
Modeling Facial Expressions in 3D Avatars
from 2D Images

Emma Sax
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

saxxx027@morris.umn.edu

ABSTRACT
Realistic computer graphics have become increasingly im-
portant with the rise of video games, virtual worlds, and
animated television. Humans and their facial expressions
have traditionally been tricky objects to accurately model.
We discuss a basic algorithm and an improved variant which
both address this challenge in real time. The benefit of the
algorithms’ real-time performance is that users can be pro-
vided with accurate 3D visual renderings of human faces
based on 2D video frames, as the video is being recorded.
We show the results of the algorithms discussed, and de-
scribe the benefits and drawbacks of the various algorithms
and their animations.

Keywords
facial expression tracking, facial animation, blendshape mod-
els, regression models

1. INTRODUCTION
Facial expressions convey the emotional state of an in-

dividual, such as whether a person is upset, happy, impa-
tient, or in pain. Because humans use facial expressions so
frequently and most humans are naturally adept at com-
prehending these subtle signals, it is beneficial for users of
graphics programs if accurate facial expressions are modeled
and rendered. The widespread use of cameras on smart-
phones, laptops, and tablets has increased the demand for
performant facial modeling for consumer-level applications.
An example would be a video gamer who is using a char-
acter, or avatar, that tracks the gamer’s facial expressions
in real time. It is useful for the gamer if their avatar is re-
flecting accurate, real-time facial expressions. Therefore, it
is necessary to have algorithms available that are capable of
creating these renderings quickly and accurately.

Modeling a facial expression refers to designing the shape
of the face, head, and facial expression. Animating, on the
other hand, in when the facial models are overlayed with an-
imations and multiple models are strung together to create

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2016 Morris, MN.

Figure 1: An example of using 2D photographs of
users to generate both graphic representations and
avatars with similar facial expressions. The lines
overlayed on the 2D photographs represent impor-
tant physical features along the user’s face that are
used to generate facial models. [4]

a moving picture. Both modeling and animating are nec-
essary steps when developing a fully rendered avatar of a
facial expression. For the purposes of this discussion, only
the modeling step will be described. When algorithms model
facial expressions, a 2D video frame of a user must be cap-
tured and the algorithms must track specific landmarks on
the user’s face (e.g. tip of the nose, corners of the eyes, etc.).
Then, the algorithm can render any number of 3D avatars
with the same facial expression, as shown in Figure 1. This
whole process should occur in real time in order to provide
users of the system with immediate results.

The real-time algorithm for accurately modeling the ex-
pressions seen in Figure 1 is the 3D Shape Regression Track-
ing solution outlined in Cao et al. [4]. After describing this
algorithm in Section 3, we show an improved adaptation:
Displaced Dynamic Expression (DDE) Regression Tracking
in Section 4, as described in Cao et al. [3]. In Section 5, we
end with some comparisons and conclusions.

2. BACKGROUND
Ekman’s Facial Action Coding System (FACS) is a coding

system designed to track human facial muscles and expres-
sions and place the results in a database. It categorizes hu-
man facial movements by their appearance on the face. Us-

Deformation transfer of [Sumner and Popovic 2004]

Expression template model

Our expression transfer operator

0 3mm 0 1mm 0 1.5mm 0 0.5mm

b!0 b!i

b0

T !i

T !i b0

Figure 13: Expression transfer froma templatemodel (top) to the
user-specific model (middle). Our approach gives comparable re-
sultsto themethodof [Sumner andPopovic 2004] (bottom), but can
express the transfer operation asa linear transformation.

References

AMBERG, B., BLAKE, A., AND VETTER, T. 2009. On composi-
tional imagealignment, with an application to activeappearance
models. InCVPR, 1714–1721.

BALTRUŠAITIS, T., ROBINSON, P., AND MORENCY, L.-P. 2012.
3d constrained local model for rigid and non-rigid facial track-
ing. InCVPR, 2610–2617.

BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO,
J., DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C.,
AND DER VORST, H. V. 1994. Templates for the Solution of
Linear Systems: Building Blocks for IterativeMethods, 2ndEdi-
tion. SIAM.

BEELER, T., HAHN, F., BRADLEY, D., BICKEL, B., BEARDS-
LEY, P., GOTSMAN, C., SUMNER, R. W., AND GROSS, M.
2011. High-quality passive facial performancecaptureusing an-
chor frames. ACM Trans. Graph. 30, 75:1–75:10.

BICKEL, B., LANG, M., BOTSCH, M., OTADUY, M. A., AND
GROSS, M. 2008. Pose-space animation and transfer of facial
details. InSCA, 57–66.

BLANZ, V., AND VETTER, T. 1999. A morphablemodel for the
synthesisof 3d faces. InProc. SIGGRAPH, 187–194.

BOTSCH, M., SUMNER, R., PAULY, M., AND GROSS, M. 2006.
Deformation Transfer for Detail-Preserving SurfaceEditing. In
VMV, 357–364.

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LEVY,
B. 2010. PolygonMesh Processing. AK Peters.

BRADLEY, D., HEIDRICH, W., POPA, T., AND SHEFFER, A.
2010. High resolution passive facial performancecapture. ACM
Trans. Graph. 29, 41:1–41:10.

CHAI, J., XIAO, J., AND HODGINS, J. 2003. Vision-based control
of 3d facial animation. InProc. SCA, 193–206.

DENG, Z., CHIANG, P.-Y., FOX, P., AND NEUMANN, U. 2006.
Animating blendshape faces by cross-mapping motion capture
data. In I3D, 43–48.

