of anti-malware that is a
preventive security system. A firewall monitors and controls
what goes into a computer system or multiple systems. The
most common types of anti-malware are anti-virus scanners
which are general applications that protect against all sorts
of malware, but primarily scan for threats already on the
system.[6]

2.3 Evolution
A computer virus evolves through several methods. Ge-

netic algorithms are a type of evolutionary algorithm based
on natural selection relying on mutators to change and re-
shape the formations of each new population. Taking a bio-
logical analogy, it is simple to understand evolution in com-
puter science. A population is a particular section or group
of individual code. We make a distinction between viruses
by generations. One group of viruses are different from the
next groups that they create like in generations of families.
When a subsequent virus is made, that created virus may
be more efficient or faster at accomplishing a set task than
its predecessor. Fitness is the measurement that determines
the increased speed or efficiency of a virus compared to its
previous generation. Mutators/genetic modifications are op-
erators creating genetic diversity. They are used in genetic
algorithms to change selected portions of code the algorithm
recreates.

There is more than one way to evolve viruses. You may
mutate the code that controls their ability to search a com-
puter system with training. Advanced search (with heuris-
tics) are simple rules applied to some versions of search for
finding data in structures or systems. This is done by train-
ing a virus to search through systems over and over until
they see a pattern that they consistently rely on for bet-
ter speed. For the biological analogy imagine a species that
relies on how fast they may catch their prey. If the previ-
ous populations of the species evolve future populations to
use specific techniques to catch prey faster, the new popu-
lation becomes the generation that survives and continues
to repopulate with those techniques. To apply this to a
search algorithm we take a virus and its ability to find a pro-
gram file. We determine how many folders a virus searches
through to find the file and we create a new virus. If the
virus learns which folders to search through first, that virus
searches through fewer folders to find the target file. We de-

start

generate initial
population

evaluate individual
fitness, rank

individual fitness

time to
stop?

generate new
population

stop
yes

no

Figure 1: evolutionary algorithm basic structure,
based on [1]

termine the search speed of the two viruses and whichever
is faster continues to make more “children”.[1]

2.4 The Example Virus
For a constructed example, throughout the paper we will

be using a ‘.bat’ file named “supahVirus.bat”. This ‘.bat’ file
will be built to infect some average older operating system
of Windows such as Windows Vista Home. A ‘.bat’ file is a
batch file that works to change a system using code written
directly to a command script. To illustrate what the virus is
aiming to accomplish, consider some network of computers
where there is a folder named ‘secretFolder’ that we want
to collect in each system on the network. Without access
to these computer’s inner files, we create this virus and at-
tempt to infect these systems. Throughout the paper there
will be examples of pseudocode for this virus. The pseudo-
code is built from basic functions taken from no particular
source and is for batch files that can directly act on a sys-
tem through terminals. The pseudo-code is based on the
language python for clarity.

3. GENETIC CHANGES TO A VIRUS
Genetic modifications are used to create different forma-

tions of code via genetic algorithms. These algorithms define
and refine different strains of viruses to create new strains
that can infect and propagate themselves over and over. One
major factor in the measured strength of computer viruses
is their ability to self replicate using the infected system.
Viruses become stronger with genetic modifications, and
evolve to execute tasks that would otherwise be too difficult
for one model systems to accomplish. An example would
be “supahVirus.bat” infecting systems that are incapable of
having a user interface due to some broken system functions
or just by making a program run a black screen.



3.1 Structure of evolutionary algorithms
Evolutionary algorithms are based on the idea of evolv-

ing data similar to biological evolution. Observing Figure 1,
we create an initial population of data for accomplishing a
task we desire using that algorithm. For our example we de-
sign an algorithm meant to create a virus with a new name.
Next, we evaluate the “fitness” of each set of data, defined
as the effectiveness to accomplish the task. To evaluate fit-
ness we create scenarios or tasks we want our population
to accomplish. For the changed name we may have some
comparative algorithm to determine how closely related the
two names are. The more varied the name from the starter
name, the stronger “fitness” of the virus. Then, we take
measurements of how well the individuals in the population
accomplished those tasks. After ranking the population we
take the strongest of the population and attempt to mutate
the data using changeable genes. The selection of genes is
based on code of the virus that can be changed to accom-
plish a task in a different way. This could be parts of the
code of a virus such as a ‘for’ loop or some data structure
the virus holds for searching. Because our code creates pop-
ulations with different names, the characters of the name in
each generation will vary. Each new generation will have
more variation in the names than the previous generation
until they no longer resemble the initial population’s names.
Figure 1 shows the basis of an evolutionary algorithm.

