
SQL and NoSQL: Comparing Modern Databases

Ryan McArthur
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

McArt046@morris.umn.edu

ABSTRACT
Choosing a database for software applications has become
more difficult in recent years due to the sheer number of
databases that exist and their plethora of options to choose
from. This difficult choice can have a substantial effect on a
project, especially one that is large in size. Since decisions
such as this are very important, making a well informed
choice on which database to use is crucial. Here we discuss
two options for databases, Relational Database Management
Systems (RDBMS) and Not Only SQL (NoSQL) with much
of the focus being on NoSQL. We will also look at a com-
parison between a RDBMS and a NoSQL database as well
as a comparison among different NoSQL databases. We find
that between RDBMS and NoSQL it depends heavily as to
what is being done to the data to decide the ‘better’ option.
When looking at multiple NoSQL databases for a specific
distributed framework and a specific large data set we see
that throughput varied from 225 to 3200 operations per sec-
ond and latency varied by factors of 4 and 5, with the highest
throughput giving the highest latency.

1. INTRODUCTION
Databases are used in many aspects of our lives. Im-

portant and popular services such as online banking, video
game accounts, Facebook, and many more use databases
constantly. Many of these systems work very well, but re-
cently companies like Facebook and Google have also started
investing into options other than the typical RDBMS that
are used by most applications. The main driving force for
this is the increasing amount of data these companies are
collecting. NoSQL databases are not the be all and end all
but with the way data is growing in recent years NoSQL
seems to be a viable option to handle it. In 2013 we had 4.4
zettabytes in the digital universe, it is estimated to reach 44
zettabytes by 2020. [2] With this insane growth in data the
typical scaling up approach that RDBMS take becomes way
too expensive and possibly not even possible with current
technology. “While there is rarely a single ‘right’ answer in

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, November 2016 Morris, MN.

selecting a complex component for an application, selection
of inappropriate components can be costly, reduce down-
stream productivity due to rework, and even lead to project
cancellation.” [4] Deciding on a database that works well for
your application is important. With NoSQL the ability to
scale out offers a way to handle the increasing data while
keeping cost reasonable.

When the size of the data and the number of requests in-
creases there comes a point when structured databases can
no longer handle these loads. One solution to this prob-
lem is to shift data centers to NoSQL databases. [7] NoSQL
is a type of database that can have similarities with SQL
databases but often times they sacrifice something to pro-
vide more on another front. Even further there are a wide
range differences among NoSQL databases. Some will sacri-
fice more than others, and some will sacrifice different things
than others. When selecting the database for an application
one needs to look at the properties of the data to see if it
will work well with a SQL database. If the answer is no, ex-
ploring different databases within the scope of NoSQL may
be an option for that data. The differences between NoSQL
databases really does matter and one may fit the data really
well while another is terrible at handling that data. When
selecting a database, research and testing are the most im-
portant things. As mentioned before there is not a defini-
tive right answer. There are resources out there to help one
decide on the best database for certain sets of data and ap-
plications. Some popular applications that specifically use
NoSQL databases are things such as Facebook Messenger,
Electronic Arts Simpson’s Game App, Google Maps, and
Google Earth.

Throughout the rest of this paper we will be going over
a little background in Section 2 followed by some features
of RDBMS in Section 3, then some of the features NoSQL
has in Section 4. Finally we will look at a few performance
comparisons in Section 5 , two between RDBMS and NoSQL
and another comparing different NoSQL databases.

2. BACKGROUND
Most people’s ideas of databases are Relational Database

Management Systems (RDBMS). RDBMS are database man-
agement systems that are based on the relational model in-
troduced by E.F . Codd in 1971. [10] Most RDBMS use the
Structured Query Language or SQL to access the database.
Popular RDBMS include MySQL, Microsoft SQL Server,
and SQLite. Most databases used throughout business are
RDBMS. The shift towards something like NoSQL only re-
cently started with tech giants like Amazon and Google

needing something to handle their large amounts of data.
The concept of a NoSQL-style database has existed since
the 1960’s but the term NoSQL became popular in the mid
to late 2000’s.

Often times when data needs to be searched often or
quickly, items will be indexed. Indexing is used to increase
speed and performance with searches. Each item is assigned
its own unique identifier which allows for easy search in-
stead of parsing through all the information until what is
being looked for is found. Indexes will take up more storage
but in some cases the extra storage is worth the performance
increase.