FACESHIFT, 2013. ht t p: / / www. f aceshi f t . com.
FU, W. J. 1998. Penalized Regressions: The Bridge versus the
Lasso. J. Comp. Graph. Stat. 7, 397–416.

FURUKAWA, Y., AND PONCE, J. 2009. Dense 3d motion capture
for human faces. InCVPR, 1674–1681.

HUANG, H., CHAI, J., TONG, X., AND WU, H. 2011. Leveraging
motion capture and 3d scanning for high-fidelity facial perfor-
manceacquisition. ACM Trans. Graph. 30, 74:1–74:10.

LEVY, B., AND ZHANG, R. H. 2010. Spectral geometry process-
ing. InACM SIGGRAPH CourseNotes.

L I , H., WEISE, T., AND PAULY, M. 2010. Example-based facial
rigging. ACM Trans. Graph. 29, 32:1–32:6.

L IN, I .-C., AND OUHYOUNG, M. 2005. Mirror mocap: Automatic
and efficient capture of dense 3d facial motion parameters from
video. TheVisual Computer 21, 355–372.

MA, W.-C., JONES, A., CHIANG, J.-Y., HAWKINS, T., FRED-
ERIKSEN, S., PEERS, P., VUKOVIC, M., OUHYOUNG, M.,
AND DEBEVEC, P. 2008. Facial performance synthesis using
deformation-drivenpolynomial displacement maps. ACM Trans.
Graph. 27, 121:1–121:10.

MADSEN, K., NIELSEN, H. B., AND TINGLEFF, O., 2004. Meth-
ods for non-linear least squaresproblems (2nd ed.).

PIGHIN, F., AND LEWIS, J. P. 2006. Performance-driven facial
animation. InACM SIGGRAPH CourseNotes.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants of
the ICPalgorithm. In 3DIM, 145–152.

SARAGIH, J. M., LUCEY, S., AND COHN, J. F. 2011. Real-time
avatar animation from asingle image. In FG, 213–220.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for trianglemeshes. ACM Trans. Graph. 23, 399–405.

VALGAERTS, L., WU, C., BRUHN, A., SEIDEL, H.-P., AND
THEOBALT, C. 2012. Lightweight binocular facial performance
capture under uncontrolled lighting. ACM Trans. Graph. 31,
187:1–187:11.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascadeof simple features. InCVPR, 511–518.

WEISE, T., L I , H., GOOL, L. V., AND PAULY, M. 2009. Face/off:
Live facial puppetry. InSCA, 7–16.

WEISE, T., BOUAZIZ, S., L I , H., AND PAULY, M. 2011. Real-
time performance-based facial animation. ACM Trans. Graph.
30, 77:1–77:10.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: high resolution capture for modeling
and animation. ACM Trans. Graph. 23, 548–558.

Online Modeling For Realtime Facial Animation • 40:9

ACM Transactions on Graphics, Vol. 32, No. 4, Article 40, Publication Date: July 2013

Figure 2: Examples of basic linear blendshape mod-
els. These blendshapes have been morphed to rep-
resent four common facial expressions (from left to
right): a yawn, a smirk, a kiss, and a basic wink. [2]

ing FACS, any anatomically possible facial expression can be
coded. Action Units (AUs) are contractions or relaxations
of one or more facial muscles. Facial expressions are catego-
rized by which AUs are used to create each individual facial
expression. Therefore, facial expressions are represented by
which facial muscles are contracted and relaxed [10].

The two algorithms described here use linear blendshape
models to help generate 3D graphics. A blendshape model
generates a facial pose as a linear combination of a number
of blendshapes. A blendshape is is a visual approximation
of a facial expression in which a single collection of points,
called a mesh, are deformed to a series of fixed vertex posi-
tions. These vertex positions can represent a detailed facial
expression, as shown in Figure 2. The base shape of the
blendshape model is an expressionless face where all AUs
are relaxed [7].

FaceWarehouse is a public, online database of 3D facial
expression models and blendshapes. It is composed of fa-
cial shapes that were generated from 150 individuals from
a range of ages and ethnicities. FaceWarehouse originally
used a Kinect system to capture the geometry and texture
information from each subject. It then tracked features on
the subjects’ faces using FACS. Lastly, using these tracked
features, generic blendshape models were calculated for each
generic facial expression [5].

Both of the algorithms we will describe use regressors. A
regressor is an algorithm that is specifically trained to ana-
lyze the relationships between input data and output data
that were computed in previous runs of the algorithm. These
relationships allow the regressor to predict what the next
output should be. Because regressors rely on previous data,
regressors must be trained in advance. For the regressors
we will describe here, the regressor is trained to take single
video frames as input, look at previous runs of the same
regressor in which the inputs are similar, and use those pre-
viously generated 3D facial shape outputs to predict what
the most likely facial shape output is for each video frame.

3. 3D SHAPE REGRESSION TRACKING
The first basic solution for rendering complete facial ex-

pressions in graphics is 3D Shape Regression Tracking, as
described in Cao et al. [4]. This algorithm utilizes a setup
stage with multiple parts. First, using a standard camera,
a one-time training step captures images of a specific user,
and a set of facial landmarks are placed on the 2D images,
as described Section 3.1. Second, a single blendshape is gen-
erated for each captured image. This creates a user-specific
blendshape model. Third, the regressor is trained with the
captured images as input data and the corresponding blend-

shapes as output data. After the setup is completed, the
regressor is able to take 2D images from video frames as in-
put and accurately output a 3D facial shape. The regressor
is trained in advance in so that the regressor is able to use
both the previous outputs of the regressor and the trained
data as a prediction model.