3.2 Propagation phase of the virus
The propagation phase of the virus as previously explained

is the phase in which the virus self-replicates and spreads.
The virus will possess some action, or method, that it acti-
vates to begin replicating and spreading. This means that
our “supahVirus.bat” will have a method called “swarm-
Method”. This method will repeatedly recreate the same
computer virus in different parts of the system which may
prove problematic for the system. Most anti-virus software
that attempts to prevent a virus from “reproducing” looks
for repeating programs that seem malicious. A possible so-
lution for the virus to avoid being found by anti-malware
is to change the virus each time so that it is not recreating
the same code, names, and files that the anti-malware would
find. The anti-malware would only see that files and code
are being written, and not that the same files and code are
being recreated. This modified viral propagation could use
code that makes the virus harder to be observed by anti-
malware and more powerful each time it is created.

3.3 Genetic algorithms and mutators for mal-
ware propagation

To create a genetic algorithm that will mutate our virus
each time it is created, we begin with the foundation of the
formula that will go into “supahVirus.bat”. A “true” genetic
algorithm is supposed to more accurately portray a Dar-
winian scenario utilizing parent variants of the stronger ver-
sions of modifications. A “child” is then created by the two
parents’ combinations which would share overlap, and ran-
domly choose between the two parents’ differences. For the
sake of simplicity this paper will be using a simplified ver-
sion which creates very minimal changes to genes while still
accomplishing the designated task of our “supahVirus.bat”.
This pseudo-code for mutation is based on the structure of
evolution.

def swarmMethod():

initialize(thisVirus)

powerOfThisVirus = evaluate(thisVirus)

while true:

mutatedVirus = mutate(thisVirus)

powerOfMutation = evaluate(mutatedVirus)

if powerOfMutation >= powerOfThisVirus:

initialize(mutatedVirus)

To measure the power of this computer virus, we only
need to take into account the speed of successfully creating
subsequent viruses and the speed of running the code of
our virus. To check for this speed we created a method
“evaluate” in our code that simply runs and checks if the
virus created would work properly and how fast the virus
works in initialization.

One advantage of stealth for a virus in a computer sys-
tem is that it is relatively easy to trick basic anti-malware.
Something as simple as a method to change names will
allow new generations of viruses to gain mild variations
on names such as “supahVirus” changing to “superbVirus”.
These changes in name allow a virus to successfully hide
from most anti-malware that simply detects repeating file
and program names.[4] The team that created evolvable mal-
ware started with a simple “bagle” worm that was meant to
represent a virus. From this virus they showed that splicing
in variant genes created different viruses that became harder
to detect by their test module. The test module was made
up of different anti-malware programs that had progressively
increasing efforts dealing with variations of the virus. These
variations included how a virus may execute applications to
conceal themselves from user suspicion or additional func-
tionalities like killing anti-virus software or changing names
to hide from anti-virus software.[4]

This method should bring about multiple changes from
each new mutator to create multiple viruses. These new
viruses are created to function similarly to the original virus
and are as fast or faster. These viruses are selected to be ini-
tialized throughout the computer system in different areas.
We create a simplistic check that allows us to determine the
speed of the virus. The problem with this check is that it is
typically based on the size of the virus created in code. The
check would simply be whether the size of the code remains
the same and wouldn’t be larger than the initially tested
against population. One virus may have a mutator which
changes the function of copying various files in the folder it
was initialized in, and it would instead start copying and re-
moving those same files before sending them to other areas
in the system. Another possible mutation that anti-malware
may not detect is the different ways that the virus may use
the computer’s systems to perform its actions. This means
that one version of“supahVirus.bat”may produce a terminal
and begin searching through the file systems, while another
version could hijack the Windows Explorer and directly act
like a user or administrator to the file systems.

For the sake of simplicity, “supahVirus.bat” will only pro-
duce one mutation based on the characters in their own
name. This will simplify our check, which will verify char-
acters are actually different and do not match the charac-
ters from the virus that created it. The “swarmMethod” of
our virus would not have a check for power of mutation, but
rather would perform a check for characters in its own name.



4. INFECTION AND SEARCH IN A COM-
PUTER VIRUS

A very important operation of the virus is to search a
computer system for different files, folders, or disks to infect
and continue propagation. To properly propagate it is re-
quired that the virus spreads so that it does not simply stay
at the point of infection. To search for the “secretFolder” we
require the operation of the “supahVirus.bat” to recreate it-
self in each new folder. Eventually the virus finds and starts
copying the contents of “secretFolder” after it propagates
into it.