3. FEATURES OF RDBMS

3.1 ACID
RDBMS support the ACID properties on transactions of

their database. ACID means Atomicity, Consistency, Isola-
tion, Durability. A transaction is a single logical operation
on the data in the database. Atomicity requires that each
transaction be“all or nothing”: if one part of the transaction
fails, then the entire transaction fails, and the database state
is left unchanged. Consistency ensures that any transaction
will bring the database from one valid state to another. Iso-
lation ensures that the concurrent execution of transactions
results in a system state that would be obtained if trans-
actions were executed serially. Durability ensures that once
a transaction has been committed, it will remain so, even
in the event of power loss, crashes, or errors. ACID is very
important to ensure data does not get lost or evaluated in-
correctly. [12]

3.2 Structured Data
RDBMS databases deal with a very structured form of

data, a table with column and rows. This is how most
data that people deal with is organized. Spreadsheet with
columns and rows, This row relates to this column in this
way. That is how RDBMS store their data. One spreadsheet
would be a table in RDBMS. There can be as many tables
as one needs. An example of this would be two tables, one
has a list of books as the rows, with the number of pages
as the first column and the author as the second column.
The author column has a number in it, lets say its 4 for the
first book. That number refers to the second table which
is a table of all the authors the fourth author in this table
corresponds to the number 4 in our book table. It is a very
simple way to look at data and works very well in plenty of
cases. This structured data in RDBMS are also meant to be
normalized which means“organizing the columns, and tables
to reduce data redundancy and improve data integrity” [13]
This normalization of the database often reduces data stor-
age but in some cases data duplication can actually improve
performance drastically while only sacrificing a little bit of
storage.

4. FEATURES OF NOSQL
Using certain NoSQL databases has different upsides; the

intention here is to stay general over many different NoSQL
databases. Some of the upsides may not apply to all of the
databases or apply to as great of a degree as others. There
are new products constantly emerging in the NoSQL field
as well as existing products having multiple versions and re-

Figure 1: An example of a JSON object

leasing new features all the time. There are two instances
in the papers we discuss where MongoDB actually changes
between testing and the writing of the paper which could
have changed the outcomes of the benchmarks. There are
at least 225 NoSQL databases in existence today so NoSQL
databases really need to be viewed individually for ones pur-
pose and data set. One example of how MongoDB stores
data is in a document called a JSON object. There can be
as many documents as needed within the database. Look-
ing at the JSON object in Figure 1 we see this looks very
different compared to a spreadsheet.

4.1 BASE
An alternative set of properties to ACID is BASE which

means Basic Availability, Soft-state, and Eventually Consis-
tency. Basic Availability supports partial failures without
total system failure. Soft-state means the data could change
over time without any input. Eventually Consistency means
the consistency of the database will be fluctuating. This
gives leeway in the strict set of properties of ACID. Two of
the NoSQL databases we look at later actually give the op-
tion to have eventually consistency or strong consistency. [8]

4.2 Consistency
Not everything needs a database that complies entirely

to ACID, which is where NoSQL databases come into play.
NoSQL databases often follow the properties of BASE, by
sacrificing ACID compliance they can decrease latency which
is the time between request and response. For example, look-
ing at eventually consistency.

If a change is made to a web page from a server in China
that server will be updated right away. One may try to
access that web page in the United States and get out of
date information, until maybe thirty seconds later when
the server in the United States gets updated. The consis-
tency was not there the entire time but it eventually be-
came consistent. Seeing the non-updated page allowed one
to have access instantly instead of waiting thirty seconds for
the changes to be propagated. Amazon’s Dynamo NoSQL
database actually“pioneered the idea of eventual consistency
as a way to achieve higher availability and scalability: data
fetched are not guaranteed to be up-to-date, but updates

Table 1: Insertion times of MongoDB and MySQL

Number of Entries MySQL(ms) MongoDB(ms)

500,000 16,064,999 17,860

are guaranteed to be propagated to all nodes eventually.” [1]
Another option to deal with consistency is the Multi-

Versional Consistency Control. This is similar to the pre-
vious example except both people would have access to the
updated document. One person may be editing it while the
other person is viewing it so pulling up the web page will
give you a web page that is fully functional even though
someone may be making changes to it at that very moment.
Once the changes are made and propagated throughout the
database and you refresh or revisit the page the updates will
be there.

