
Modeling Facial Expressions in 3D Avatars
from 2D Images

Emma Sax

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

12 November, 2016
Morris, MN

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 1 / 27

The Big Idea

Take a 2D image of a user
Use specific facial features on the user as guidelines
Render a 3D avatar with the same facial shape and expressions
as the user

[2]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 2 / 27

Outline

Outline

1 Introduction

2 3D Shape Regression Tracking

3 Displaced Dynamic Expression (DDE) Regression Tracking

4 Comparison and Conclusions

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 3 / 27

Introduction Overview

Overview

Traditionally, animators have found it is easier to model humans and
their facial expressions when they use physical humans as models.

[1]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 4 / 27

Introduction Overview

The Basic Process

Take a single 2D video frame of a
user
Track specific landmarks on the
user’s face
Render a 3D virtual image or avatar
with the same facial shape and
expression
Entire process should occur in real
time

[3]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 5 / 27

Introduction Background

Ekman’s Facial Action Coding System (FACS)

Any facial expression can be represented by the contractions and
relaxations of specific facial muscles (also known as Action Units
or AUs)
Categorizes human facial movements by the specific AUs that are
used to create the facial expression
Any anatomically possible facial expression can therefore be
represented through AUs

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 6 / 27

Introduction Background

Linear Blendshape Models

A linear blendshape model generates
a facial pose as a linear combination
of a number of blendshapes
A blendshape is a visual
approximation of a facial expression
in which a single collection of points
(mesh) have deformed to a series of
fixed vertex positions
Each blendshape contains a blend
modifier which contains an intensity
slider that controls the amount of
contraction and relaxation of the AUs

[4]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 7 / 27

Introduction Background

FaceWarehouse

Public, online database of 3D facial expression models and
blendshapes
Composed of 150 individuals
Tracked features on each individual’s face using FACS, and
composed generic blendshape models for each generic facial
expression

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 8 / 27

Introduction Background

What is a Regressor?

A regressor is an algorithm that is specifically trained to look at input
states in order to predict the next output state. The regressor does this
by analyzing the relationships between the input data and previously
trained output data.

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 9 / 27

3D Shape Regression Tracking

Outline

1 Introduction

2 3D Shape Regression Tracking
Gathering and Assembling Data
Training the Regressor
Runtime Regression
Results

3 Displaced Dynamic Expression (DDE) Regression Tracking

4 Comparison and Conclusions

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 10 / 27

3D Shape Regression Tracking Gathering and Assembling Data

Gathering Data and Locating Facial Landmarks

60 images of the user showing pre-defined face positions are
captured and categorized into two groups:

Various different head poses with neutral facial expression
Various different facial expressions

A set of 75 facial landmarks are automatically located
60 internal landmarks and 15 contour landmarks
All landmarks can be overwritten manually

where the weight wprior is set to 1 in our experiments. This min-
imization problem can be solved using an iterative two-step ap-
proach. We first use the coefficients from the previous frame to
initialize a and solve for the transformation matrix M. This be-
comes a 3D registration problem between the regressed 3D facial
shape and the face mesh computed using a, which can be easily
solved through singular value decomposition (SVD) on the cross-
covariance matrix of the two point distributions [Besl and McKay
1992]. We then fix M and optimize a. This can be performed us-
ing an iterative gradient solver. We precompute the gradients of
Eq. (13) by the method described in [Weise et al. 2011], and use the
gradient projection algorithm based on the BFGS solver [Byrd et al.
1995] to constrain the expression coefficients to lie between 0 and
1. We iteratively perform the two-step optimization until conver-
gence. In our experiments, two iterations give satisfactory results.
Note that unlike in solving Eq. (8), we do not need to update any
vertex indices vk in each iteration because they all correspond to
internal landmarks as described in Sec. 3.

6 Experimental Results

We implemented our system on a PC with an Intel Core i7 (3.5GHz)
CPU and an ordinary web camera (recording 640 × 480 images at
30 fps). The user interaction for data preprocessing is easily man-
ageable, as the user needs only to adjust 2D landmark positions in
the setup images. Tracking results (for both the rigid transformation
and expression coefficients) can be transferred to any digital avatar
with pre-created blendshapes (see Fig. 10). The simple require-
ments of the system make it well suited for interactive applications
like computer games and virtual communication. Please see the
supplementary video for a live demonstration of our system.