4.1 Infection mechanism/vector
In all computer viruses there is a mechanism that typi-

cally uses a search routine to find new files or disks to in-
fect. This portion of the virus doesn’t just seek to copy
itself, although that is the intention of the infection mech-
anism’s other method, but also to spread, so that it can
properly disperse copies into other parts of the disk. To ac-
complish dispersal to propagate the virus, “supahVirus.bat”
will require another method that we will call “mechanism-
Method”.

def mechanismMethod():

while true:

for f in folders:

if(f.name == "secretFolder"):

copyAndTransfer(f)

break

else:

mutatedVirus = swarmMethod()

into(initialize(mutatedVirus), f)

This infection mechanism will search through top level
“folders” and attempt to go into each file system and initial-
ize the newly created mutated viruses in each. To properly
do this we need to access the top-level of the file system. This
is much more easily accomplished by a “.bat” file, given that
it can open and write to a terminal, which can write and run
code to the disk and the highest priority folders that can be
infected. This method was improved by Sadia Noreen using
a worm malware called “bagle”. The method of infection is
one of the parameters that they tested to see how a virus
may be caught on different levels. [4]

4.2 Heuristic search
Our heuristic search prioritizes systems that we can in-

fect and ignores systems that don’t match our preferred sys-
tem. For“supahVirus.bat”, when the virus is in the dormant
phase, before actually beginning to infect systems, we want
to seek out the highest system or folder that has the most
vital information that we want to affect. This is done by our
“.bat”file writing the actual payload of the virus delivered to
the highest writable folders of the disk. The virus initializes
and starts in top level folders before propagating into lower
level folders in its file system. Each new virus in a folder
then infinitely recreates a virus into each folder it can find
recursively.

To speed up the process the heuristic that we include in
our infection mechanism method “mechanismMethod()” will
be one that prioritizes the list of folders most likely holding
the “secretFolder”. To do this we create a data structure
which would be a map of folders to search through in our
‘for’ loop that automatically prioritizes those folders for hav-

disk

top level
folder2

top level
folder1

top level
folder3

lower level
folder2

lower level
folder1

lower level
folder3

secretFolder

Figure 2: computer search

ing a higher chance of containing the target folder based
on the past experience of the virus on similar systems. To
change the code we simply change ‘folders’ in the ‘for’ loop
to the data structure with priority map values applied to
each folder which will most likely contain the target.

def mechanismMethod():

priorityfolders = priorityMap(heuristic)

for f in priorityfolders:

if (f.name == "secretFolder"):

copyAndTransfer(f)

else:

swarmMethod()

into(swarmMethod.mutatedVirus, f)

initialize(mutatedVirus)

For the priority map to search for more desired folders
we create the heuristic based on testing done using comput-
ers that would have a “secretFolder” on some level of the
computer. Suppose we know what folders generally con-
tain the “secretFolder”, those folders would be the folders
that appear in the heuristic to be at the front of the loop
when the mechanism attempts to propagate. Testing done
to these computers would have our virus learn the most com-
mon folders to attack and be the starting heuristic to create
the priority map that would target which folders each virus
should propagate first.

This method increases the average search speed through
possible folders by using knowledge of the most common
locations for the target folder. The upper bound remains
the same as all possible ‘for’ loops can be executed before
finding the target folder. The lower bound decreases to the
shortest possible path to the target folder from the disk.
The average speed increases to become closer to the lower
bound. Each new virus prioritizes which folders may hold
the“secretFolder”and may reduce the search time to become
near linear.

Observing Figure 2 we prioritize the top level folder to
propagate into folder 1 and continue to lower level fold-
ers. When that newly created virus is pushed into “top
level folder 1”, it initializes and creates another priority map
based on its knowledge, until it finds the lower level that
holds the “secretFolder”.



SPLIT.EXE
offset interval (0,43000)
Evaluations 300
Type I(zones found) 1
Type I(largest) 334
Type II(zones found) 32
Type II(largest) 1,511

TESTDISK.EXE
offset interval (0,43000) (0,10000) (0,2000)
Evaluations 15,000 2,000 300
Type I(zones found) - 1 1
Type I(largest) - 33 25
Type II(zones found) 3 4 3
Type II(largest) 179 167 183

Figure 3: Capture results taken directly from [2]

5. PARALLEL SECURITY TO MALWARE
GROWTH

Through various forms of evolutionary computation and
training, viruses may advance in ways uninhibited by anti-
malware programs. Supposing the owners of the network
want to eradicate the new “supahVirus.bat” that is evolving
on the system, they may have to change strategies on how
to deal with the evolving virus.