4.3 Horizontal Scalability
Distributed systems are an easy way to increase Horizon-

tal Scalability. Horizontal scalability “means the ability to
distribute both the data and the load of these simple op-
erations over many servers, with no RAM or disk shared
among the servers.” [11] The ability to scale horizontally al-
lows one to meet very large data and processing needs as
well as keeping costs lower than increasing single machine
resources (RAM, CPU, storage capacity)

One way NoSQL databases deal with scaling is the mas-
ter/slave replication. In the master/slave architecture there
is one master that handles all writes that get requested and
send updates to the slaves. The slaves handle all read re-
quests. This can be a problem if the master gets more re-
quests than it can handle. The problem can be solved by
what is called sharding, which is having two or more mas-
ters. The masters then split up the writes across however
many their are essentially each master has its set of slaves.
They have the same information on them. There is a router
that sends the reads and writes to each master and slave
and keeps track of what is where.

Distributed systems were lightly touched in the last sec-
tion when talking about master/slave and sharding. These
are techniques to allow distributed systems which is another
way to increase horizontal scalability. It is the most com-
mon and cheapest option for scaling a NoSQL database and
actually a huge attraction to NoSQL databases. Scaling a
RDBMS almost always requires improving processor, mem-
ory, or storage which can be a lot more expensive than get-
ting five servers that are much cheaper and spreading out
the work.

4.4 Large Datasets
NoSQL databases can handle large datasets better than

RDBMS. A big part of that is due to the ability to scale
horizontally much better than a RDBMS. Another reason is
that by allowing duplication and not focusing on normaliza-
tion, performance can often be increased and duplication can
either be left alone or dealt with later. Allowing for duplica-
tion that increases performance can often be very beneficial.
Storage is becoming insanely cheap some data duplication
may be worth it. In 2016 1GB on average costs $0.019 and
in 1980 1GB on average costed $437,500 [9]

NoSQL handles large data much better than a RDBMS.
Facebook Messages is a prime example of this. In 2010 Face-

Table 2: Search Times of MySQL

Searched on No of Entries Ind.
Queries

Time (ms)

Col w/o Index 500,000 4 1374.5
Col With Index 500,000 4 621.75

Table 3: Search Times of MongoDB

Searched on No of Entries Ind.
Queries

Time (ms)

Col w/o Index 500,000 4 210.5
Col With Index 500,000 4 26.25

book posted about their underlying technology of Facebook
Messages stating “MySQL proved to not handle the long
tail of data well; as indexes and data sets grew large, perfor-
mance suffered.” [6] He also states that “current Messages
infrastructure handles over 350 million users sending over 15
billion person-to-person messages per month.” [6] MySQL
was just not able to handle that amount of data so Face-
book had to consider alternatives and ended up moving to a
NoSQL database (HBase) because it offered good scalability
and performance for the workload.

5. PERFORMANCE EVALUATION

5.1 MySQL vs MongoDB
Three individuals from Pune Institute of Computer Tech-

nology in India were looking at NoSQL and unstructured
data as well as a comparison between MySQL and Mon-
goDB. I will be using their comparison of MySQL and Mon-
goDB for the next section. NoSQL databases are supposed
to increase performance with big data in certain areas com-
pared to RDBMS. Directly comparing MySQL vs MongoDB
over distributed networks has some pretty interesting re-
sults, especially in terms of insertion. As we can see in
Table 1 when doing an insert into the database of 500,000
records, MySQL took 1,606,499ms while MongoDB took
17,860ms, an insane difference in speed. One of the rea-
sons we see this insane difference is actually due to lack of
the durability part of ACID. MongoDB can have in-memory
storage engine and “the in-memory storage engine is non-
persistent and does not write data to a persistent storage.”
Thus “waiting for data to become durable does not apply to
the in-memory storage engine.” [5] This speeds up the write
times of MongoDB but if power was to be lost while all that
was in memory and not written to disk yet all that data that
had not yet been written to disk would be lost. This lack
of durability increases MongoDB’s write time by freeing it
up to do other things instead of waiting for the writes to
happen to disk, but at the same time sacrifices durability.

Insertion is not the only place MongoDB was able to out-
perform MySQL. It also outperformed in terms of searches
on other columns without index and other columns with in-
dex. Looking at Tables 2 and 3 which have the results on
searches of the 500,000 inserted items for MySQL and Mon-
goDB respectively. MySQL had a search time of 1,374.5ms
on columns without index and 632.75ms on columns with
index. MongoDB had a search time of 210.5ms on columns
without index and 26.25 on columns with index. As we can

Figure 2: Three different comparisons between MongoDB and MySQL [3]

see here, MongoDB wins in both with and without index.
Since these are read times there is no writing to memory
instead of disk to show a performance increase so MongoDB
is just faster in this case. [7]

Some more results comparing MySQL and MongoDB by
four individuals from Dongguk University shows an aspect
where MySQL is better than MongoDB. They were looking
at having a MongoDB based repository for some big data
they wanted to explore. One thing to note, it appears these
results were tested on single sharded MongoDB and a single
machine for MySQL.