In the following, we first describe the user interaction and timings
for the preprocessing stage, as well as the timings for the run-time
algorithm. Next, we evaluate the accuracy of our 3D shape regres-
sion algorithm and compare it to previous methods. Finally we
discuss limitations of our method.

User Interaction and Timings. In the setup stage, the user needs
to perform a sequence of 60 facial poses/expressions. We show
a sequence of rendered images of a standard face model with the
different expressions, and ask the user to perform the head poses
and expressions shown in each of the images. This simple cap-
turing process takes less than 10 minutes even for first-time users.
The automatic feature alignment algorithm [Cao et al. 2012] pro-
vides accurate 2D landmark positions for most facial features and
images, but some of them still need manual adjustment. For a first-
time user, this process takes about 25 minutes (for the first author of
this paper, it takes less than 15 minutes). Note that the facial land-
marks to be hand-labeled are relatively distinctive features, such
as the face contour, eye boundaries, and mouth boundary. The 15
non-distinctive landmarks shown in Fig. 3(b)(d) are automatically
computed by projecting a set of pre-defined vertices in the fitted
mesh onto the image. Our algorithm is also robust to small errors
in labeling. Other data preparation tasks (including user-specific
blendshape generation, camera calibration and training data prepa-
ration) and the shape regression training are all automatically com-
pleted in less than 10 minutes. In total, the setup and preprocessing
take less than 45 minutes for a novice user.

At run time, the shape regression is performed at 5ms per frame
(with 15 initial shapes). Face tracking from the regressed shape
takes about 8ms per frame. Overall the run-time performance of
this algorithm is high (less than 15ms), because it is determined
by the number of landmarks and initial shapes, and independently
of the resolution of video frames. This makes our algorithm very
promising for implementation on mobile devices. On the current

(a) (b) (c) (d)

Figure 7: Comparison of our 3D shape regression, 2D shape re-
gression and optical flow. With the same training data, 3D shape
regression (top row) can handle expressions and poses that are hard
to represent by interpolation of 2D shapes (middle row). For these
large head poses with expressions, optical flow results may exhibit
drift (bottom row).

PC, the system runs at over 24 fps.

Note that for the first video frame, we need to estimate the 3D facial
shape and use it to initialize the regression. This is achieved by
applying the 2D shape regressor [Cao et al. 2012] to automatically
locate the landmark positions, and then using the 3D facial shape
recovery algorithm described in Sec. 4.2. The same procedure can
be performed when tracking fails.

Evaluation and Comparison. To evaluate the accuracy of our 3D
shape regression algorithm, we compared it to ground truth ob-
tained using a Kinect RGBD camera with manually labeled 2D
landmark positions in each frame. While our algorithm processes
only the RGB information from the Kinect, the depth data and the
Kinect’s projection matrix are used to determine the actual depth
values of the labeled 2D landmarks. In this way, we can get the
ground truth 3D facial shapes for comparison to our regressed
shapes. Fig. 8 shows the depth values of a mouth corner from
both the ground truth shapes and our regressed shapes over different
frames (other landmarks have similar curves). It is shown that the
depth estimated by our algorithm is very close to the depth acquired
from the Kinect, with a difference of less than 10mm. The screen
projections of landmarks from the ground truth and our regression
also match closely, as shown in the supplementary video.

The 2D regression algorithm of [Cao et al. 2012] can be used to
compute the 2D landmark positions for each video frame and can
achieve accurate results when the face is oriented frontally (see
Fig. 7(a), second row). However, if the face is oriented away
from the front, the computed shapes may deviate significantly from
the ground truth (see Fig. 7(c)(d), second row) as the shape space
formed by the training shapes cannot represent these shapes using
only linear interpolation. By contrast, our algorithm can generate
much more accurate shapes (see Fig. 7, top row). It works in the 3D
space and is capable of removing the effects of nonlinear pose rota-
tions by aligning the current face to the shape space formed by the
training shapes. Also, by using projections of 3D facial shapes to
compute their appearance vectors in images, it can more accurately
locate pixels with the same semantic meaning. Note that increasing
the number of captured images and training data with different rota-
tions can improve the accuracy of 2D regression. This, however, re-

41:8 • C. Cao et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 41, Publication Date: July 2013