Lastly, animations are overlayed on the regressor’s results
to add coherence in the overall 3D outcome. The processes
for real-time tracking and adding animations are described
in Weise et al. [9]. The final results of the entire algorithm
can be seen in the right and middle columns of Figure 1.

3.1 Gathering Data
The 3D Shape Regression Tracking solution consists of

a one-time data gathering step that must be completed for
each individual user. In this step, 60 images are captured. In
each image, the user shows pre-defined face positions and ex-
pressions. All of the images are categorized into two groups.
The first group contains different head poses, but all with a
neutral facial expression. The poses are expressed in terms
of head angles, such as turning the head side to side, for-
ward and backward, up and down, and tilting right and left.
The second category consists of different facial expressions,
which include mouth stretch, smile, brow raise, and wink
left eye.

After capturing images, a set of facial landmarks are auto-
matically located using a 2D facial feature alignment tech-
nique used in Cao et al.’s earlier work [6]. A facial land-
mark is a point that is placed on a facial feature of a user
and is used to track that feature as the user moves. This
technique automatically finds 75 landmark positions in each
image captured. These 75 positions are broken up into 60 in-
ternal landmarks and 15 contour landmarks. Internal land-
marks are places on the user’s face that describe features
such as the corners of the user’s lips, the placement of the
eyebrows, etc. Contour landmarks are positions that de-
scribe the shape of the user’s face and head. Although the
facial feature alignment technique automatically places the
landmarks, all of them can be overwritten manually by the
user if they are incorrect. The positions located on the im-
age will each eventually correspond to a landmark on the
3D facial shape.

3.2 User-Specific Blendshape Generation
Now that all of the initial data has been gathered, the

next step is to generate a blendshape for each input image.
A single FaceWarehouse blendshape example will serve as a
generic blendshape to work with, and 46 FACS AUs are used
on the blendshape to help develop specific facial expressions.

The generic model the solution uses has two attributes:
identity of the individual and expression. Identity is shown
within blendshapes by making slight adjustments to specific
points to account for different head and facial feature shapes.
This is necessary because each user will have a uniquely
different face shape. Therefore, the algorithm must compute
the user’s identity for each new user.

Expressions are made by contracting and stretching var-
ious points on the mesh that correspond to facial muscles,
as shown in the leftmost blendshape in Figure 2, where the
points in the mesh that correspond to the chin are stretched
downward, making it look like the face is yawning.

In order to compute accurate blendshapes for each input
image, a transformation is performed to allow the regressor

to take head turns, rotations, and translations into account.
This is done by finding a transformation that minimizes the
amount of error between the projections of the 3D landmark
vertices on the mesh and the 2D labeled landmark positions.
After the identity, expression, and transformation has been
found, then a set of 60 expression blendshapes (one for each
input image) for that specific user can be computed.

3.3 Selecting Specific Training Data
Now that all input images have expression blendshapes, a

set of data can be selected for training the regressor. Cao et
al. [4] describes a few steps required before selecting training
data. First, for each image, the corresponding 3D facial
shape must be found and assembled to be used as potential
training data for the regressor.

The second step is an augmentation step in which the
set of captured images and their 3D facial shapes is in-
creased to achieve better generalization of the regressor’s
facial shapes. For each input image, the corresponding fa-
cial shape is translated and transformed via a transforma-
tion matrix to cover new head angles and rotations. The
transformation matrix used is recorded, and this provides
enough data to retrieve the appearance data of the original
facial shape. This process increases the amount of original
data and the range of 3D facial shapes.

In the third step, the algorithm selects the training set for
the regressor. Because the regressor will eventually be used
on video frames (which occur in sequential order), it is likely
that the output for a frame is similar to the output of its
previous frame. However, it is also useful to take randomness
into account. For each given image, a set of most similar
shapes are collected from the original shapes. Then, a set of
randomly chosen shapes from the augmentation step above
are chosen. The union of these two sets make up the initial
training data.

3.4 Training the Regressor
Now that the initial training set of data has been selected,

the regressor can be trained to genereate 3D facial land-
marks from 2D images. During runtime, the regressor uti-
lizes two parts. Therefore, each part must be trained indi-
vidually. This process can be seen in Algorithm 1.

For the first part of the regressor, a set of index-pair fea-
tures must be generated. In general, an index-pair feature
relates the position of a 2D landmark with the position of the
3D landmark on the blendshape mesh. These features are
computed from the appearance vector of a 3D facial shape
(Sc

i). Appearance vectors are composed of the intensities of
P randomly selected 3D facial points p. Each p is repre-
sented as the sum of a landmark position Sc

i and an offset
dp.The intensity value of p is gathered from p’s correspond-
ing 2D positions in the original image i. When all of the
intensity values of the P points are assembled, they form
the appearance vector Vi. This procedure of calculating the
appearance vector for Sc

i is denoted as App(Ii,M
a
i , S

c
i , {dp})

where Ma
i refers to the transformation matrix used earlier

and Ii is the original 2D image. For each appearance vec-
tor, P 2 index-pair features are computed by calculating the
differences between each pair of elements in Vi.