In Figure 2 we can see three different queries done of RFID
data (Q1, Q2, and Q3) within MongoDB and MySQL. Look-
ing at Q1 we see a case where MongoDB clearly is the bet-
ter choice, it is getting almost instance response time. Q2
MySQL is better with two objects but as the number of
objects increases we see it’s performance decrease at a rate
faster than MongoDB. Finally in Q3 we get a case where
MySQL actually out performs MongoDB. Do get a better
idea of what was actually being queried look at [3].

5.2 Comparing NoSQL Databases
NoSQL databases have similarities amongst each other

but they are not the same and a person needs to consider
if their data is a good fit for a certain NoSQL database.
How the data is used is another big factor when decid-
ing which NoSQL database to choose. Some professors at
Carnegie Mellon conducted a case study for a distributed
healthcare organization that decided they would like to try
a NoSQL database for their Electronic Health Record Sys-
tem. The goal of this case study was to look at different
NoSQL databases and decide which would work best for this
healthcare organization’s needs. They did not look at SQL
databases because the customer was familiar with RDBMS
technology for this case already, but was looking to focus
the technology evaluation only on NoSQL.

They first wanted to understand what kind of performance
and scalability gains were made with each option that they
were considering. They chose two driving cases, retrieval of
recent medical tests for a certain patient, and strong con-
sistency when writes take place. This case actually wants
strong consistency instead of eventual consistency as men-

tioned before. Because they needed strong consistency they
use quorum consistency to ensure consistency across shards;
see [4] for more details. A decision was make to look at
several different data models (key-value, column, and doc-
ument). The choice to look at Riak (key-value), Cassandra
(column), and MongoDB (document) was made due to their
features and the fact that they are market leaders.

All tests were run using Amazon EC2 cloud. The data
was input as follows: there are one million patient records,
and each patient has between 0 and 20 lab test results with
ten million lab test results in total. [4] Tests were run on two
different configurations of the database: a single node and
a nine node setup. The single node setup was a base case
while the nine node setup was to represent an actual de-
ployment. The “data was partitioned (i.e. “sharded”) across
three nodes, and replicated to two additional groups of three
nodes each.” [4] All of the data was split into three sections
and that was replicated twice so it was a sort of 3x3 data
distribution. This was the case for Cassandra and Mon-
goDB but Riak was unable to support this configuration so
on Riak the “data was sharded across all nine nodes, with
three replicas of each shard stored across the nine nodes.” [4]

5.3 NoSQL Test Results
Testing was performed under a workload of 80% read and

20% write due to the health care organization reporting this
as their usual workload. A local cache was created that
represented the patients that were to be seen that day. The
workload execution was also executed on a different number
of client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000),
three times for each amount of threads. The average of
these three tests was used for evaluation. Results shown are
from the three different databases running on each amount
of threads and their respective throughput, or operations
executed per second.

Looking at Figure 5, which is throughput of the databases
with read/write workload, we see that Cassandra is clearly
the best option here. Cassandra peaked around 3200 opera-
tions per second which is slightly better than the single node
configuration that was also tested. Riak peaked around 480
operations per second but did see an increase for the dis-
tributed system of 4x compared to the single node configu-

Figure 3: Throughput for Riak, Cassandra, and
MongoDB on a read only workload [4]

Figure 4: Throughput for Riak, Cassandra, and
MongoDB on a write only workload [4]

ration. Notice Riak drops to zero at 500 and 1000; that is
due to “insufficient socket resources to execute the workload
for 500 and 1000 concurrent sessions.” [4] Looking at Mon-
goDB we see that its performance is quite poor. It is actually
achieving less than 10% of what the single node configura-
tion of MongoDB is able to. A factor affecting this was “the
interaction between the sharding scheme used by MongoDB
and our workloads.” [4] The way the workloads generated
keys caused MongoDB to direct all write operations to the
same shard which resulted in performance decreases. Con-
flicts between other systems and MongoDB made it so a dif-
ferent indexing scheme was unavailable. One thing to note
is that after these tests concluded, MongoDB introduced a
hash-based sharding which may be a viable option for this
data but tests were not conducted for this. This is a great
example of the constant changing field that is NoSQL.