[3]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 11 / 27

3D Shape Regression Tracking Gathering and Assembling Data

Generating Blendshapes

Use a FaceWarehouse generic blendshape model to calculate a
user-specific blendshape model. For each image, three adjustments
must be made to a generic blendshape:

The user’s identity: allow the
regressor to transform the
blendshapes to have the same facial
features and shapes as the user
The user’s expression: in order to
provide blendshapes with the same
facial expression as the user
Transformation: allow the regressor to
take account for head turns, rotations,
and translations

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 12 / 27

3D Shape Regression Tracking Training the Regressor

Selecting Training Data and Training the Regressor

Select training data so that the regressor is prepared to output a 3D
facial shape from a single 2D image.

The regressor learns a regression function based on the information in
the input images. The goal of training the regressor is to teach an
effective prediction model through the geometric relationships that a
specific user’s image data contains.

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 13 / 27

3D Shape Regression Tracking Runtime Regression

Runtime Regression

At runtime, the 3D shape regressor tracks the 3D positions of facial
landmarks from a 2D video stream.

1 For each video frame, find a facial shape that is similar to the
previous frame’s facial shape

2 Transform the shape to align the previous frame’s shape with the
3D shape space

3 Find a set of shapes in the training data that are similar to the
transformed shape

4 Pass each shape in the set through the regressor to find the
regressor’s output

Update the current image’s shape with the output
5 Average all of the outputs to make the final facial shape

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 14 / 27

3D Shape Regression Tracking Runtime Regression

Why this Regression Algorithm Works

1 Regression uses a set of similar
shapes instead of a single shape to
generate the current shape

This allows the solution to deal with
uncertainty and to avoid error
accumulation

[3]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 15 / 27

3D Shape Regression Tracking Runtime Regression

Why this Regression Algorithm Works cont.

2 Regression performs a transformation
step before selecting a set of similar
shapes

This allows the algorithm to account
for different head positions and
rotations

[3]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 16 / 27

3D Shape Regression Tracking Results

Results of 3D Shape Regression Tracking

Implemented on a PC with an Intel Core i7 (3.5GHz) CPU, the
overall runtime performance is less than 15 milliseconds
The setup and preprocessing steps take less than 45 minutes per
user
This solution has limitations when there are large occlusions or
when there are dramatic changes in lighting

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 17 / 27

DDE Regression Tracking

Outline

1 Introduction

2 3D Shape Regression Tracking

3 Displaced Dynamic Expression (DDE) Regression Tracking
DDE Model
Preparing Training Data
Using the Regressor
Results

4 Comparison and Conclusions

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 18 / 27

DDE Regression Tracking DDE Model

DDE Model

Designed to allow users to be switched automatically, without a
user-specific setup step
Designed to represent:

3D facial shape of the user’s facial expressions
2D facial landmarks

3D facial shape is represented by a linear combination of
expression blendshapes
To represent a 2D facial landmark, add a 2D displacement to the
projection of the landmark’s corresponding vertex on the facial
mesh

2D displacement of facial landmark is what accounts for changes in
user identity

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 19 / 27

DDE Regression Tracking Preparing Training Data

Preparing Training Data

1 Facial images from FaceWarehouse are used as initial data
73 2D landmarks are labeled on initial data to produce a 2D facial
shape

2 Training pairs are created for each image to relate differences in
parameters to image features

Training pairs simulate cases where input parameters may be
inaccurate

frame is identified to contain representative facial motions. The
optimized projection matrix and identity are sent back to the CPR
regressor in a feedback loop. Finally, the post-processed output, in-
cluding the rotation, translation and expression coefficients, can be
directly transferred to a digital avatar to drive its facial animation.

As indicated by Eq. (6), the regressor only computes the facial mo-
tion, i.e., the expression, rigid transformation and displacements.
The frame-invariant parameters Q and u are a part of the regressor
input, as opposed to the output.

4 DDE Regression

In the following we first explain how to learn the DDE regressor
indicated in Eq. (6) from a set of training images, and how to use
it for runtime tracking. We then describe the postprocessing of the
regression output.

4.1 Training

Training data preparation. Our training algorithm takes a set of
facial images from public datasets as input. For each input im-
age I , 73 2D landmarks are manually labeled to produce the 2D
facial shape S = {sk}. From the landmarks, we fit all the un-
knowns (Q,u;P) by minimizing the total displacements Eim =P

k kdkk2, under the constraint DDE(Q,u;P) = S. Images
of the same person are manually identified and the corresponding
shape vectors are optimized jointly with the same identity coeffi-
cients u.