For the second part of the regressor, effective index-pair
features must be selected. To choose these features, the
algorithm calculates the difference between the ground truth
shape Si and the current shape Sc

i . Then, the difference δSi

Algorithm 1 Training the Regressor

Input: N Training data (Ii, M
a
i , Si, S

c
i)

Output: Two-part regressor

1: /* part one*/
2: for t = 1 to T do
3: {dtp} ← randomly generate P offsets
4: for i = 1 to N do
5: Vi ← App(Ii,M

a
i , S

c
i , {dp})

6: Compute the P 2 feature values for Vi

7:
8: /* part two*/
9: for k = 1 to K do

10: for f = 1 to F do
11: Yf ← randomly generate a direction
12: for i = 1 to N do
13: δSi ← Si − Sc

i

14: ci ← δSi × Yf

15: Find the index-pair with the highest
. correlation with {ci} and randomly
. choose a threshold value

16: for i = 1 to N do
17: Calculate new features in Vi using the F

. index-pairs
18: Compare the features to the thresholds

. to determine which bin the data

. belongs to

19: for each of the 2F bins do
20: Compute δSbi

21: for each training data l in the bin do
22: Sc

l ← Sc
l + δSbi

is multiplied by a randomly selected direction to produce a
scalar ci. Finally, the index-pair with the highest correlation
with the set of scalars is chosen. The technique of randomly
multiplying by a direction has been proven to be a powerful
tool for dimensionality reduction, as shown in Bingham and
Mannila [1]. This process is repeated F times to yield F
index-pair features. All F features together make a primitive
regressor structure called a fern.

In a fern, each of the F features is assigned a random
threshold value. The thresholds divide the space of all index-
pair features into 2F bins, or categories. Next, for each
index-pair, the features in Vi are calculated and the features
are compared to the thresholds to decide which bin to place
the index-pair in (or how to categorize each index-pair). Af-
ter classifying all of the training data into a bin group, com-
pute the regression output δSb for each bin. Lastly, for all
training data l in each bin, update the current shape with
the regression output: Sc

l = Sc
i + δSb.

The regressor training process is iterated T times, with
K ferns to progressively refine the regression output. From
experiments, it has been found that results are optimal when
T = 10, K = 300, P = 400, and F = 5. Increasing the
number of iterations brings more accuracy, but takes longer
and adds computational costs.

3.5 Runtime Regression
With the 3D shape regressor fully trained, the 3D facial

shape S for the image I in the current video frame can be
obtained. The algorithm takes the previous frame’s output
facial shape S′ and the current input video frame I as input.

Algorithm 2 Runtime Regression

Input: Previous facial shape S′, current image I
Output: Current frame’s facial shape S

1: Get the shape Sr in {So
i } most similar to S′

2: Find Ma that best aligns S′ with Sr

3: S′∗ ←MaS′

4: {Sl} ← Choose L shapes most similar to S′∗

5: for l = 1 to L do
6: for t = 1 to T do
7: V ← App(I, (Ma)−1, Sl, {dtp})
8: for k = 1 to K do
9: Get the F index-pairs recorded

. during training

10: Calculate the F feature values
11: Use the feature values to locate its bin b

. in the fern
12: Get δSb in b
13: Sl ← Sl + δSb

14: S∗ ← Compute the median shape of {Sl, 1 ≤ l ≤ L}
15: S ← (Ma)−1S∗

The output is a prediction of the current frame’s 3D facial
shape S. This process is outlined in Algorithm 2.

First, we find a shape Sr in the original shape set {So
i }

that is most similar to S′. Then, we find a transformation
matrix Ma that aligns S′ and Sr and use that matrix to
make S′∗. Then, the L most similar shapes to the trans-
formed shape S′∗ are found from all 3D shapes in the train-
ing data. Each chosen shape Sl is used as an initial shape
estimate and is passed through the regressor.

In the first part of regression, the appearance vector V is
calculated using the image, current shape, inverse transfor-
mation matrix, and the offsets. In the second part, the F
index-pairs recorded during training are gathered and the
appearance feature values for V are calculated. The fea-
ture values are compared with the recorded thresholds to
locate the correct bin b, which contains δSb. Finally, we can
update the current shape: Sl = Sl + δSb. Then, after ob-
taining all regression results for all {Sl}, the median shape
has its transformation matrix inverted and becomes S for
the current frame.

There are two elements of this regression model that make
it more successful than other previous regressors. First, be-
cause the regression uses a set of similar shapes {Sl} instead
of a single shape to generate S, this allows the solution to
better deal with uncertainty and to avoid error accumula-
tion. Second, because the regressor chooses similar shapes to
the transformed shape S′∗ instead of choosing shapes similar
to the single S′, the algorithm can account for different head
orientations and directions. The benefits of these added ele-
ments can be seen clearly in Figure 3 in the middle column,
where the bottom two rows’ estimates of the user’s right
cheek are off, and in the right column, where the bottom
two rows’ estimates of the user’s left cheek are off.

3.6 Results
In the first part of the setup stage (data gathering), the

user performs a sequence of 60 facial poses/expressions. This
takes less than 10 minutes, and is completed once for each
individual user. It takes approximately 25 minutes for a
first-time user to adjust 2D landmark positions for facial fea-

Figure 3: Comparisons of the Cao et al. [4] results
(top row) compared to using the previous frame’s
shape as the initial shape (middle row) and omitting
the transformation step (bottom row). [4]

tures. The remaining data tasks, including the blendshape
generation, camera calibration, training data preparation,
and training the 3D shape regressor, are all completed in less
than 10 minutes. In total, the setup and preprocessing takes
less than 45 minutes per user [4]. However, for this type of
application, a 45 minute setup step is longer than desirable.