Looking at the write latency of each in Figure 6 we see
that Cassandra clearly has the highest latency, MongoDB
had the next highest latency, and Riak offered the lowest
for latency. MongoDB was 4x faster and Riak was 5x faster
than Cassandra. The read latency in Figure 7 shows that
MongoDB is the best in this case followed by Cassandra

Figure 5: Throughput for Riak, Cassandra, and
MongoDB on a read/write workload [4]

Figure 6: Write latency [4]

but Riak seems to lose performance as we add more client
threads in. This is not good considering we have a 20% write
workload and an 80% read workload.

After MongoDB has been excluded because it is ruled out
as being a viable option for the tasks at hand, The second
set of tests are similar to the the first set of benchmarks
discussed. They are looking at the differences strong con-
sistency versus eventually consistency has on throughput.
Looking at the 32 client threads in Figure 8 throughput
yields a 10% decrease when moving to strong consistency
from eventual consistency with Riak. We see an even larger
decrease when considering Cassandra in Figure 9. A de-
crease of 25% is observed when switching from eventually
consistency to strong consistency with 32 client thread.

It was not clearly explicit which choice they went with in
the end. They had two viable options with different draw-
backs. Cassandra has a very high throughput. While Riak
offers very low write latency the higher read latency is not
ideal. Arguments can be made for both but it really depends
on what the system is focusing on. The choice between high
throughput and low latency is to be made by the customer.

Figure 7: Read latency [4]

Figure 8: Consistency comparison in Riak [4]

6. CONCLUSION
Overall testing the data model and application is the most

important when deciding which database will fit the best
for each situation. As we saw MongoDB was clearly better
in the first scenario but did not do nearly as well in the
second. We can see that each database type, both RDBMS
and NoSQL have their own place in the world. Currently
RDBMS have control over most of the applications but we
may see NoSQL taking up more of that space as we see this
constant increase in data. As I mentioned each has their
own place and I do not see one completely eliminating the
other from existence. Facebook currently has teams working
on both types of databases, Facebook Messages is build on
HBase and Facebook itself is build on MySQL so it is evident
they see each have their uses. I also do not foresee the be
all and end all emerging in either field. There will not be
an automatic go to when the word NoSQL is mentioned
and that will not be the case for RDMBS either. Running
benchmarks will allow one to choose the database that best
fits the needs at hand.

7. REFERENCES
[1] R. Cattell. Scalable SQL and NoSQL Data Stores.

SIGMOD Rec., 39(4):12–27, May 2011.

Figure 9: Consistency comparison in Cassandra [4]

[2] IDC. The Digital Universe of Opportunities: Rich
Data and the Increasing Value of the Internet of
Things, 2014.

[3] Y. S. Kang, I. H. Park, J. Rhee, and Y. H. Lee.
MongoDB-Based Repository Design for
IoT-Generated RFID/Sensor Big Data. IEEE Sensors
Journal, 16(2):485–497, Jan 2016.

[4] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham,
and C. Matser. Performance Evaluation of NoSQL
Databases: A Case Study. In Proceedings of the 1st
Workshop on Performance Analysis of Big Data
Systems, PABS ’15, pages 5–10, New York, NY, USA,
2015. ACM.

[5] Mongo. In Memory Storage Engine, 2016.
https://docs.mongodb.com/v3.2/core/inmemory/.

[6] K. Muthukkaruppan. The Underlying Technology of
Messages, 2010.
https://www.facebook.com/notes/facebook-
engineering/the-underlying-technology-of-
messages/454991608919/ [Online; accessed
29-November-2016].

[7] S. S. Nyati, S. Pawar, and R. Ingle. Performance
evaluation of unstructured NoSQL data over
distributed framework. In Advances in Computing,
Communications and Informatics (ICACCI), 2013
International Conference on, pages 1623–1627, Aug
2013.

[8] D. Pritchett. BASE: An Acid Alternative. Queue,
6(3):48–55, May 2008.

[9] Statistic Brain. Average Cost of Hard Drive Storage,
2016. http://www.statisticbrain.com/average-cost-of-
hard-drive-storage/.

[10] Tutorialspoint. SQL - RDBMS Concepts, 2016.

[11] M. N. Vora. Hadoop-HBase for large-scale data. In
Computer Science and Network Technology
(ICCSNT), 2011 International Conference on,
volume 1, pages 601–605, Dec 2011.

[12] Wikipedia. Acid, 2016. [Online; accessed
15-November-2016].

[13] Wikipedia. Database normalization — Wikipedia, The
Free Encyclopedia, 2016. [Online; accessed
11-November-2016].