The above optimization process is similar to the 3D facial shape re-
covery and camera calibration steps described in [Cao et al. 2013a],
with the exception that we need to recover the 2D landmark dis-
placements in addition to the 3D shape. Given a value of the focal
length f (and the corresponding Q), we use the coordinate-descent
method to solve the identity u and the shape vector P, by alter-
nately optimizing each parameter while fixing the others in each
iteration. Different values of f result in different fitting errors of
Eim. We thus use the binary search scheme to find the optimal
focal length f that leads to the minimal Eim.

Training pair construction. The CPR training method requires
creating guess-truth pairs for each image Ii, in order to relate
parameter differences to image features. We use the notation
(Ii,Qij ,uij ;Pij ,P

g
ij) to denote such pairs, where Pij is the

guessed shape vector, Pg
ij is the ground truth shape vector and j

represents the indices of the guess-truth pairs for the image Ii.

For each input image Ii and the corresponding fitted ground truth
(Qg

i ,ug
i ;Pg

i), where Pg
i = (eg

i ,Rg
i , tg

i ,Dg
i), we generate several

classes of training pairs by perturbing individual parameters. In
each training pair, we also set the guessed displacement vector with
Dr

ij , taken from a random image.

• Random rotation. Add a random rotation �Rij , yielding
Pij = (eg

i ,Rg
i + �Rij , t

g
i ,Dr

ij), Pg
ij = Pg

i ;

• Random translation. Add a random translation �tij , yield-
ing Pij = (eg

i ,Rg
i , tg

i + �tij ,D
r
ij), Pg

ij = Pg
i ;

• Random expression. Choose a random image Ii0 , assign its
expression coefficients eij = eg

i0 to the current image, yield-
ing Pij = (eij ,R

g
i , tg

i ,Dr
ij), Pg

ij = Pg
i ;

• Random identity. Choose a random image Ii0 , assign its fit-
ted identity coefficients to the current training pair, yielding
uij = ug

i0 , Pij = (eg
i ,Rg

i , tg
i ,Dr

ij). Since the identity co-
efficients are input parameters and cannot be changed during

(a) (b) (c)

Figure 3: Random identity example. For image (a), we use the
identity from (b) but keep the original displacements, resulting in
inaccurate 2D landmark positions. Therefore we need to recompute
the displacements to get the correct landmarks (c).

regression, the ground truth shape vector must be updated ac-
cordingly to Pg

ij = (eg
i ,Rg

i , tg
i ,Dg

ij), where the landmark
displacements Dg

ij are recomputed to match the ground truth
landmarks under the changed identity;

• Random camera. Add a random offset to the focal length
in the camera matrix Qg

i , yielding Qij = Qg
i + �Q,

Pij = (eg
i ,Rg

i , tg
i ,Dr

ij). Similar to the identity case, the
ground truth shape vector must be updated accordingly to
Pg

ij = (eg
i ,Rg

i , tg
i ,Dg

ij), where the landmark displacements
Dg

ij are recomputed to match the ground truth landmarks un-
der the changed camera.

Our identity and camera perturbation is a significant divergence
from conventional CPR methods, as the ground truth shape vec-
tor is perturbed alongside the guessed shape vector to avoid intro-
ducing a change in non-regressed input parameters (i.e., Q and u).
Such training pairs simulate cases where these input parameters are
initially inaccurate, in which the regressor is expected to produce
large displacements to get the correct landmark positions. Fig. 3 il-
lustrates such a training pair. In Fig. 3(a), the identity in the ground
truth shape vector is replaced with that of a different person (shown
in Fig. 3(b)), which introduces significant changes in the landmark
positions. In Fig. 3(c), the displacements Dg

ij are recomputed to
move the landmarks back to the correct locations. The CPR regres-
sor is trained to be able to reproduce such displacements at runtime.

We generate 5 training pairs for each class except the random ex-
pression class, for which we generate 15 pairs to better capture the
rich variety of expressions. Another detail is that for each train-
ing pair, the landmark vertex indices vk in Eq. (3) remain the same
throughout the training process. The reason is that the training pair
models facial shape changes within a single frame, within which
contour vertex indices are not updated. The vk values used in the
training are computed according to the guessed shape vector Pij .