This algorithm was implemented on a PC with an In-
tel Core i7 (3.5GHz) CPU with an ordinary web camera,
recording 640× 480 images at 30 fps. At runtime, the com-
putational time for rendering a 3D avatar takes less than 5
milliseconds per frame. Face tracking takes about 8 millisec-
onds per frame, making the overall runtime performance less
than 15 milliseconds. This makes this solution promising for
consumer-level applications since it renders in real time.

However, there are also limitations to this approach. It
relies on facial appearance information in the video, and
therefore can only deal with partial occlusions. When there
are larger occlusions present, the algorithm may output in-
correct shapes. The approach also struggles when trying to
handle dramatic changes in lighting. Although the approach
works well when the background is changing slightly, it fails
to output accurate shapes when the lighting environment
differs substantially from the environment during setup, as
can be seen in Figure 5.

4. DDE REGRESSION TRACKING
3D Shape Regression Tracking was able to produce 3D

renderings from 2D video frames in real time, but with some
inaccuracies. Therefore, some improvements were made upon
the 3D Shape Regression Tracking solution. This refined
variant is known as the Displaced Dynamic Expression (DDE)
Regression Tracking. It is fully described in Cao et al. [3].
Unlike the previous algorithm, this solution does not require
calibration for each individual user, and instead uses a DDE
model to represent the facial shapes for any given user. In

this algorithm, public FaceWarehouse images are used as
training data for a generic regressor. Through the training
and use of the generic regressor, the regressor’s results can
be applied to any user to immediately infer accurate 2D fa-
cial landmarks and 3D facial shapes from 2D video frames.
The overall runtime is almost identical to the runtime seen
in Section 3.5. After the use of the regressor for each video
frame, the results are put through a post-processing and
Dynamic Expression Model (DEM) adaptation step, which
further refines the regressor’s output. More detailed expla-
nations of the post-processing and DEM adaptation steps
can be found in Cao et al. [3].

4.1 DDE Model
The Displaced Dynamic Expression (DDE) model is de-

signed to represent both the 3D shape of the user’s facial
expressions and the 2D facial landmarks. Regressor train-
ing data, the data stored, and the runtime data will all be
in the form of a DDE. Similarly to Weise et al. [9] and
Cao et al. [4], the 3D facial shape is represented by a lin-
ear combination of expression blendshapes, plus a random
rotation and translation. Like the previous algorithm, the
blendshape model is based on 46 FACS AUs. The expres-
sion blendshapes of users are calculated in a similar way to
the first algorithm.

A 2D facial landmark is generated by adding a 2D dis-
placement and the projection of the landmark’s correspond-
ing vertex on the 3D facial mesh. Because the user identity is
not pre-calibrated, the 2D displacement of facial landmarks
is what allows for changes in user identity. Therefore, the 2D
facial shapes are represented by the set of all 2D landmarks.

4.2 Preparing and Constructing Training Data
The training algorithm takes a set of facial images from

FaceWarehouse as input. Because of this, the input data
represents a variety of users. For each input image I, 73
2D landmarks are manually labeled to produce the 2D facial
shape. All images of the same user are identified, since there
could be a large number of unique users. By identifying
each individual user’s images, all shape vectors are optimized
together with the same identity coefficients.

Similarly to Cao et al. [4], this algorithm must gather the
3D facial shape from all of the 2D input images. However,
this algorithm must also assemble the 2D landmark displace-
ments. Both of these pieces together make training data in
the form of a DDE. Both the user’s identity and shape vec-
tor can be solved by alternately optimizing each parameter
while fixing the others in iteration.

This algorithm uses a generic Cascaded Pose Regression
(CPR) training regressor described in Cao et al. [6]. This
method requires creating guess-truth pairs for each image
in order to relate the differences in parameters to image
features. A guess-truth pair contains both a ground truth
shape vector and a guessed shape vector. Both vectors are
optimized at the same time in order to avoid introducing
a change in non-regressed input parameters (i.e. camera
calibration and user identity).

By using this method of construction, these training pairs
simulate cases where input parameters may be inaccurate.
When this occurs, the regressor is expected to produce large
displacements to get correct landmarks. This is demon-
strated in Figure 4 where the user identity from the middle
image is applied to the lefthand image, resulting in inaccu-

frame is identified to contain representative facial motions. The
optimized projection matrix and identity are sent back to the CPR
regressor in a feedback loop. Finally, the post-processed output, in-
cluding the rotation, translation and expression coefficients, can be
directly transferred to a digital avatar to drive its facial animation.

As indicated by Eq. (6), the regressor only computes the facial mo-
tion, i.e., the expression, rigid transformation and displacements.
The frame-invariant parameters Q and u are a part of the regressor
input, as opposed to the output.

4 DDE Regression

In the following we first explain how to learn the DDE regressor
indicated in Eq. (6) from a set of training images, and how to use
it for runtime tracking. We then describe the postprocessing of the
regression output.

4.1 Training

Training data preparation. Our training algorithm takes a set of
facial images from public datasets as input. For each input im-
age I , 73 2D landmarks are manually labeled to produce the 2D
facial shape S = {sk}. From the landmarks, we fit all the un-
knowns (Q,u;P) by minimizing the total displacements Eim =P

k kdkk2, under the constraint DDE(Q,u;P) = S. Images
of the same person are manually identified and the corresponding
shape vectors are optimized jointly with the same identity coeffi-
cients u.