Much like in viruses, there are advanced forms of compu-
tation that, when applied to anti-malware, can substantially
improve the anti-malware’s performance. By using detection
of signatures of code, and not just the forms of the code, we
gain insight into how to find evolving malware. In adaptive
systems, the advanced anti-malware methods applied by the
researchers Xu and team[7] showed that there are ways to
control computer virus propagation across a network. This
anti-malware methodology can also be applied to personal
systems for detecting machine generated viruses.

5.1 Detecting machine generated malware
To properly demonstrate machine generated malware de-

tection, the testing done by Andrea Cani and team [2] began
with the“timid”trojan horse having several generations that
all evolved in mass quantities throughout a simulated sys-
tem. To find the trojans in the simulation, the anti-malware
used a form of signature detection. Signature detection is
when anti-malware collects samples of what it believes to
be malware and looks for consistent repeating patterns in
code. This approach takes a sample of the detected virus
and begins testing against the different files in the system
until it finds matches. The matched programs are halted
and counted towards the number of detected malware. To
ensure that the code wouldn’t copy the signature of some-
thing insignificant, the code sample used as a signature to
test against the other files and viruses would have to be some
payload portion of the virus. The payload is the ‘logic bomb’
of the virus that actually is the code to activate the chang-
ing or ‘malicious’ method or mechanism in the virus. For
our “supahVirus.bat” this would be the previously created
method “swarmMethod” that copies the virus and initializes
it in whatever folder it is called into. For the team, a sim-
ulation proved successful after each generation was taken
and computed for each new form of the detectable signa-
ture. New signatures were added to the anti-malware’s pool

of signatures to detect a virus.
A trojan horse is not actually a virus but acts similar

to one in its malware content. Rather than searching for a
possible exploit or breach, it relies on user error which would
allow the user to trigger the malware. This can be done with
a simple prompt that the trojan shows on screen with the
user clicking or opening the content of the file to activate it.
A virus continues its existence via spreading from any active
point constantly. This is how a trojan differs from the virus.
For the sake of simplicity a trojan horse can become a virus
by simply recreating itself in a system that it infects.

According to this testing done by Andrea Cani in the pa-
per on automated malware creation [2], using the trojan
horse called “timid” and genetic algorithms created different
generations of the modified trojan horse. These generations
were activated in a computer system with several files to
have code directly injected into by “timid”. According to
Figure 3, there are two main programs injected by the tro-
jan that anti-malare attempted to detect the injected trojan
horse code. “Split.EXE” was an executable program that
split files of any kind into smaller parts to rebuild the origi-
nal and analyze it. “TestDisk.EXE” was another executable
program that recovers data and attempts to detect when-
ever a program is editing data recovered or backed-up. The
team ran several tests that each ran for 30 minutes each.
The trojan horse attempts to inject its code into ‘.EXE’ and
‘.COM’ files on a computer system. After 6 generations of
the virus, 4 anti-malware programs attempt to clean all files
of unwanted code.

Figure 3 shows the results of how many zones and how
much code was injected into the programs and remained
hidden from anti-malware. These viruses would attempt
to infect and write themselves into two different types of
areas. ‘Type I’ areas are areas that an execution would
usually skip over. These areas would typically be spaces in
between functions and code that would be forgotten after
an execution. ‘Type II’ areas are uncalled functions and
space in code that are almost never executed at all. Zones
are how many areas there is a clear injection of foreign code
from timid. Offset Interval is a determined space of how
much the “timid” virus blocks code in bytes. The smaller
the second number in offset interval, the more it observes
smaller spaces in code as individual code blocks to judge
as potential areas to infect. Evaluations are the number of
times “timid” reran to create generations and look for areas
to inject itself into the files.

For “Split.EXE”, there was 1 zone of ‘Type I’ that had the
largest block of injected code take up 334 bytes of space.
There were found to be 32 zones of ‘Type II’ where the
largest block of code held 1,511 bytes. “TestDisk.EXE” ap-
peared more resilient to attacks by only having 3 “Type II”
areas be exploitable in a larger offset. More tests were run
on “TestDisk.EXE” as “timid” was forced to observe in more
small areas at a time. This would allow more observation in
smaller chunks for potentially vulnerable areas to inject the
virus’ code into. After shrinking the offset interval, “timid”
was capable of infecting more areas, including ‘Type I’ zones.
The largest area for injected code was still only 183 bytes
in a “Type II” zone. This testing still proved that machine
generated evolving malware was useful in determining areas
at risk of attack. [2]