Training. Once the training pairs are constructed, we learn a re-
gression function from Pij to Pg

ij based on intensity information
in the image Ii. We follow the two-level boosted regression ap-
proach proposed by Cao et al. [2012], and use 15 stages for the first
level and 300 stages for the second level. The approach combines a
set of weak regressors in an additive manner. Each weak regressor
computes a shape increment from image features and updates the
current shape vector. At a high level, the training process exploits
the correlation between the error Pg

ij � Pij and appearance vec-
tors extracted from the image Ii, which minimizes the following
energy:

Etr =
X

i,j

��Pg
ij � Pij

��2
. (7)

We only make a minor change to the appearance vector extraction

43:4 • C. Cao et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 43, Publication Date: July 2014

[2]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 20 / 27

DDE Regression Tracking Using the Regressor

Training the Regressor and Runtime Regression

This approach follows a very similar regression approach to the 3D
Shape Regression Training, except this algorithm must account for the
use of a DDE model as shape representation.

The overall runtime regression algorithm is the same as the algorithm
in the 3D Shape Regression Tracking algorithm.

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 21 / 27

DDE Regression Tracking Results

Results of DDE Regression Tracking

Implemented on a PC with an Intel Core i5 (3.0GHz) CPU, and the
entire approach takes approximately 20 milliseconds on average
Setup takes about six hours, but this step only occurs once
This solution does better than the previous solution when dealing
with partial occlusions, but it still produces an inaccurate result
when there are large occlusions

Figure 10: Our approach (bottom row) is more robust than the
user-specific algorithm [Cao et al. 2013a] (top row) under signifi-
cant lighting changes.

the blendshape model we used for 3D facial shapes. This fact, from
the other side, supports our use of 2D displacements in the DDE
model.

We compare our approach with two state-of-the-art techniques, the
user-specific regression algorithm [Cao et al. 2013a] and the 3D
CLM approach described in [Saragih et al. 2011a]. As in the pre-
vious section, we run all methods on a manually labeled video se-
quence and compare the computed 2D landmarks with the ground
truth. For [Cao et al. 2013a], a user-specific regressor is trained
using 60 images taken of the same subject immediately before the
test video is recorded. The CLM model is trained using the same
training images as in our approach. Our training data is substan-
tially larger than the data used in the authors’ implementation and
the resulting model generates more accurate results.

Fig. 9 compares the tracking results of the three methods. As
shown, the tracking accuracy of our approach is comparable to that
of the user-specific method, while the 3D CLM approach produces
inaccurate results for large rotations. Such inaccuracy is especially
pronounced around the face contour, where local features are hard
to distinguish. Note that the landmarks corresponding to the face
contour significantly affect the fitting results of the identity and ex-
pressions. It is thus important to accurately locate their positions.

Fig. 10 compares our method with [Cao et al. 2013a] in handling
lighting changes. If the current lighting is significantly different
from that in the training images, the user-specific method may fail
to get good tracking results (Fig. 10(a)). Based on a generic re-
gressor trained from a large number of images taken under different
lighting environments, our approach demonstrates better robustness
under lighting changes (Fig. 10(b)).

Following [Cao et al. 2013a], we use the depth acquired from a
Kinect camera to validate the accuracy of our approach. Specifi-
cally, we take an RGBD video from the Kinect camera and apply
our approach to the color channels without using any depth infor-
mation. We then reconstruct the 3D facial mesh F for each frame
and compare the reconstructed depth values with the ground truth
at a few representative vertices. As shown in Fig. 11, although the
initial inaccurate identity and camera matrix created a noticeable
difference between our reconstructed mesh and the acquired depth,
the difference decreases to an insignificant level once the frame-
invariant parameters converge through our DEM adaptation.