The above optimization process is similar to the 3D facial shape re-
covery and camera calibration steps described in [Cao et al. 2013a],
with the exception that we need to recover the 2D landmark dis-
placements in addition to the 3D shape. Given a value of the focal
length f (and the corresponding Q), we use the coordinate-descent
method to solve the identity u and the shape vector P, by alter-
nately optimizing each parameter while fixing the others in each
iteration. Different values of f result in different fitting errors of
Eim. We thus use the binary search scheme to find the optimal
focal length f that leads to the minimal Eim.

Training pair construction. The CPR training method requires
creating guess-truth pairs for each image Ii, in order to relate
parameter differences to image features. We use the notation
(Ii,Qij ,uij ;Pij ,P

g
ij) to denote such pairs, where Pij is the

guessed shape vector, Pg
ij is the ground truth shape vector and j

represents the indices of the guess-truth pairs for the image Ii.

For each input image Ii and the corresponding fitted ground truth
(Qg

i ,ug
i ;Pg

i), where Pg
i = (eg

i ,Rg
i , tg

i ,Dg
i), we generate several

classes of training pairs by perturbing individual parameters. In
each training pair, we also set the guessed displacement vector with
Dr

ij , taken from a random image.

• Random rotation. Add a random rotation �Rij , yielding
Pij = (eg

i ,Rg
i + �Rij , t

g
i ,Dr

ij), Pg
ij = Pg

i ;

• Random translation. Add a random translation �tij , yield-
ing Pij = (eg

i ,Rg
i , tg

i + �tij ,D
r
ij), Pg

ij = Pg
i ;

• Random expression. Choose a random image Ii0 , assign its
expression coefficients eij = eg

i0 to the current image, yield-
ing Pij = (eij ,R

g
i , tg

i ,Dr
ij), Pg

ij = Pg
i ;

• Random identity. Choose a random image Ii0 , assign its fit-
ted identity coefficients to the current training pair, yielding
uij = ug

i0 , Pij = (eg
i ,Rg

i , tg
i ,Dr

ij). Since the identity co-
efficients are input parameters and cannot be changed during

(a) (b) (c)

Figure 3: Random identity example. For image (a), we use the
identity from (b) but keep the original displacements, resulting in
inaccurate 2D landmark positions. Therefore we need to recompute
the displacements to get the correct landmarks (c).

regression, the ground truth shape vector must be updated ac-
cordingly to Pg

ij = (eg
i ,Rg

i , tg
i ,Dg

ij), where the landmark
displacements Dg

ij are recomputed to match the ground truth
landmarks under the changed identity;

• Random camera. Add a random offset to the focal length
in the camera matrix Qg

i , yielding Qij = Qg
i + �Q,

Pij = (eg
i ,Rg

i , tg
i ,Dr

ij). Similar to the identity case, the
ground truth shape vector must be updated accordingly to
Pg

ij = (eg
i ,Rg

i , tg
i ,Dg

ij), where the landmark displacements
Dg

ij are recomputed to match the ground truth landmarks un-
der the changed camera.

Our identity and camera perturbation is a significant divergence
from conventional CPR methods, as the ground truth shape vec-
tor is perturbed alongside the guessed shape vector to avoid intro-
ducing a change in non-regressed input parameters (i.e., Q and u).
Such training pairs simulate cases where these input parameters are
initially inaccurate, in which the regressor is expected to produce
large displacements to get the correct landmark positions. Fig. 3 il-
lustrates such a training pair. In Fig. 3(a), the identity in the ground
truth shape vector is replaced with that of a different person (shown
in Fig. 3(b)), which introduces significant changes in the landmark
positions. In Fig. 3(c), the displacements Dg

ij are recomputed to
move the landmarks back to the correct locations. The CPR regres-
sor is trained to be able to reproduce such displacements at runtime.

We generate 5 training pairs for each class except the random ex-
pression class, for which we generate 15 pairs to better capture the
rich variety of expressions. Another detail is that for each train-
ing pair, the landmark vertex indices vk in Eq. (3) remain the same
throughout the training process. The reason is that the training pair
models facial shape changes within a single frame, within which
contour vertex indices are not updated. The vk values used in the
training are computed according to the guessed shape vector Pij .

Training. Once the training pairs are constructed, we learn a re-
gression function from Pij to Pg

ij based on intensity information
in the image Ii. We follow the two-level boosted regression ap-
proach proposed by Cao et al. [2012], and use 15 stages for the first
level and 300 stages for the second level. The approach combines a
set of weak regressors in an additive manner. Each weak regressor
computes a shape increment from image features and updates the
current shape vector. At a high level, the training process exploits
the correlation between the error Pg

ij � Pij and appearance vec-
tors extracted from the image Ii, which minimizes the following
energy:

Etr =
X

i,j

��Pg
ij �Pij

��2
. (7)

We only make a minor change to the appearance vector extraction

43:4 • C. Cao et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 43, Publication Date: July 2014

Figure 4: Random identity example where the user
identity from the center image is applied to the
image on the far left while keeping original dis-
placements, resulting in inaccurate 2D landmark
positions. Therefore, displacements must be re-
computed to get correct landmark positions (far
right). [3]

rate 2D landmarks. Therefore, because the ground truth
shape vector and the guessed shape vector are optimized at
the same time, the training pairs can account for the neces-
sary displacements needed to render accurate 2D landmarks,
shown in the rightmost image.