5.2 Modeling timing parameters for virus gen-
eration

For creating anti-malware that seeks to slow, if not halt,
a virus in a network, there are two unique parameters to
consider when adjusting for large networks to control virus
populations. According to a research paper written by Yang
and Chenxi Wang [5], the two most powerful methods for
halting virus growth in a system or network are as follows;
infection delay based on systems throttling computational
power when a virus is detected, and the vigilance of a user
of a system or systems in a network. Throttling the CPU
of a system slows the virus and its ability to propagate.
After slowing the system down the anti-malware can begin
searching the system for the virus and all copies of it. This
requires the anti-malware be outside of common system use
to find disk use and change it. The anti-malware may gain
access to the processes of the computer and halt processes
that it detects to be malicious. The effectiveness of user
vigilance is usually based on how fast a user can detect their
system’s infection and their course of action. The action
can range from opening an anti-virus scanner to switching
off the computer and running it outside of local or global
networks to stop the virus from spreading to other systems.

5.3 Adaptive network thresholds and control
Despite the increased speed of the new viruses, there are

ways of controlling a network infected by computer viruses.
According to research done by Shouhuai Xu and team [7],
there are strategies that would allow the conditions of servers
susceptible to virus attacks to be better protected. Adap-
tive network control uses two strategies: semi-adaptive and
fully-adaptive defenses. The semi-adaptive scenario is based
on the assumption that there is a virus in the network that
is spreading and must be mapped to predict where it will
spread next. The fully adaptive defenses are predicated on
no input parameters including the threshold of when and
where a virus is likely to spread. The research concluded
that there were fully and semi adaptive defense scenarios
that allowed the control or destruction of the virus in a net-
work.

To gain some perspective on this we will use our virus,
“supahVirus.bat”, in our example network. The virus is in
a portion of computers on the servers. For some amount
of servers/systems ‘X’ there are Xi infected systems con-
nected to another list of systems Xv that are vulnerable.
Using semi-adaptive defenses, an anti-malware program can
tell what servers are infected by “supahVirus.bat” and can
add them to Xi thus strengthening the vulnerable servers
Xv to detect when a new unwanted program is initialized.
This semi-adaptive scenario continues on each accessible sys-
tem in ‘X’ to clean each system in Xv of detected unwanted
programs. The anti-malware would detect the programs us-
ing the CPU excessively and then clear running programs
it deems unnecessary or malicious. From the scenarios pre-
sented, there would eventually be a state where all Xi are cut
off from from each Xv space, creating defensive-like battle
lines against a virus. This process is explored more deeply
in the research paper by the Xu team. [7]

6. CONCLUSIONS ON ADVANCED MAL-
WARE AND ANTI-MALWARE

Evolutionary algorithms and advanced computation in dif-

ferent viruses and anti-malware create new directions for
both types of software. From given examples and dissected
processes we have demonstrated that there are applications
for advanced and evolutionary computation, and those ap-
plications can have benefits to both computer viruses and
anti-malware. Despite our virus not thoroughly demon-
strated to optimally increase the speed of the malware, a
virus still benefits in its ability to hide from anti-malware.

7. REFERENCES
[1] T. Bäck. Evolution strategies: Basic introduction. In

Proceedings of the 15th Annual Conference Companion
on Genetic and Evolutionary Computation, GECCO
’13 Companion, pages 265–292, New York, NY, USA,
2013. ACM.

[2] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and
A. Tonda. Towards automated malware creation: Code
generation and code integration. In Proceedings of the
29th Annual ACM Symposium on Applied Computing,
SAC ’14, pages 157–160, New York, NY, USA, 2014.
ACM.

[3] Y. Kandissounon and R. Chouchane. A method for
detecting machine-generated malware. In Proceedings of
the 49th Annual Southeast Regional Conference,
ACM-SE ’11, pages 332–333, New York, NY, USA,
2011. ACM.

[4] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq.
Evolvable malware. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’09, pages 1569–1576, New York, NY, USA,
2009. ACM.

[5] Y. Wang and C. Wang. Modeling the effects of timing
parameters on virus propagation. In Proceedings of the
2003 ACM Workshop on Rapid Malcode, WORM ’03,
pages 61–66, New York, NY, USA, 2003. ACM.

[6] Wikipedia. Computer virus — Wikipedia, the free
encyclopedia, 2016. [Online; accessed 10-October-2016].

[7] S. Xu, W. Lu, L. Xu, and Z. Zhan. Adaptive epidemic
dynamics in networks: Thresholds and control. ACM
Trans. Auton. Adapt. Syst., 8(4):19:1–19:19, Jan. 2014.