8 Conclusion

We have introduced a calibration-free approach to real-time facial
tracking and animation with a single video camera. It works by

490

540

590

640

690

740

790

0 50 100 150 200 250 300 350 400 450 500

Our Regressed Mesh

D
ep

th
 (

m
m
)

Frame

Groundtruth from Kinect

Figure 11: Comparison of the depth of our 3D regression with the
ground truth depth from Kinect. Here we use a vertex at the nose
tip. Other vertices have similar curves.

alternately performing a regression step to infer accurate 2D facial
landmarks as well as the 3D facial shape from 2D video frames,
and an adaptation step to correct the estimated camera matrix and
the user identity (i.e., the expression blendshapes) for the current
user. Our approach can achieve the same level of robustness, accu-
racy and efficiency as demonstrated in state-of-the-art tracking al-
gorithms. We also contributed the DDE model, a new facial shape
representation with the the combined advantages of 3D DEM and
2D landmarks. We consider our approach to be an attractive solu-
tion for wide deployment in consumer-level applications.

As a video based technique, our approach will fail to track the
face if many of the facial features cannot be observed in the video
frames. As shown in Fig. 12, our approach can handle some partial
occlusions, but may fail if the face is largely occluded. Moreover,
prolonged landmark occlusions during the DEM adaptation period
may negatively impact the overall accuracy.

Figure 12: Our approach can handle some partial occlusions, but
may fail if the face is largely occluded.

The 3D facial mesh reconstructed by our approach is optimized to
match a set of facial features and does not contain high-frequency
geometric details. If such details are required, one could extract
them by sending our tracking result to an off-line shape-from-
shading technique like [Garrido et al. 2013].

In the future, it would be interesting to see whether the DDE
model can be applied to other problems, e.g., face recognition. The
calibration-free nature of our approach can also facilitate multi-user
scenarios, which user-specific approaches cannot handle. Finally,
we plan to investigate how well our method could perform on mo-
bile devices, where we would face additional challenges such as
low image quality and a low computational budget.

Acknowledgements

We thank Xuchao Gong, Libin Hao and Siqiao Ye for making the
digital avatars used in this paper, Eirik Malme, Carina Joergensen,
Meng Zhu, Hao Wei, Shun Zhou and Yang Shen for being our per-
formers, Steve Lin for proofreading the paper and the SIGGRAPH
reviewers for their helpful comments. This work is partially sup-

Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation • 43:9

ACM Transactions on Graphics, Vol. 33, No. 4, Article 43, Publication Date: July 2014

[2]

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 22 / 27

Comparison and Conclusions

Outline

1 Introduction

2 3D Shape Regression Tracking

3 Displaced Dynamic Expression (DDE) Regression Tracking

4 Comparison and Conclusions

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 23 / 27

Comparison and Conclusions

Comparison of the Two Solutions

The DDE Regression Tracking solution is an improvement to the 3D
Shape Regression Tracking solution. The improved solution:

does not require a data gathering step (even if the initial tracking
takes much longer)
is not user-specific; users can be switched and swapped during
video without a noticeable lag in output results
is more robust than the previous solution, especially during
dramatic lighting changes

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 24 / 27

Comparison and Conclusions

Conclusions

A preliminary solution for rendering 3D virtual images from 2D
video frames in real time: 3D Shape Regression Tracking
An improved solution that has been shown to be more robust,
better at handling lighting changes, handles facial rotations more
successfully, and does not requiring user-specific training: DDE
Regression Tracking
Further research includes solutions driven by both visual and
audio data, as well as solutions that work completely online
without the use of facial markers or training stages

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 25 / 27

Comparison and Conclusions

Thanks!

Thank you for your time and attention!

Contact: saxxx027@morris.umn.edu

Questions?

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 26 / 27

References

References

alice-in wonderland.net.
About disney’s ’alice in wonderland’ 1951 cartoon movie.

C. Cao, Q. Hou, and K. Zhou.
Displaced dynamic expression regression for real-time facial
tracking and animation.
ACM Trans. Graph., 33(4):43:1–43:10, July 2014.

C. Cao, Y. Weng, S. Lin, and K. Zhou.
3d shape regression for real-time facial animation.
ACM Trans. Graph., 32(4):41:1–41:10, July 2013.

O. Media.
Programming 3d applications with html5 and webgl.

See my Modeling Facial Expressions paper for additional references.

Sax (U of Minn, Morris) Modeling Facial Expressions November 2016 – Morris, MN 27 / 27

	Introduction
	Overview
	Background

	3D Shape Regression Tracking
	Gathering and Assembling Data
	Training the Regressor
	Runtime Regression
	Results

	Displaced Dynamic Expression (DDE) Regression Tracking
	DDE Model
	Preparing Training Data
	Using the Regressor
	Results

	Comparison and Conclusions