4.3 Training the Regressor
After constructing all of the training pairs, then a regres-

sion function from the guessed shape vector to the ground
truth shape vector can be learned. The regression function is
based on information from the input image. This algorithm
follows the same two-part regression approach from Cao et
al. [4], which is also seen in Algorithm 1. There are two dif-
ferences between the regression function in Algorithm 1 and
this function. The first is that this solution uses T = 15 to
increase accuracy. The second is that this algorithm’s shape
representation is a combination of 3D shapes and 2D dis-
placements. Therefore, this solution must account for this
difference.

Instead of representing the 3D facial points p as a sum of
a landmark position and an image offset, as in the previous
algorithm in Section 3.4, this solution will represent p as a
linear combination of two 2D landmarks. The position of a
p is defined as the center coordinates in a triangle formed
by 2D landmarks. For each of the 400 p, a triangle in ref-
erence to the 2D facial shape is found where the center is
closest to the point. Then, the point’s center coordinates
are computed. During appearance vector extraction, p is
located according to the triangle positions and the center
coordinates. The reference 2D facial shape is computed by
averaging the 2D shapes of all training images.

4.4 Results
During setup, the regressor training takes about 6 hours.

However, this setup step must only occur once, since the al-
gorithm is designed to generate 3D facial landmarks without
the user identity previously being set. This algorithm was
implemented on a PC with an Intel Core i5 (3.0GHz) CPU,
with an ordinary web camera producing 640 × 480 video
frames at a maximum of 30 fps. During runtime, for each
video frame, this approach takes approximately 12 millisec-
onds to regress the shape vector and about 8 milliseconds
to execute the post-processing and DEM adaptation steps
mentioned above. Therefore, it takes approximately 20 mil-
liseconds to render a 3D avatar for each video frame [3].

Figure 10: Our approach (bottom row) is more robust than the
user-specific algorithm [Cao et al. 2013a] (top row) under signifi-
cant lighting changes.

the blendshape model we used for 3D facial shapes. This fact, from
the other side, supports our use of 2D displacements in the DDE
model.

We compare our approach with two state-of-the-art techniques, the
user-specific regression algorithm [Cao et al. 2013a] and the 3D
CLM approach described in [Saragih et al. 2011a]. As in the pre-
vious section, we run all methods on a manually labeled video se-
quence and compare the computed 2D landmarks with the ground
truth. For [Cao et al. 2013a], a user-specific regressor is trained
using 60 images taken of the same subject immediately before the
test video is recorded. The CLM model is trained using the same
training images as in our approach. Our training data is substan-
tially larger than the data used in the authors’ implementation and
the resulting model generates more accurate results.

Fig. 9 compares the tracking results of the three methods. As
shown, the tracking accuracy of our approach is comparable to that
of the user-specific method, while the 3D CLM approach produces
inaccurate results for large rotations. Such inaccuracy is especially
pronounced around the face contour, where local features are hard
to distinguish. Note that the landmarks corresponding to the face
contour significantly affect the fitting results of the identity and ex-
pressions. It is thus important to accurately locate their positions.

Fig. 10 compares our method with [Cao et al. 2013a] in handling
lighting changes. If the current lighting is significantly different
from that in the training images, the user-specific method may fail
to get good tracking results (Fig. 10(a)). Based on a generic re-
gressor trained from a large number of images taken under different
lighting environments, our approach demonstrates better robustness
under lighting changes (Fig. 10(b)).

Following [Cao et al. 2013a], we use the depth acquired from a
Kinect camera to validate the accuracy of our approach. Specifi-
cally, we take an RGBD video from the Kinect camera and apply
our approach to the color channels without using any depth infor-
mation. We then reconstruct the 3D facial mesh F for each frame
and compare the reconstructed depth values with the ground truth
at a few representative vertices. As shown in Fig. 11, although the
initial inaccurate identity and camera matrix created a noticeable
difference between our reconstructed mesh and the acquired depth,
the difference decreases to an insignificant level once the frame-
invariant parameters converge through our DEM adaptation.

8 Conclusion

We have introduced a calibration-free approach to real-time facial
tracking and animation with a single video camera. It works by

490

540

590

640

690

740

790

0 50 100 150 200 250 300 350 400 450 500

Our Regressed Mesh

D
ep

th
 (

m
m
)

Frame

Groundtruth from Kinect

Figure 11: Comparison of the depth of our 3D regression with the
ground truth depth from Kinect. Here we use a vertex at the nose
tip. Other vertices have similar curves.

alternately performing a regression step to infer accurate 2D facial
landmarks as well as the 3D facial shape from 2D video frames,
and an adaptation step to correct the estimated camera matrix and
the user identity (i.e., the expression blendshapes) for the current
user. Our approach can achieve the same level of robustness, accu-
racy and efficiency as demonstrated in state-of-the-art tracking al-
gorithms. We also contributed the DDE model, a new facial shape
representation with the the combined advantages of 3D DEM and
2D landmarks. We consider our approach to be an attractive solu-
tion for wide deployment in consumer-level applications.

As a video based technique, our approach will fail to track the
face if many of the facial features cannot be observed in the video
frames. As shown in Fig. 12, our approach can handle some partial
occlusions, but may fail if the face is largely occluded. Moreover,
prolonged landmark occlusions during the DEM adaptation period
may negatively impact the overall accuracy.

Figure 12: Our approach can handle some partial occlusions, but
may fail if the face is largely occluded.

The 3D facial mesh reconstructed by our approach is optimized to
match a set of facial features and does not contain high-frequency
geometric details. If such details are required, one could extract
them by sending our tracking result to an off-line shape-from-
shading technique like [Garrido et al. 2013].

In the future, it would be interesting to see whether the DDE
model can be applied to other problems, e.g., face recognition. The
calibration-free nature of our approach can also facilitate multi-user
scenarios, which user-specific approaches cannot handle. Finally,
we plan to investigate how well our method could perform on mo-
bile devices, where we would face additional challenges such as
low image quality and a low computational budget.

Acknowledgements

We thank Xuchao Gong, Libin Hao and Siqiao Ye for making the
digital avatars used in this paper, Eirik Malme, Carina Joergensen,
Meng Zhu, Hao Wei, Shun Zhou and Yang Shen for being our per-
formers, Steve Lin for proofreading the paper and the SIGGRAPH
reviewers for their helpful comments. This work is partially sup-

Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation • 43:9

ACM Transactions on Graphics, Vol. 33, No. 4, Article 43, Publication Date: July 2014

Figure 5: The DDE Regression Tracking approach
(bottom row) in comparison to the 3D Shape Re-
gression Tracking approach (top row) under signifi-
cant lighting changes. [3]

Figure 6: The DDE Regression Tracking approach
properly handling some partial occlusions (left two
images), but failing with larger occlusions (right two
images). [3]

Although the runtime for this algorithm takes longer than
the runtime for the previous algorithm, 20 milliseconds and
15 milliseconds respectively, the main benefit of this solu-
tion over the 3D Shape Regression Tracking solution is that
any user can be instantly tracked; no data gathering step is
necessary. The users can also be switched during the video,
with little noticeable lag in the output results.

Experiments have also shown that this solution is more ro-
bust than the previously described solution. This newer so-
lution can handle more dramatic lighting changes, as shown
in Figure 5 where the top row is results from the 3D Shape
Regression Tracking and the bottom row is from the DDE
Regression Tracking. It can be seen that the two rightmost
images on the top row are incorrect in the estimates of 3D
facial landmarks, while the bottom row is much more accu-
rate. This solution also does considerably better than the
previous algorithm when handling head rotations and partial
occlusions. However, the solution still can show inaccurate
results when large portions of the user’s face are covered, as
shown in Figure 6, where the left two images are showing a
partially occluded user and the right two images are showing
users with large occlusions.

5. CONCLUSION
Here we have examined a primary solution for rendering

3D virtual images from 2D video frames in real time. In
the initial solution, input images of a specific user are gath-
ered, blendshapes are derived for that user, and the regressor
is trained with the user’s data and the blendshape model.
Finally, the regressor computes the 3D facial landmark po-
sitions in real time and overlays animations on top of the
regressor’s results. In the improved solution, a DDE model
is used to represent the input images and the images’ corre-

sponding data, and the algorithm derives guess-truth pairs
to select training data. Then, the regressor is trained with
the selected data and features represented as coordinates in
a triangle formed by 2D landmarks. During runtime, the re-
gressor computes 3D facial landmarks from 2D video frames,
before the post-processing and DEM adaptation steps occur.
Lastly, animations are overlayed on top of the results.

Both of these solutions work in real time, as stated in Sec-
tion 3.6 and Section 4.4, and both solutions are successful
at rendering accurate 3D facial animations from 2D video
frames within certain conditions. It is also shown in Fig-
ure 5 that the DDE Regression Tracking works considerably
better than the 3D Shape Regression Tracking when there
are dramatic lighting changes.

Further research in this area includes a solution driven by
both visual and audio data, Liu et al. [8], and a solution that
works completely online without the use of facial markers or
training stages, Bouaziz et al. [2].

Acknowledgments
I would like to extend my gratitude to Nic McPhee, KK
Lamberty, Jacob Opdahl, Alice Barnett, Paul Friederichsen,
and my family and friends for all of their support, construc-
tive criticism, and feedback on this paper.

6. REFERENCES
[1] E. Bingham and H. Mannila. Random projection in

dimensionality reduction: Applications to image and
text data. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’01, pages 245–250,
New York, NY, USA, 2001. ACM.

[2] S. Bouaziz, Y. Wang, and M. Pauly. Online modeling
for realtime facial animation. ACM Trans. Graph.,
32(4):40:1–40:10, July 2013.

[3] C. Cao, Q. Hou, and K. Zhou. Displaced dynamic
expression regression for real-time facial tracking and
animation. ACM Trans. Graph., 33(4):43:1–43:10,
July 2014.

[4] C. Cao, Y. Weng, S. Lin, and K. Zhou. 3d shape
regression for real-time facial animation. ACM Trans.
Graph., 32(4):41:1–41:10, July 2013.

[5] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou.
Facewarehouse: A 3d facial expression database for
visual computing. IEEE Transactions on Visualization
and Computer Graphics, 20(3):413–425, Mar. 2014.

[6] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment
by explicit shape regression. Int. J. Comput. Vision,
107(2):177–190, Apr. 2014.

[7] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin,
and Z. Deng. Practice and Theory of Blendshape
Facial Models. In S. Lefebvre and M. Spagnuolo,
editors, Eurographics 2014 - State of the Art Reports.
The Eurographics Association, 2014.

[8] Y. Liu, F. Xu, J. Chai, X. Tong, L. Wang, and
Q. Huo. Video-audio driven real-time facial animation.
ACM Trans. Graph., 34(6):182:1–182:10, Oct. 2015.

[9] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime
performance-based facial animation. ACM Trans.
Graph., 30(4):77:1–77:10, July 2011.

[10] Wikipedia. Ekman’s facial action coding system —
Wikipedia, The Free Encyclopedia, 2016.

